
P
o
S
(
L
C
2
0
0
8
)
0
4
1

Similarity transformation technique in equal-time
quantized theories

Axel WEBER∗

Instituto de Física y Matemáticas, Universidad Michoacanade San Nicolás de Hidalgo,
Edificio C-3, Ciudad Universitaria, A.P. 2-82, 58040 Morelia, Michoacán , Mexico
E-mail: axel@ifm.umich.mx

We present the application of similarity transformations of field theoretic Hamiltonians in equal-

time quantized theories to the calculation of relativisticbound states. The similarity transforma-

tions used can be derived from a generalization of the Gell-Mann-Low theorem. The muonium

spectrum obtained in this approach for the relativistic valueα = 0.3 of the fine structure constant

is compared with corresponding calculations in light-front quantization.

PACS: 11.10.St, 03.65.Ge, 11.10.Ef

LIGHT CONE 2008 Relativistic Nuclear and Particle Physics
July 7-11, 2008
Mulhouse, France

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
L
C
2
0
0
8
)
0
4
1

Similarity transformation technique in equal-time quantized theories Axel WEBER

Similarity transformations have been used in light-front quantized theories for quite some
time now [1], in particular for the description of relativistic bound states. Thegeneral idea is to
reduce the size of the subspace of Fock space that is necessary for the description of the bound
state at the expense of a more complicated Hamiltonian. One very clear-cut formulation of such
an approach is in terms ofN-particle Fock space sectors [2]. While the main motivation for the
similarity transformation technique is its eventual application to QCD bound states,i.e., hadrons,
the approach has been tested for Yukawa theory [3] and QED [4, 5, 6].

These applications have evidenced some problems of the approach, notably an unphysical
UV cutoff dependence [3, 5]. In this contribution, we will apply a similar approach to equal-time
quantized theories, in particular to QED. In addition to obtaining quite promising results, we hope
to shed some light on the problems that appear in the context of light-front quantized theories.

In equal-time quantized theories, a similarity transformation is naturally induced by a gener-
alization of the Gell-Mann–Low theorem [7]. For the determination of relativistic bound states, we
apply the theorem to the subspace of Fock space that contains all states ofthe constituents as free
particles. For concreteness, we will consider states of one electron andone antimuon, although
we will allow the mass of the “antimuon” to take any value. As in the earlier applications of the
same formalism to the Wick-Cutkosky model and Yukawa theory [8, 9], the effective Hamiltonian
generated by the generalized Gell-Mann-Low theorem contains the relativistic kinetic energies of
the constituents and an effective potential. As for the kinetic energies, the corrections to the “bare”
values from the expectation value of the free part of the Hamiltonian are expected to lead to mass
renormalizations identical to the ones in covariant formulations, from general arguments that were
made explicit in the case of Yukawa theory [9]. In order to identify all-order contributions to
the vacuum energy, the kinetic energies, and the interaction of the constituents, a diagrammatical
representation is helpful (cf. Ref. [8]).

As for the effective potential, the matrix elements in Coulomb gauge read to lowest nontrivial
order in a perturbative expansion,

〈pA, r;pB,s|Veff|p′
A, r ′;p′

B,s′〉 = −
e2

√

2EA
pA

2EB
pB

2EA
p′

A
2EB

p′
B

×
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1
(

pA−p′
A

)2

[

ūA(pA, r)γ0uA(p′
A, r ′)

][

ūB(pB,s)γ0uB(p′
B,s′)

]

−
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2|pA−p′
A|

(
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EA
pA

+ |pA−p′
A|−EA

p′
A

+
1
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+ |pB−p′
B|−EB

p′
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)

×
[

ūA(pA, r)γ iuA(p′
A, r ′)
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(

2

∑
λ=1

ε(λ )
i (pA−p′

A)ε(λ )∗
j (pA−p′

A)

)

×
[

ūB(pB,s)γ juB(p′
B,s′)

]

]

(2π)3δ (pA +pB−p′
A−p′

B) . (1)

Here,|pA, r;pB,s〉 symbolizes the state of an electron with 3-momentumpA and spin orientationr
(in a spinor basis yet to be specified) and an antimuon with 3-momentumpB and spin orientation
s. We use the shorthandsEA

pA
= (m2

A +p2
A)1/2 andEB

pB
= (m2

B +p2
B)1/2 for the kinetic energies. For
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convenience, we have introduced the charge-conjugate Dirac spinorsuB(pB,s) for the antimuon,
while uA(pA,s) represent the electron spinors. The spatially transverse photon polarization vectors
ε(λ )

i (k) satisfy the relation∑2
λ=1 ε(λ )

i (k)ε(λ )∗
j (k) = δ tr

i j (k) ≡ δi j − k̂i k̂ j (wherek̂ = k/|k|).
The interpretation of the effective potential (1) is the following: the secondline stems from

the instantaneous Coulomb potential, easily identified by the momentum dependence in the de-
nominator (the Fourier transform of the spatial Coulomb potential), and multiplied with the charge
densities of the Dirac currents. The following lines are the result of transverse photon exchange,
the more complicated denominators indicating a retarded interaction, and the Dirac currents being
contracted with the corresponding photon polarization vectors.

The delta function in Eq. (1) shows that total 3-momentum is conserved by theeffective in-
teraction, and in the following we will consider the center-of-mass system (c.m.s.) pA + pB =

p′
A +p′

B = 0. In order to simplify the diagonalization of the effective Hamiltonian, we express the
Dirac spinors in terms of Pauli spinors (using the Dirac-Pauli representation) to find the effective
Schrödinger equation in the c.m.s.,

(

√

m2
A +p2 +

√

m2
B +p2

)

φ(p)−e2
∫

d3p′

(2π)3

√

√
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)(

(p ·σσσA)σ i
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EA
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×δ tr
i j (p−p′)

(

(p ·σσσB)σ j
B

EB
p +mB

+
σ j

B(p′ ·σσσB)

EB
p′ +mB

)]

φ(p′) = E′φ(p) . (2)

Here, p = pA = −pB, the spinorial wave functionφ(p) is defined asφ(pA)(2π)3δ (pA + pB) =

∑r,s〈pA, r;pB,s|φ〉 [χr ⊗χs], andσσσA (σσσB) is understood to act on the Pauli spinorχr (χs) only. E′

is the difference between the energy of the bound state and the vacuum energy. Of the full state
|φ〉 in Fock space (with zero total momentum), only its projection to one-electron–one-antimuon
states|pA, r;pB,s〉 appears. The effect of its components in other Fock space sectors is implicitly
taken care of (to the order considered) by the effective potential. Equation (2) is a well-defined
equation which admits a discrete spectrum of eigenvalues as can be shown by a detailed analytical
investigation of the large-momentum behavior of its solutions, and by a direct numerical solution
of the equation to which we now turn.

To this end, we take into account the rotational and parity invariance of Eq.(2). Eigenstates of
total angular momentumJ can be constructed as usual by adding relative orbital angular momentum
L and total spinS. For convenience, instead of using parity itself, we will label the eigenstates by
the “relative parity”π ′ defined through(−1)L = π ′(−1)J. SinceS= 0,1, for givenJ the sector
π ′ = +1 contains the states withL = J andS= 0 orS= 1, while forπ ′ =−1 we can haveL = J−1
or L = J+1, with S= 1 in both cases. In any sectorJπ ′

, the two different possible(LS)-states will
mix, except forJ = 0 (only one state exists in each of the two sectors), for equal masses [the
states of the(π ′ = +1)-sector do not mix because of the additional exchange symmetry] , and in
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the one-body limit where the mass of one of the constituents goes to infinity [no mixing in the
(π ′ = −1)-sector]. The one-body limit will be discussed more fully later on.

After explicitly carrying out the contractions of the spatial indices in the transverse photon
exchange part, the formulae employed before in the solution of the effective Schrödinger equation
for the case of Yukawa theory [9] can be used for the present case.We will focus here on the
partial-wave decomposition which is well-known for the (Fourier transformed) Coulomb potential,
and has been calculated in Ref. [9] for theδi j -part of the transverse photon exchange. The partial
waves of thêki k̂ j -part of the transverse photon exchange have not appeared before and are given by

bL(p, p′) =
2L+1

2

∫ 1

−1
dcosθ PL(cosθ)

×
1

(p−p′)2

1
2|p−p′|

(

1

EA
p + |p−p′|−EA

p′
+

1
EB

p + |p−p′|−EB
p′

)

. (3)

The integral diverges like(p− p′)−2 for p′ → p which would lead to a divergence in thep′-integral.
These divergences are spurious and cancel in pairs in the complete expressions. However, for
the numerical calculation, we have to extract the divergent parts and perform the cancellations
analytically. Fortunately, the extraction of the divergencies is simple: they occur at cosθ = 1, and
sincePL(1) = 1, we can conveniently splitPL(cosθ) in [1+(cosθ −1)PR

L (cosθ)], thus defining
a “reduced” Legendre polynomialsPR

L (cosθ). The divergent parts in Eq. (3) originating from the
1 in this decomposition can be analytically cancelled in pairs, leaving a finite contribution. The
remainder of the integral is logarithmically divergent forp′ → p (as are the other partial waves),
and the followingp′-integration is convergent.

The rest of the numerical solution of Eq. (2) proceeds in strict analogy with the Yukawa case
[9]. The results for the lowest energy eigenvalues thus obtained are plotted in Figs. 1 and 2 for equal
constituent masses and fine structure constantsα ≤ 0.45. The binding energies are normalized to
µα2, µ being the reduced mass, so that the comparison with the nonrelativistic energy eigenvalues
µα2/2n2 is immediate.

We find that for valuesα < 0.1, the energy levels are dominated by the nonrelativistic val-
ues plus the leading relativistic corrections (the leading-order fine and hyperfine structure) of or-
der µα4, both in our numerical results and in the perturbative calculations of bound-state QED.
In this region of small coupling constants, the numerical results are in good agreement with the
perturbative calculations, apparently only limited by the numerical precision.For larger values
α > 0.1, higher perturbative orders become important and our numerical results deviate in some
cases strongly from the lowest-order perturbative predictions.

In Table 1 we compare our results forα = 0.3 with two different calculations in light front
quantization [5, 6] (we use the data for the Gaussian similarity function in the latter paper). In the
table, we label the states by the nonrelativistic notationn2S+1LJ and also indicate the corresponding
sectorsJπ ′

. There is a clear tendency in our results towards more negative energies, i.e., stronger
binding, compared toO(µα4)-perturbation theory. The ordering of the different levels, however,is
the same as in perturbation theory. We can also see that the difference to perturbation theory in the
direction of stronger binding is systematically larger forS-states than forP-states, and also larger
for (J = 0)-states than for(J = 1)-states, and smallest for the(J = 2)-state. For the light-front
results, this latter tendency is inverted; theS0-states have even higher energies than in perturbation

4



P
o
S
(
L
C
2
0
0
8
)
0
4
1

Similarity transformation technique in equal-time quantized theories Axel WEBER

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

E
/(

µα
2 )

α

0+

1-

Figure 1: The binding energyE = E′−mA−mB as a function of the fine structure constantα = e2/4π for
the case of equal massesmA = mB. E is normalized toµα2 whereµ is the reduced mass (µ = mA/2 in the
present case). Plotted are the lowest energy levels forJπ ′

= 0+ and 1− corresponding to the nonrelativistic
principal quantum numbern = 1.

perturbation our
state theory results Ref. [5] Ref. [6]

11S0(0+) −0.559 −0.583 −0.525 −0.551
13S1(1−) −0.499 −0.506 −0.501 −0.525
21S0(0+) −0.1343 −0.1373 −0.1301 −0.1332
23P0(0−) −0.1306 −0.1315 −0.1335 −0.1369
23P1(1+) −0.1278 −0.1279 −0.1298 −0.1327
23S1(1−) −0.1268 −0.1277 −0.1269 −0.1298
21P1(1+) −0.1268 −0.1269 −0.1290 −0.1315
23P2(2−) −0.1255 −0.1255 −0.1277 −0.1302

Table 1: Binding energiesE/µα2 for equal masses from perturbation theory toO(µα4), from our numerical
results, and from Refs. [5] and [6]
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Figure 2: As Fig. 1, but for the energy levels corresponding to the nonrelativistic principal quantum number
n = 2.

theory. Both light-front calculations are qualitatively similar, only that the binding is stronger
throughout in the similarity transform approach of Ref. [6]. In conclusion, our approach gives
qualitatively different results from the similarity transformation technique applied to the light-front
quantized theories (in the approximations presently considered). We emphasize, however, that
there is an unphysical logarithmic UV cutoff dependence in the light-front results (for the cited
values, the cutoff has been set equal to the constituent masses).

In order to gain additional insight into the approach presented, it is helpful to consider the
one-body limit, i.e., the limit of infinite mass of the antimuon. One can show that in this limit the
Schrödinger equation (2) reduces to the equation for an electron in an external potential. The con-
tribution from transverse gluon exchange becomes suppressed and only the instantaneous Coulomb
interaction remains (similarly to the nonrelativistic limit). Also, the spin of the heavy antimuon de-
couples from the dynamics, leading to the exact degeneracy (within numerical precision) of pairs
of states in the numerical solution of Eq. (2) in this limit.

We can combine the effective Schrödinger equation for the electron wavefunction φA(p, r)
in the one-body limit with the charge conjugate equation for a positron wave functionφA(p, r) to
obtain the Dirac form

(ααα ·p+βmA)φ(p)−
∫

d3p′

(2π)3

{

ΛA
+(p)

e2

(p−p′)2 ΛA
+(p′)
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+ΛA
−(p)

e2

(p−p′)2 ΛA
−(p′)

}

φ(p′) = E′φ(p) (4)

with φ(p) =
2

∑
r=1

1
√

2EA
p

[

φA(p, r)uA(p, r)+φ∗
A(−p, r)vA(−p, r)

]

, (5)

whereΛA
±(p) are the usual Casimir projectors to positive and negative energy solutions. They

decouple particle and antiparticle equations which distinguishes Eq. (4) from the Dirac equation.
Although we thus lose the cherished covariance properties of the Dirac equation, we gain a clear
one-particle interpretation of the wave function. The complete Fock state including arbitrary num-
bers of electron-positron pairs can also be recovered perturbativelyin our approach. In an expan-
sion around the nonrelativistic limit, the projectors do not contribute to the firstcorrections, and
Eq. (4) reproduces the fine structure contained in the Dirac equation.

Analogously, in the case of two dynamical particles, the effective Schrödinger equation for par-
ticlesAB can be combined with the charge conjugate equation for two antiparticlesAB. The result
is a reduced Salpeter equation where the instantaneous interaction is obtainedfrom first principles
via the generalized Gell-Mann–Low theorem. The first relativistic corrections to the nonrelativistic
limit yield the Breit interaction and, as a consequence, the correct fine andhyperfine structure of
the system. The Casimir projectors again guarantee a two-particle wave function interpretation and
avoid anomalies like the Brown-Ravenhall disease.
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