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1. Introduction

Experiments in deep—inelastic lepton—nucleon scattering [1] and Drell-Yan pair production
in nucleon—nucleon collisions [2, 3] have unambiguously shown that the light antiquark distri-
butions in the proton are not flavor-symmetric, d(x) —T(x) > 0. The asymmetry is clearly of
non-perturbative origin and exhibits only weak scale dependence, and therefore represents an in-
teresting quasi—observable which directly probes the QCD quark structure of the nucleon at low
resolution scales. The existence of a large flavor asymmetry had been predicted [4] on the basis of
the contribution of the nucleon’s pion cloud to deep—inelastic processes [5]. The “bare” nucleon
couples to configurations containing a virtual pion, and transitions p — nrr* are more likely than
p — AT, resulting in an excess of ™ over 1~ in the “dressed” proton. This basic idea was
implemented in a variety of dynamical models, which incorporate finite—size effects by hadronic
form factors associated with the 7TNN and 7NA vertices; see Refs. [6] for a review of the extensive
literature. It was noted long ago [7] that in order to reproduce the fast decrease of the observed
asymmetry with x one needs NN form factors much softer than those commonly used in me-
son exchange parametrizations of the NN interaction; however, even with such soft form factors
pion virtualities (four—-momenta squared) generally extend up to values >> M2 [8]. This raises the
question to what extent such models actually describe large—distance effects associated with soft
pion exchange (momenta ~ M), and what part of their predictions is simply a parametrization of
small—distance dynamics which should more naturally be associated with non-hadronic degrees of
freedom. More generally, one faces the question how to formulate the concept of the “pion cloud”
in the nucleon’s partonic structure in a manner consistent with chiral dynamics in QCD.

A framework which allows one to address these questions in a systematic fashion is the trans-
verse coordinate (impact parameter) representation, in which the distribution of partons is studied
as a function of the longitudinal momentum fraction, x, and the transverse distance, b, of the parton
from the transverse center of momentum of the nucleon [9]. In this representation, chiral dynamics
can be associated with a distinct component of the partonic structure, located at x < M;/My and
b~ 1/My [10]. In the gluon (more generally, in any flavor—singlet) distribution this large—distance
component is sizable and contributes to the increase of the nucleon’s average transverse size, (bz),
with decreasing x [10]. Here we study the large—distance component in the antiquark flavor asym-
metry d(x) —t(x) (i.e, the non-singlet sector). Using general arguments, we first identify the region
where parton distributions are governed by chiral dynamics. We then quantify what fraction of the
asymmetry obtained in the phenomenological pion cloud model actually arises from the universal
large—distance region. Finally, we show that this contribution accounts only for a small part of the
observed asymmetry, indicating that most of it is due to non—chiral dynamics at small distances.
(A more detailed account of our studies will be given in a forthcoming article.)

2. Chiral dynamics and partonic structure

The region where parton densities are governed by chiral dynamics can be established from
general considerations. The central object is the pion longitudinal momentum and transverse co-
ordinate distribution in a fast-moving nucleon, fr(y,b) (y is the pion momentum fraction); the
precise meaning of this concept and its region of applicability will be explained in the following.
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Figure 1: (a) Parametric region where the pion distribution in the nucleon is governed by chiral dynamics
(in longitudinal momentum fraction y, and transverse distance b). (b) The pion GPD in the nucleon. The
distributions f;s(y,b)(B = N,A) are obtained as the 2—dimensional Fourier transform At — b (b = |b|).

Chiral dynamics generally governs large—distance contributions to nucleon observables, re-
sulting from exchange of “soft” pions in the nucleon rest frame; in the time—ordered formulation
of relativistic dynamics these are pions with energies E; ~ M, and momenta |k,| ~ M. Chiral
symmetry provides that such pions couple weakly to the nucleon and to each other, so that their
effects can be computed perturbatively. (The distance scale 1/M; is assumed to be much larger
than all other hadronic length scales in question.) Boosting these weakly interacting 7N configu-
rations to a frame in which the nucleon is moving with large velocity, we find that they correspond
to longitudinal pion momentum fractions of the order?*

y ~ Mg/My. (2.1)

At the same time, the soft pions’ transverse momenta, which are not affected by the boost, corre-
spond to a motion over transverse distances of the order

b ~ 1/Mp. 2.2)

Together, Egs. (2.1) and (2.2) determine the parametric region where the pion momentum and
coordinate distribution is governed by model—independent chiral dynamics, and the soft pion can
be regarded as a parton in the nucleon’s wave function in the usual sense (see Fig. 1a).

The condition Eq. (2.1) implies that the pion momentum fraction in the nucleon is parametri-
cally small, y < 1. As a consequence, one can generally neglect the recoil of the spectator system
and identify the distance b with the separation of the pion from the transverse center of momentum
of the spectator system, r = b/(1—y). This makes for an important simplification in the spatial
interpretation of chiral contributions to the parton densities.

In its region of applicability defined by Egs. (2.1) and (2.2), the b—dependent pion “parton”
distribution can be defined unambiguously as the transverse Fourier transform of the pion GPD in
the nucleon (see Fig. 1b). The latter can be evaluated using either time—ordered or covariant pertur-
bation theory, and implies summation over all relevant baryonic intermediate states. An important
point is that, because the pion wavelength is large compared to the typical nucleon/baryon radius,
only the lowest—mass excitations can effectively contribute to the GPD in the region of Egs. (2.1)

LIn covariant perturbation theory soft pions have virtualities —k% ~ M2, and Eq. (2.1) results from the condition
that the minimum pion virtuality required by the longitudina momentum fraction, y, be of the order M,ZT.
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and (2.2). We therefore retain only the N and A intermediate states in the sum. The inclusion of the
A, whose mass splitting with the nucleon introduces a non-chiral scale which is numerically com-
parable to the pion mass, represents a slight departure from strict chiral dynamics but is justified
by the numerical importance of this contribution (cf. the discussion of the Ng — oo limit in QCD
below). Calculation of the large—b asymptotics of the pion distribution from the graph of Fig. 1b
shows exactly the behavior described by Egs. (2.1) and (2.2) [10]. For the N intermediate state

fan(y,b) O e *mOb/p with Kmn(y) ~ My for y ~ My/My, (2.3)

i.e,, for parametrically small y the transverse distribution has a “Yukawa tail” with a y—dependent
range of the order ~ 1/M (the limiting value of kK for y — 0 is 2My). For values y ~ 1 one
finds an exponential decay with a range of the order ~ 1/My;, which is not a chiral contribution, in
agreement with the restriction Eq. (2.1).

The chiral contribution to the nucleon’s parton densities is then obtained as the convolution
of the pion momentum distribution in the nucleon with the relevant parton distribution in the pion.
For the antiquark flavor asymmetry it takes the form (we suppress the QCD scale dependence)

[0 (% b)awra = /%y [gfm(y,m—%fm(y,b)] @, z=xy (24

Here fn and fn are the isoscalar pion distributions with N and A intermediate states in the conven-
tions of Refs. [8, 10]; the isovector nature of the asymmetry is encoded in the numerical prefactors.
Furthermore, v;(2) denotes the “valence” quark/antiquark distribution in the pion,

Va(@ = Uy U] @ = [drs — ] (2, /0 ‘dved = 1 (25)

Equation (2.4) applies to quark momentum fractions of the order x < M /My, and transverse dis-
tances b ~ 1/My . In arriving at Eq. (2.4) we have assumed that the “decay” of the pion into
quarks and antiquarks happens locally on the transverse distance scale of the chiral b—distribution,
b~ 1/My (see Fig. 1a). This is justified if x is not too small, as in this case the antiquark momen-
tum fraction z in the pion does not reach small values (x < z< 1 in the convolution integral) and
one can neglect chiral effects which cause the transverse size of the pion itself to grow at small z
such effects were recently studied in Refs. [11] within a novel resummation approach.

3. Impact parameter analysis of the pion cloud model

We now turn to the phenomenological pion cloud model of the asymmetry and investigate what
part of its predictions actually correspond to the large—distance region governed by universal chiral
dynamics. There are several variants of this model, employing different types of form factors to
regularize the transverse momentum integral in the pion distribution (cf. Fig. 1b). We consider here
the scheme in which the spectator baryon is on mass—shell and the pion virtualities are restricted
by form factors; the relation to other schemes (invariant mass cutoff in the time—ordered approach)
will be discussed elsewhere.

The pion momentum distributions fn ma(y;b) in this model are calculated by evaluating the
pion GPD from the loop integral Fig. 1b with form factors, and performing the transformation to
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Figure 2: (a) The transverse spatial distribution of pions in the nucleon, fan(y,b), as a function of b,
for values y = 0.07 and 0.3. Shown is the radial distribution 27tb fn, whose integral (area) gives the pion
momentum distribution. Solid lines: Pion cloud model with virtuality cutoff (exponential form factor, Ay =
1.0GeV) [8]. Dashed line: Distribution for pointlike particles, regulated by subtraction at A% =0 (the
integral over b does not exist in this case). (b) Momentum distribution of pions in the nucleon. Solid line:
Full distribution f(y) obtained in pion could model (exponential form factor, Ay = 1.0GeV). Dashed
line: Contribution from b > beore = 0.55fm. Dotted line: Contribution from b > 2bcgre = 1.1fm.

the impact parameter representation. Figure 2a shows f;n(y,b) as a function of b for y = 0.07 and
0.3 (which is 1/2 and 2 times My/My, respectively). Also shown are the distributions obtained
with pointlike particles (no form factors), in which the loop integral was regularized by subtraction
at A2 = 0; this subtraction of a AZ—independent term in the GPD corresponds to a modification
of the impact parameter distribution by a delta function term O 6(2)(b), which is “invisible” at
finite b [10]. One sees that for b > 0.5fm the results of the two calculations coincide, showing
that in this region the pion distribution is not sensitive to finite size effects. It is interesting that
the b value where the universal behavior sets in is numerically close to the transverse size of the
“quark core” inferred from the nucleon axial form factor, b ore = [%(rz)axid]l/z ~ 0.55fm [10].
This indicates that a two—component description of the partonic structure in transverse space, as
advocated in Ref. [10], is natural from the numerical point of view. Finally, we note that for large
b both distributions in Fig. 2a exhibit the universal asymptotic behavior derived earlier [10].

We can now quantify which transverse distances contribute to the pion momentum distribution
in the pion cloud model with form factors. Figure 2b shows the momentum distribution of pions
obtained by integrating f.n(y,b) from a lower cutoff, bo, to infinity,

/dzb O(b > bo) fra(y,b) (B=N,A). 3.1)

Restricting the bintegration to values b > begre = 0.55fm strongly suppresses large pion momentum
fractions and shifts the distribution toward smaller y, in agreement with the general considerations
described in Sec. 2. Overall, we see that less than half of the pions in the phenomenological pion
cloud model arise from the “safe” large—distance region.
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4. Spatial decomposition of the flavor asymmetry

The above results allow us to make a first attempt at a spatial decomposition of the antiquark
flavor asymmetry in the proton. To this end, we calculate the convolution integral Eq. (2.4) with
the b—integrated pion distribution Eq. (3.1), where the lower limit, bo, is taken sufficiently large
to exclude the model—-dependent small—distance region (see Fig. 2a). Figure 3 shows the result
obtained with b taken as the phenomenological “core” radius, b core = 0.55fm (solid line), as well
as the band covered when by is changed from this value by £20% (dotted lines). Also shown in
the figure are the final data from the FNAL E866 experiment [3]. One sees that the large—distance
contribution to the asymmetry obtained from the pion cloud model is practically zero for x > 0.3,
as expected from the general considerations of Sec. 2.2 At x ~ 0.1 the large—distance contribution
accounts for only ~ 30% of the measured asymmetry, indicating that most of it results from the
“quark core” at small transverse distances. This conclusion is robust and does not depend on the
form factors or other regulators employed in the pion cloud model (see Fig. 2a).

At small x (~ 0.01) the large—distance contribution in the pion cloud model comes closer to
the data; however, the details depend on the precise value of the lower limit in b (see Figure 3) and
partly on the model parameters; also, the quality of the present data is rather poor. It is thus difficult
to infer the magnitude of the required “core” contribution by comparing the present estimate of the
large—distance contribution to the data in this region of x.

5. Summary and discussion

The transverse coordinate representation based on GPDs is a most useful framework for study-
ing the role of chiral dynamics in the nucleon’s partonic structure. Parametrically, the chiral con-
tributions are located at momentum fractions x < M;/My and transverse distances b ~ 1/M;. We

2Without the restriction to b > begre the pion cloud model with the given parameters would produce an asymmetry
which is non—zero and positive also for x> 0.3; however, this could partly be avoided by tuning the NN and 7iNA form
factorsin the model [8].



Pion cloud and sea quark flavor asymmetry C. Weiss

have shown that the results of the phenomenological pion cloud model become independent of the
riNN form factors at transverse distances b 2> 0.5fm and represent contributions governed by uni-
versal large—distance dynamics. The lower limit in b approximately coincides with the “quark core”
radius bgore = 0.55fm, inferred previously from other phenomenological considerations, suggest-
ing a natural “two—component” description of the partonic structure in transverse coordinate space
[10]. Our findings provide a starting point for more detailed modeling of the nucleon’s partonic
structure along these lines. A complete analysis should consider also the large—distance contribu-
tions to the flavor—singlet sea quark distribution T(x) + d(x) and SU (3) flavor symmetry breaking
in the sea [8].

The pion cloud contribution to the flavor asymmetry d(x) — T(x) involves strong cancellations
between 7N and 1A intermediate states. A systematic way to deal with this problem is provided by
the 1/N. expansion of QCD. In particular, the degeneracy of N and A in the N¢ — oo limit ensures
the proper 1/Nc scaling of the pion cloud contribution to the flavor asymmetry [10], showing that
the latter is a legitimate part of the nucleon’s partonic structure in large—N. QCD. The connection
between the pion cloud contribution to d(x) — t(x) and the dynamical picture of the nucleon as a
chiral soliton in the large—N. limit remains an interesting problem for further study [10].

Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-
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