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1. Proem

In part owing to the simplicity of the photon as a probe, an accurate description of electromag-
netic form factors provides information on the distribution of a hadron’s characterising properties
(total- and angular-momentum, etc.) amongst its QCD constituents. Since contemporary experi-
ments employQ2 > M2, a veracious understanding of the body of extant data requires a Poincaré
covariant description of the hadron. In fact the challenge is greater. Owing to the running of the
dressed-quark mass [1, 2] and related phenomena [3, 4], a quantum field theoretic treatment of
hadron structure and reactions is generally necessary to provide genuine understanding in terms
of QCD’s elementary degrees of freedom. It is important to appreciate that Poincaré covariance
and the vector exchange nature of QCD guarantee the existence of nonzero quark orbital angular
momentum in a hadron’s rest-frame bound-state amplitude [5, 6].

In QCD the quark-parton acquires a momentum-dependent massfunction, which at infrared
momenta is∼ 100-times larger than the current-quark mass. The Dyson-Schwinger equations
(DSEs) [7, 8] explain that this effect owes primarily to a dense cloud of gluons that clothes a
low-momentum quark [9, 10]. This marked momentum-dependence of the dressed-quark mass
function is one manifestation of dynamical chiral symmetrybreaking (DCSB). It entails that the
Higgs mechanism is largely irrelevant to the bulk of normal matter in the universe. Instead the
single most important mass generating mechanism for light-quark hadrons is the strong interaction
effect of DCSB; e.g., one can identify it as being responsible for roughly 98% of a proton’s mass.

Understanding the relationship between parton propertieson the light-front and the rest frame
structure of hadrons is a longstanding challenge. It is a problem because, e.g., DCSB, an established
keystone of low-energy QCD, has not been realised in the light-front formulation. The obstacle is
the constraintk+ := k0 + k3 > 0 for massive quanta on the light front. It is therefore impossible
to make zero momentum Fock states that contain particles andhence the vacuum is trivial. Only
the zero modes of light-front quantisation can dress the ground state but little progress has been
made with understanding just how that might occur. It is noteworthy that DCSB has a valid expres-
sion solely within a framework that manifestly supports theaxial-vector Ward-Takahashi identities.
Absent this its corollaries can only be obtained by fine tuning model-dependent inputs.

An explanation of pion and nucleon structure and interactions is central to hadron physics
because they are respectively the archetypes for mesons andbaryons. Elastic and transition form
factors have long been recognised as a basic tool for elucidating bound state properties. They can
be studied from very low momentum transfer, the region of non-perturbative QCD, up to a region
where perturbative QCD predictions can be tested. Experimental and theoretical studies of nucleon
electromagnetic form factors have made rapid and significant progress during the last several years
and material gains have been made in studying the pion form factor. Despite this, many questions
remain unanswered, amongst them: can one formulate an impulse approximation for hadron form
factors and, if so, in terms of which degrees of freedom; whatrole is played by pseudoscalar mesons
in hadron electromagnetic structure and can one describe this in a quantitative, model-independent
fashion; and what is the nature of hadron form factors in the timelike region and their quantitative
connection with the spacelike behaviour? The current status is described in Refs. [11, 12]

2. Pion

While the pion might be viewed as an archetype for mesons it has some remarkable and pecu-
liar features. Indeed, as QCD’s Goldstone mode its pointwise and global properties are influenced
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Figure 1: Left Panel. Solid curve: Ab-initio DSE prediction of pion form factor. Theρ-meson pole is
generated dynamically. No vector meson dominance assumption is made. Depicted also are lattice results
with a monopole fit [17] (insert anddashed curve) and the result obtained from an AdS/QCD model [18]
with its parameter fitted to reproduce the pion’s leptonic decay constant (dotted curve). Data: diamonds,
Ref. [19]; squares, Ref. [20]; andcircles, Ref. [21]. (Figure courtesy of A. Krassnigg.) Right Panel. Band
– DSE prediction for the current-quark mass dependence of the dimensionless productrπ fπ . The band’s
width delineates the response to±20% variations in the interaction’s range.Cross – experimental value:
0.315±0.005.Filled circles – Lattice-QCD result as determined [23] from Ref. [17]. The AdS/QCD model
predictsr2

π f 2
π = 9/[16π2] = (0.24)2. (Figure courtesy of G. Eichmann.)

to an enormous degree by DCSB. True understanding is impossible in an approach that does not
possess a valid and well-defined chiral limit, and an expression of the axial-vector Ward-Takahashi
identity. This DSE identity relates the gap and Bethe-Salpeter equations. The gap equation pro-
duces the dressed-quark mass, and it is through the dressed-quark mass function that the connection
between current- and constituent-quarks is explained [10].

The existence of a sensible DSE truncation [13, 14] has enabled proof of numerous exact
results for pseudoscalar mesons [5, 10]. They have been illustrated using a renormalisation-group-
improved rainbow-ladder truncation, which also provides,e.g., a prediction of the electromagnetic
pion form factor using an impulse approximation current that can systematically be improved [15].
In building this current the basic degree of freedom is the dressed-quark. The calculated form factor
is depicted in Fig. 1 [16].

The illustrations employ a kernel of the gap and Bethe-Salpeter equations that is exact on the
domain within which a perturbative calculation is valid. Outside this domain it expresses a model
for the long-range interaction between light-quarks, which is defined via a single parameter; viz.,
ω : ra = 1/ω specifies the interaction’s range and thereby a confinement length-scale.1 The curve in
Fig. 1 was obtained withω fitted to reproduce the pion’s leptonic decay constant. Thiscalculation
is part of a programme that uses the interplay between experiment and theory as a means by which
to map out the infrared behaviour of QCD’suniversal β -function. It is important to appreciate that
while this function may depend on the scheme chosen to renormalise the quantum field theory, it
is unique within a given scheme.

It was recently established [22] that in connection with light-quark systems, and those of the
physical qualities of the pseudoscalar and vector meson bound states they constitute which are not
tightly constrained by symmetries, the rainbow-ladder truncation of QCD’s DSEs should produce

1NB. The potential between infinitely-heavy quarks measuredin numerical simulations of quenched lattice-
regularised QCD is not relevant to the question of light-quark confinement. One cannot speak of a quantum mechanical
potential between light-quarks because particle creationand annihilation effects are essentially nonperturbative.
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Figure 2: Left Panel. Thick bands: Evolution with current-quark mass, ˆm, of the scalar and axial-vector
diquark masses:msc and mav. Bands demarcate sensitivity to the variation inω . (mπ , calculated from
rainbow-ladder Bethe-Salpeter equation: ˆm = 6.1MeV ⇒ mπ = 0.138GeV.)Solid curve: Evolution of ρ-
meson mass [22]. This observable quantity is insensitive toω . With mρ , results from simulations of lattice-
QCD [26] are also depicted along with an analysis and chiral extrapolation [27],short dashed curve. Thin
band: Evolution with m̂ of the nucleon mass obtained from the Faddeev equation: ˆm = 6.1MeV, MN =

1.26(2)GeV cf. results from lattice-QCD [28, 29] and an analysis of such results [30],dashed curve. (Figure
adapted from Ref. [31].) Right Panel. Solid curve, M∆ −MN as a function of current-quark mass, evaluated
as described in connection with Eqs. (3.1) within the framework of Ref.[33]; anddashed curve, mav−msc.

results that, when measured in units of mass, are uniformly≈ 35% too large. The systematic im-
plementation of corrections then shifts calculated results so that reliable predictions and agreement
with experiment can subsequently be expected. One can arrive in this way at a veracious under-
standing of light-quark observables. It was also verified that the renormalisation-group-improved
rainbow-ladder kernel predicts values for such observables that are insensitive to± 20% variations
in ω around its central value. Furthermore, on this domainrπ fπ = 0.31(1); viz., a constant inde-
pendent of the current-quark mass, as apparent in Fig. 1. Computations show that this remarkable
behaviour persists to beyond the charm mass.

3. Nucleon

The nucleon appears as a pole in a six-point quark Green function. The residue is proportional
to the nucleon’s Faddeev amplitude, which is obtained from aPoincaré covariant Faddeev equation
that sums all possible exchanges and interactions which cantake place between three dressed-
quarks. A tractable Faddeev equation for baryons was formulated in Ref. [24]. It is founded on the
observation that an interaction which describes colour-singlet mesons also generates quark-quark
(diquark) correlations in the colour-3̄ (antitriplet) channel [25]. The lightest diquark correlations
appear in theJP = 0+,1+ channels and hence only they are retained in approximating the quark-
quark scattering matrix. While diquarks do not appear in thestrong interaction spectrum; e.g.,
Refs. [3, 14], the attraction between quarks in this channeljustifies a picture of baryons in which
two quarks are always correlated as a colour-3̄ diquark pseudoparticle, and binding is effected by
the iterated exchange of roles between the bystander and diquark-participant quarks.
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Following Refs. [22, 24] one can construct a parameter-freeFaddeev equation whose solution
describes a nucleon’s dressed-quark core. This enables thesimultaneous calculation of meson and
nucleon observables within a framework that provides a veracious description of the pion as both
a Goldstone mode and a bound state of dressed-quarks. The study predicts the evolution of the
nucleon mass with a quantity that can methodically be connected with the current-quark mass in
QCD. This is depicted in Fig. 2. Notably, despite the largeω-dependence of the unobservable di-
quark masses, the nucleon mass is only weakly sensitive to this model parameter. Again, systematic
corrections to the DSE’s leading order truncation move results into line with experiment.

It is notable that theω-band onmav−msc is much narrower than that on the individual masses,
apparent in Fig. 2, and that this difference falls with increasing current-quark mass. Since the∆-
baryon may only involve axial-vector diquark correlations, the ∆-N mass splitting is correlated
with mav −msc. One can therefore infer thatM∆ −MN will depend weakly onω and fall with
increasingm2

π . Notwithstanding the correlation, near agreement betweenthe experimental value of
M∆ −MN = 0.29GeV andmav −msc = 0.27(3)GeV at the physical pion mass is incidental [32].

The relationship betweenM∆ −MN andmav −msc can be illustrated using the Faddeev equa-
tion model of Ref. [33]. The model uses algebraic forms for all elements. It expresses the evolution
of the dressed-quark mass with current-quark mass but not that of the diquark masses, which can
reasonably be parametrised based on the following observations. The mass-splitting is nonzero
at the physical light-quark current-mass and yields a particular ∆-nucleon mass splitting. That
value is 0.15GeV in Ref. [33] but the magnitude is immaterial in what follows. Since spectro-
scopically relevant corrections to the rainbow-ladder truncation vanish in the heavy+heavy-quark
limit [3, 5, 34], this truncation can be used to determine thequalitative behaviour ofmav−msc with
increasing current-quark mass: the difference decreases monotonically to the asymptotic result
mav = msc, which is natural because, e.g., in quantum mechanicsmav −msc can only arise through
a hyperfine interaction and that vanishes as an inverse powerof current-quark mass-squared. With
this motivation the Faddeev equation in Ref. [33] was solvedwith

msc(m) = 2ME
Q +

0.282GeV
1+(ME

Q/ME
u )2

, mav(m) = 2ME
Q +

0.476GeV
1+(ME

Q/ME
u )2

, (3.1)

wherem is the current-quark mass and the Euclidean constituent-quark mass is defined viaME
Q(m)=

{p | p2 = M2(p2,m), p > 0}. (NB. With increasing current-quark massME
Q(m)−m → 0+.)

The result is depicted in the right panel of Fig. 2. From this figure and studies underway
one can make the following observations, which are general features of Faddeev equations in the
class under consideration.M∆ − MN > mav − msc in the chiral limit and at the physical light-
quark current-mass. This is consistent with a further reduction in M∆ −MN owing to the so-called
pseudoscalar meson cloud. Such contributions vanish with increasing current-quark mass so that
the quark corebecomes the baryon. At a particular current-quark mass, which depends, e.g., on the
model’s chiral limit value ofM∆ −MN, mav −msc becomes greater thanM∆ −MN . This remains
true thereafter. With increasing current-quark massM∆ −MN → 0+. Finally, M∆(m)/[ME

Q(m) +

mav(m)] → 1+ asm → ∞. (NB. M∆(m) = MN andmav = msc in this limit.)
In order to calculate nucleon form factors the Faddeev equation must be augmented with a

nucleon-photon current that automatically preserves the Ward-Takahashi identity for on-shell nu-
cleons described by the Faddeev amplitude [35]. Following this one can produce nucleon form
factors with realisticQ2-evolution [31]. A notable prediction isrnu

1 > rnd
1 ; viz., that the Dirac

radius of theu-quark in the neutron is larger than that of thed-quark. This result is consistent

5



P
o
S
(
L
C
2
0
0
8
)
0
4
7

Dyson-Schwinger equations C.D. Roberts

with contemporary parametrisations of experimental data and owes to the presence of axial-vector
diquark correlations in the nucleon.

4. Strangeness

The role played bys-quarks in light-hadron structure has long been of interest. Their contribu-
tion to nucleon form factors is accessible via parity violating electron-proton scattering [11, 36, 37].
The natural magnitude of the contribution may be estimated by considering thes-quark content of
a dressedu-quark. The gluon vacuum polarisation appears in the gap equation’s kernel. It includes
u-, d- ands-quark contributions. Since theg → q̄q vertex is flavour-independent and the polarisa-
tion diagram contains two quark propagators, then in perturbation theory the infrared behaviour of
the vacuum polarisation is regularised by the current-quark mass and receives a contribution related
to 1/m2

f , wherem f is the current-quark mass of flavourf . If one defines theu-quark content of the
vacuum polarisation to beΠu, then based on contemporary estimates of the current-quarkmasses

Πd =
m2

u

m2
d

Πu = 0.2Πu , Πs =
m2

d

m2
s

Πd = 0.003Πd =
m2

u

m2
s

Πu = 0.0005Πu . (4.1)

Thus from perturbation theory one does not expect a noticeable s-quark content in the dressedu-
andd-quarks and also therefore not in the nucleon. It is nonetheless conceivable that nonperturba-
tively the result is otherwise.

The flavour content of the gluon vacuum polarisation is not active in the rainbow truncation of
the gap equation. Consider, however, a vertex correction wherein: the dressed-quark emits a gluon;
that gluon splits into ¯qq; one of these fermions emits a gluon; that gluon is absorbed on the through-
propagating dressed-quark line; the ¯qq then proceed to recombine as a gluon; that gluon is finally
absorbed by the through-propagating dressed-quark line. With this type of vertex correction, the
through-propagating dressed-quark interferes with the quarks in the gluon vacuum polarisation.
Naturally, the ¯qq intermediate state could emit any number of gluons that are absorbed by the
through-propagating dressed-quark line. This consideration shows that vertex corrections gener-
ate a resonant (meson+quark- or diquark+antiquark-loop) contribution to the gap equation and a
continuum (non-resonant) contribution. In the following the meson contribution is estimated. The
nonresonant contribution should be of the same order as the perturbative result. Furthermore, since
the mass-squared of aus-diquark is more than four-times that of a kaon [38], diquarkcontributions
should be materially suppressed relative to those from kaon-like correlations.

These considerations lead to the following correlation-augmented rainbow gap equations, in
which are assumedmu = md and a mass-independent renormalisation scheme:

S−1
u (p) = Z2(iγ · p+ mbm

u )+ Z1

∫ Λ

q
g2Dµν(p−q)

λ a

2
γµSu(q)

λ a

2
γν

+ 3

(

1
2MD

u

)2∫ d4q
(2π)4 ∆π(q)Γ̄π(p+ q/2;−q)γ ·qSu(p−q)Γπ(p+ q/2;q)γ ·q

+ 2

(

1
2MD

s

)2∫ d4q
(2π)4 ∆K(q)Γ̄K(p+ q/2;−q)γ ·qSs(p−q)ΓK(p+ q/2;q)γ ·q , (4.2)

S−1
s (p) = Z2(iγ · p+ mbm

u )+ Z1

∫ Λ

q
g2Dµν(p−q)

λ a

2
γµSs(q)

λ a

2
γν

+ 4

(

1
2MD

s

)2∫ d4q
(2π)4 ∆K(q)Γ̄K(p+ q/2;−q)γ ·qSs(p−q)ΓK(p+ q/2;q)γ ·q . (4.3)
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In these equations:MD
q is the dynamical constituent-quark mass, defined as the dressed-quark mass

function evaluated at the origin in momentum space;∆M(q) is a free-particle pseudoscalar meson
propagator;ΓM is the Bethe-Salpeter amplitude for the associated meson; and theγ · q factors
enforce a pseudovector coupling between mesons and a dressed-quark.

To obtain a first estimate of the magnitude of thes-quark content, one can use a NJL-like
model, defined as follows. The renormalisation constants inthe gap equation are set equal to one;
the rainbow part is expressed via

Z1

∫ Λ

q
g2Dµν(p−q)

λ a

2
γµS f (q)

λ a

2
γν →

1

m2
G

∫

d4q
(2π)4 θ(Λ2−q2)

λ a

2
γµS f (q)

λ a

2
γµ ; (4.4)

and the resonant vertex correction contribution through

(

1
2MD

f

)2
∫

d4q
(2π)4 ∆M(q)Γ̄M(p+ q/2;−q)γ ·qS f (p−q)ΓM(p+ q/2;q)γ ·q

→

(

1

2 f 2
M

)2∫ d4q
(2π)4 θ(Λ2

f −q2)∆M(q)γ5γ ·qS f (p−q)γ5γ ·q . (4.5)

The parameters are:mG, a gluon mass-scale;Λ, a NJL cutoff; andΛ f , which are cutoffs for each
quark flavour owing to finite meson size as expressed through the Bethe-Salpeter amplitudes. In
this estimate experimental values of the leptonic decay constants are used. Naturally, in a detailed
calculation they would be calculated quantities. Since only the gluon provides interaction strength
in the far ultraviolet, thenΛ > Λ f . Moreover, the dominant piece of the kaon Bethe-Salpeter
amplitude drops off faster than the kindred pion amplitude [39], henceΛu ≥ Λs.

Owing to the quark propagator, Eq. (4.5) involves a single angular integral, which means the
right-hand-side depends onp2. However, in this first estimate it is expedient to approximate A f ,
B f as momentum-independent and therefore introduce a mean-square average ¯p2

f , defined via

p̄2
f

∫ Λ2
f

0
ds

s

s+ M2
f

:=
∫ Λ2

f

0
ds

s2

s+ M2
f

, (4.6)

to be used whereverp2 appears. It has been verified that the results are not sensitive to the value of
p̄2

f . NB. M f is the dressedf -quark mass.
To complete the estimate the following parameter values arechosen:m2

G = [0.55/(3π2)]Λ2,
Λ = 1GeV; fπ = 0.092GeV, fK = 0.11GeV; andΛu = 0.8Λ. SettingΛs = Λu maximises the
model’s achievables-quark content.

In the casemu = 0, ms = 0.12GeV and with no coupling to meson loops the reference rainbow-
truncation result is obtained:

Au = 1,As = 1,Mu = 0.56GeV,Ms = 0.70GeV,〈q̄q〉 = (−0.29GeV)3. (4.7)

Adding only the pion loop these results become:Au = 1.12, As = 1, Mu = 0.38GeV, Ms =

0.70GeV,〈q̄q〉 = (−0.26GeV)3. Evidently, in the absence ofs-quarks the dressed-u quark con-
tains 7%π+ and 4%π0; i.e., the probability of finding a dressedd-quark in the dressedu-quark
is 7%. (NB. These probabilities are read from the wave function renormalisation; viz., 1/A f .)
Including the kaon loop, too:

Au = 1.16,As = 1.07,Mu = 0.32GeV,Ms = 0.63GeV,〈q̄q〉 = (−0.25GeV)3, (4.8)

7
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Figure 3: Difference between a parametrisation
[40] of experimental results relating to the neutron’s
Pauli form factor,Fn

2 , and a computation based on
Refs.[32, 33]. The latter expresses the result from
an impulse-like approximation expressed in terms of
dressed-quarks, which explicitly omits contributions
from the pseudoscalar meson cloud. ByQ2 = 3M2

N

the difference has fallen to< 20% of its peak value, a
result suggestive of the quark-core achieving primacy
at this point.

from which one reads that there is 3% chance of finding ans-quark in a dressedu-quark and a 7%
chance of finding au- or d-quark in a dresseds-quark. Equation (4.8) confirms the magnitudes
of these corrections assumed in Ref. [22]. In the case of physical light-quark current-masses; viz.,
mu = 0.005GeV,ms = 0.12GeV:

Au = 1.15,As = 1.07,Mu = 0.33GeV,Ms = 0.63GeV. (4.9)

This reveals a 2% chance of finding ans-quark in a dressedu- or dressedd-quark, and a 7% chance
of finding au- or d-quark in a dresseds-quark. Implemented in an independent-particle constituent-
quark-like model (e.g., App. D, Ref. [33]) this correspondsto µS

p ≈−0.02nuclear magnetons.

5. Epilogue

Dynamical chiral symmetry breaking exists in QCD. It is manifest in dressed-quark and -gluon
propagators, and in dressed vertices. DCSB predicts, amongst other things, that the light-quark
mass function becomes massive at infrared momenta, and thatpseudoscalar mesons are remarkably
light and couple very strongly to the lightest baryons. DCSBmeans that the Higgs mechanism is
largely irrelevant to the bulk of normal matter in the universe.

Form factors are a primary means by which to explore and chartthe structure of hadrons.
One may anticipate that the near- to medium-term will see progress in quantifying effects owing to
the pseudoscalar meson cloud (see Fig. 3), locating the transition from the nonperturbative to the
perturbative domain within QCD, elucidating the connection between the spacelike and timelike
behaviour of form factors, and explaining the relationshipbetween parton properties on the light-
front and the rest frame structure of hadrons.
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