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Poincaré invariant three-nucleon problem. W. Polyzou

The essential properties of mathematical models of few-nucleon systems that are applicable
at energy scales up to a few GeV are (1) the model is a quantum theory (2) Poincaré invariance is
an exact symmetry of the model (3) the energy spectrum is bounded from below and (4) the model
satisfies space-like cluster properties. We discuss models of the three-nucleon system with these
properties and demonstrate that these models can provide a realistic description of three-nucleon
observables at these energy scales.

The mathematical setting for a quantum theory is a Hilbert space. Probability amplitudes are
represented by Hilbert space scalar products of unit normalized rays. The Hilbert space in these
models is the tensor product of mass m spin 1/2 irreducible representation spaces of the Poincaré
group, where m is the nucleon mass.

The Poincaré group has ten infinitesimal generators. From these generators it is possible to
construct two Casimir invariants (m2,w2 = j2/m2), four additional mutually commuting observ-
ables, h, and 4 operators, ∆h, that are conjugate to the commuting observables h. The spectrum
of the commuting observables h is determined by the conjugate operators ∆h and the spectrum of
the Casimir operators. For particles, the eigenvalues of the Casimir operators m and j are the mass
and spin of the particle. The Hilbert space of square integrable functions of the eigenvalues of the
operators h over their joint spectrum is a mass m spin j irreducible representation space for the
Poincaré group. The most common choice for h is the three components of the linear momentum
and one component of the canonical spin; however, the canonical spin could be replaced by the
light-front spin, helicity, or one component of the Pauli-Lubanski vector; the linear momentum
could be replaced by light-front components of the four momenta, four velocity, or the Newton-
Winger position operator. We denote the single nucleon Hilbert space by H1.

There is a natural unitary irreducible representation of the Poincaré group on H1. The Poincaré
group Wigner D-functions,

D jm
h′;h[Λ,a] := 〈(m, j)h′|U(Λ,a)|(m, j)h〉,

in the irreducible basis {|(m, j)h〉} are known [1].
Few-nucleon Hilbert spaces are tensor products of single nucleon spaces, H1. The tensor prod-

uct of the single nucleon irreducible representations of the Poincaré group defines the kinematic
representation of the Poincaré group on the few-nucleon Hilbert space. These kinematic represen-
tations are reducible; they can be decomposed into a direct integral of irreducible representations
of the Poincaré group using the Poincaré group Clebsch-Gordan coefficients. The basis-dependent
Poincaré group Clebsch-Gordan coefficients,

C(1,2 : 3) = 〈(m1, j1)h1,(m2, j2)h2|(m3, j3)h3,η〉,

are known[1]. The parameter η represents invariant degeneracy quantum numbers that separate
multiple copies of irreducible representations with the same mass and spin. These Clebsch-Gordan
coefficients satisfy

∑

∫
D j1m1

h1;h′1
[Λ,a]D j2m2

h2;h′2
[Λ,a]dh′

1dh′
2C(1′,2′ : 3) = ∑

∫
C(1,2 : 3′)dh′

3D
j3m3

h′3;h3
[Λ,a].

Dynamical representations of the Poincaré group are constructed by adding interactions to
the non-interacting mass operator, M0, that commute with the four operators h that label distinct
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vectors in irreducible subspaces, the four conjugate operators ∆h, and the spin. The interacting
mass operator in the non-interacting irreducible basis has a kernel of the form

〈(m, j)h,η |M|(m′, j′)h′,η ′〉 = δ (h;h′)δ j j′〈m,η |M j|m′,η ′〉

where δ (h;h′) is a product of Dirac delta functions in the continuous variables and Kronecker delta
functions in the discrete variables. Diagonalizing M in this basis

∑

∫
〈m,η |M j|m′,η ′〉dm′dη

′〈m′,η ′|ψ〉 = λ 〈m,η |ψ〉

gives simultaneous eigenstates of M, j, and h. The resulting eigenfunctions

〈(m, j)h,η |(λ , j′)h′〉 = δ (h;h′)δ j j′〈m,η |ψ〉

are complete, and because {M, j,h,∆h} have the same commutation relations as {M0, j,h,∆h},
the eigenstates transform irreducibly. The matrix elements of the irreducible representation in this
basis are identical to the Poincaré Wigner D functions for the free particle representation of the
same spin with the particle mass m replaced by the eigenvalue λ of M. These Poincaré-Wigner D

functions define all of the matrix elements of a dynamical representation of the Poincaré group in
this basis of irreducible eigenstates of M. The spectral condition is satisfied if the binding energy
is less than the sum of the masses of the bound particles.

The problem of constructing realistic two-body interactions as input to the relativistic three-
nucleon problem is solved by using existing realistic nucleon-nucleon interactions [2][3] as input.
If we define the relative momentum operator k2 as a function of the kinematic two-body mass
operator by

M0(k2) :=
√

k2 +m2
1 +

√
k2 +m2

2,

then a dynamical two-body mass operator is defined by

M = M0(k2 +2µV )

where µ is the two-nucleon reduced mass and 〈(m′, j′)h′,η ′|V |(m, j)h,η〉= δ j′ jδ (h;h′)〈k,η |V j|k,η〉,
where 〈k,η |V j|k,η〉 is the kernel of a non-relativistic potential that is fit to differential scatter-
ing cross section data correctly transformed to the two-body center of momentum frame. Time-
dependent scattering theory, along with the Kato-Birman invariance principle, can be used to show
that the Møller wave operators for the Hamiltonian associated with the mass operator, M, and the
non-relativistic Hamiltonian associated with the interaction, V , are identical functions of k2 [1]. It
follows that the relativistic and non-relativistic S-matrices are identical functions of k2,η and , j.
For nucleon-nucleon applications the Clebsch-Gordan coefficients can be designed so the degener-
acy parameters η have the same spectrum as the non-relativistic l2 and s2 that appear as variables
in typical nucleon-nucleon interactions. This means that high-precision interactions fit to scattering
data can be used directly in Poincaré invariant two-nucleon models without modification.

Cluster properties require that multiparticle representations of the Poincaré group U(Λ,a) ap-
proach tensor products of the subsystem representations, Ui(Λ,a), when the subsystems are asymp-
totically separated by large space-like displacements:

lim
(bi−b j)2→∞

‖(U(Λ,a)−⊗Uk(Λ,a))∏Ul(I,bl)|ψ〉‖ = 0. (1)
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For a system consisting of an interacting pair of nucleons and a spectator nucleon it is possible
to first decompose the tensor product of three irreducible representations of the Poincaré group
into a superposition of irreducible representations and then add the two-body interaction. Alterna-
tively, it is also possible to add an interaction directly to the two-body irreducible representation
to construct an interacting two-body representation and then decompose the tensor product of that
representation and the spectator representation into a three-body irreducible representation. In both
cases the result is a three-body irreducible representation of the Poincaré group with an interacting
pair of particles. If the non-trivial part of the interaction kernel, 〈k′,η ′|V j|k,η〉, is the same in both
constructions then both constructions give identical scattering matrices. It is also easy to demon-
strate that the first construction fails to satisfy the cluster property (1) while the second one satisfies
property (1) by construction.

The advantage of the first approach is that two-body interactions for different pairs can be com-
bined in a manner that preserves the Poincaré symmetry. This is because the two-body interactions
for each pair commute with the j,h,∆h of the non-interacting three-body irreducible representa-
tion. This construction gives a unitary representation of the Poincaré group for three interacting
particles that unfortunately fails to satisfy cluster properties. The identity of the S-matrices for
the separate 2+1 body problems implies [4] that the two 2 + 1-body representations are related
by a unitary operator, A(i j)(k), called a scattering equivalence. Cluster properties can be restored
without breaking the Poincaré invariance by multiplying the three-body representation that fails
to satisfy cluster properties by the (symmetrized) [5][1] product of the unitary operators A(i j)(k)

for all three pairs. Because the product of scattering equivalences is a scattering equivalence, this
transformation does not change the on-shell three-body S matrix. It also shows that even though
the untransformed representation of the Poincaré group fails to satisfy cluster properties, the re-
sulting S matrix satisfies cluster properties. These scattering equivalences are only needed when
the three-body solutions are used in four- or more-body models or when they are used to compute
matrix elements of electroweak current operators.

Note that the input relativistic two-body interactions fit to experiment and cluster properties
fix the few-body dynamical operators up to three- or more-body interactions. Kinematic subgroups
normally associated with Dirac’s forms of dynamics correspond to different choices of h and ∆h.
Models with a given kinematic subgroup are scattering equivalent to models with any other kine-
matic subgroup, but the scattering equivalences generate many-body interactions under change of
representation.

The operator form of the Faddeev equation for the three-body problem is identical to the
corresponding non-relativistic equation. The differences are (1) how the two-body interactions
are embedded in the Faddeev kernel (2) the structure of the recoupling coefficients, which in the
relativistic case are Racah coefficients of the Poincaré group that change the order of the pairwise
coupling of irreducible representations (3) and kinematic factors. Relativistic effects are measured
by comparing the difference between the relativistic and non-relativistic three-body calculations
with identical two-body input. Since in both cases the two-body interactions are designed to fit
experiment, there are no relativistic corrections at the two-body level.

Technical differences in the relativistic and non-relativistic Faddeev equation appear when
the kernel and driving terms are evaluated in a basis[6][7]. In the relativistic case the two-body
interactions appear inside of square root operators, the Racah coefficients for the Poincaré group
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have a non-trivial spin and momentum dependence, and for systems of more than three particles
it is necessary to compute the scattering equivalences that restore cluster properties. While these
properties make the relativistic model more complicated from a computational point of view, it is
possible to treat all of these complications without approximation [8][9][10][7].

For realistic interactions the Faddeev equations have been solved for energies up to 250 MeV
in a representation with a Euclidean kinematic subgroup using a partial wave expansion[11] [12].
To extend these calculations to reactions with energies above 250 MeV we have demonstrated that
the Faddeev equations can also be accurately solved by direct integration without partial waves
[14][15][16]. Converged results, using direct integration, are obtained for energies up to 2 GeV.

At low energies, calculations with realistic interactions exhibit only small differences with the
corresponding non-relativistic results [11] . Corrections to the Triton binding energy depend on the
two-body interaction, but generally lead to a small decrease in the binding energy[17][18], typically
less than a tenth of an MeV. The low-energy calculations also show nontrivial contributions to the
observable Ay at energies (5-13 MeV) [12] due to relativistic spin rotations, confirming the scale,
but not the sign of an effect observed by Miller and Schwenk[13] in a simpler model. While these
relativistic contributions move the calculations away from the experimental results, they imply that
these effects need to be accounted for in final resolution of the Ay puzzle.

The higher-energy calculations based on direct integration used the spin-independent Malfliet-
Tjon interaction. These calculations demonstrated that approximations that include only relativistic
kinematics can lead to large “effects” that are almost completely canceled by dynamical relativistic
effects. These calculations [15][16] also demonstrated the non-uniformity of the convergence of the
multiple scattering series for both elastic scattering and breakup reactions. For breakup reactions
away from the quasielastic peak at least one iteration of the series was required to obtain converged
results, even above 1 GeV. There were also departures from the non-relativistic calculations based
on the same two-body interaction in the neighborhood of the quasielastic peak. Relativistic and
non-relativistic exclusive breakup calculations at 500 MeV show a different energy dependence
[15] for different pairs of proton angles. The behavior of the relativistic calculations with the
Malfilet-Tjon interaction seem to explain differences between experiment and the corresponding
non-relativistic calculation [15] for a large number of angle pairs.

To test the effects of ignoring the scattering equivalences that restore cluster properties in
four-body calculations we (1) turned off the interaction with one of the nucleons in the three-body
construction outlined above and (2) alternatively took a tensor product of a two-body calculation
and a spectator nucleon. The two representations are scattering equivalent. We assumed that the
interacting nucleons were bound in a deuteron state. Then we calculated the charge form factor
for the electron scattering off of the spectator proton in the presence of the free deuteron. In
the tensor product representation the momentum of the deuteron does not affect the form factor,
however in the representation where the two-body interaction is added to the non-interacting three-
body irreducible representation, there is a clear dependence of the form factor on the momentum
of the deuteron. Figure 1 illustrates the difference between these two calculations as a function of
momentum transfer and the component of the momentum of the deuteron parallel to the momentum
transfer. This unphysical effect can be as large as 6% and is a consequence of not transforming
to a representation where both the current and dynamics clusters. This suggests that the three-
nucleon wave functions should be transformed to a representation where the dynamics satisfies
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Figure 1: Comparison of charge form factors
with and without corrections for cluster properties
as a function of spectator momentum.
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Figure 2: Deuteron structure function A in the
impulse approximation for different hard and soft
nucleon-nucleon interactions.

cluster properties before they can be used in the computation of electromagnetic observables.

We also tested some modern soft interactions [19][20] that are precisely fit to the same scat-
tering data as realistic meson-exchange interactions. These interactions are designed to be used in
low-energy many-body calculations; the transformations that reduce the contribution of the high-
momentum components to the two-body interactions also generate many-body interactions and
exchange currents. It is interesting to investigate the extent to which these kinds of interactions
can be used in models that study intermediate energy dynamics without introducing the generated
three-body interactions and exchange currents. In this case we considered the problem of elastic
electron-deuteron scattering in a Poincaré covariant impulse approximation in a model with a light-
front kinematic subgroup. We performed calculations of the elastic scattering observables A, B and
T20 [21] using the AV18 [3] and CD-Bonn [2] interactions with calculations using soft interactions
fit to the same two-body data. All calculations used the same impulse current as input. While each
calculation requires different exchange current contributions, calculations of all three electromag-
netic observables for momentum transfers in the GeV range were well described using standard
meson exchange potentials like Argonne V18 or CD Bonn. For these interactions the small dis-
crepancies with experiment in all three observables are due to well-understood two-body exchange
currents. On the other hand, for the calculations using the N3LO or the JISP 16 wave functions the
exchange current contributions that are needed to explain the discrepancies between calculations
and experiment become significant in the observable A for momentum transfers between .5 and 1
GeV2, in B for momentum transfers above .5 GeV2 and in the tensor polarization for momentum
transfers above .15 GeV2. Figure 2. shows the result of the four calculations of A up to Q2 = 2.5
(GeV)2. So while these soft interactions are clearly useful at low energy, the additional exchange
currents that are required in a relativistic calculation limit the benefits of having a softer potential.
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The research summarized above indicates that it is now possible to extend the few-nucleon
physics program that has been successful at low energies to treat few-nucleon problems at interme-
diate energy scales in a manner that respects all fundamental principles of physics that are relevant
at these scales.
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