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1. Introduction

There are (at least) two reasons why the Green’s functiogauge fixed QCD are interesting
objects to study. On the one hand they are related to fundamgroperties of the theory like
confinement and dynamical chiral symmetry breaking. On therchand they serve as input for
calculations of observable quantities like dynamical préips of bound states, as determined e.g.
in the framework of Bethe-Salpeter and Faddeev type of amnsat

In this talk we are mainly concerned with the first issue. la framework of covariantly
gauge fixed QCD, Kugo and Ojima [1] have developed a confinestamnario that rests on well-
defined charges related to unbroken global gauge symmeiniéisis framework BRST-symmetry
has been used to identify the positive definite spaGgys of physical states within the total state
space?” of QCD. An unbroken global gauge symmetry is then crucialnonsthat the states in
Fpnys contributing to the physical S-matrix of QCD are indeed des. They also argued that
this setup guarantees the disappearance of the 'behintidiba’ problem, i.e. a colorless bound
state with colored constituents cannot be delocalizeddatored lumps [1].

The well-definedness of global gauge symmetry has beeredelatthe infrared behavior of
the propagators of Landau gauge QCD in [1]: Global gauge sstnyris unbroken if in the infrared
the ghost propagator is more divergent and the gluon prépabsess divergent than a simple pole.
For the gluon propagator this means that it is probably att romsstant or even vanishing in the
infrared. In terms of the dressing functioB$p?) andZ(p?) of the ghost and gluon propagators

G(p* PuP pupv\ Z(p
a(p =~ 257 Dulp) = (& P2 ) oie) = (8- P2 ) D )
p p p p
and in terms of a power-law expansion this condition reads
Z(p?) ~ (PP G(p*) ~ (p*) (1.2)

with exponentxa < —1 andkc > 0.

Nonperturbative information on the ghost and gluon profigacan be obtained by Dyson-
Schwinger equations (DSESs) [2] or functional renormalimagroup equations (FRGs) [3] in the
continuum field theory, or from lattice QCD at finite volumeddattice spacing. In the following
we first discuss the two possible types of numerical solstipamed 'scaling’ and 'decoupling’) in
the infinite volume/continuum limit from DSEs. Then we rejpan various comparisons between
solutions from DSEs on a torus and results from lattice QCBeiction 3. In the last section we
shortly discuss a particular pattern of dynamical chirahsyetry breaking related to the scaling
type of behavior of the Yang-Mills sector of QCD.

2. Infrared Yang-Mills theory from DSEs

The infrared behavior of the one-particle irreducible {18teen’s functions of Yang-Mills
theory have been investigated in a number of works. The bakition ka = —2kc between the
dressing functions (1.2) of the gluon and ghost propagaisrteen extracted in [4, 5] from DSEs.
Corresponding results from FRGs have been obtained in fi@sé findings have been generalized
to Green'’s functions with an arbitrary number of legs in [The analysis rests upon a separation
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of scales, which takes place in the deep infrared momentgione Provided there is only one
external momentunp << Aqcp much smaller tham\qgcp a self-consistent infrared asymptotic
solution of the whole tower of Dyson-Schwinger equationsiiese functions is given by

(p%) ~ (%)M (2.1)

Here I™™M(p?) denotes the dressing function of the infrared leading tessacture of the 1PI-
Green’s function with & external ghost legs and external gluon legs. This solution agrees with
the Slavnov-Taylor identities and is the unique scalingitiah in the infrared [8]. Here 'scal-
ing’ denotes the fact thatll Green’s functions obey nontrivial power laws in the infchrgith an
anomalous dimensiok > 0 [9]. For the ghost and gluon dressing functions (1.2) tbaisg type

of solution yields the abovementioned power lgw Kc = —Ka/2.

The absence of scaling implies the decoupling of (some)edsgof freedom. A solution of
this type has been discussed e.g. in [10, 11, 12] and is giyaq b= 0 andka = —1. We refer to
this type of solution as the 'decoupling solution’.

Both types of infrared behavior can also be obtained as noalesolutions for the coupled
systems of ghost and gluon DSEs. In [5, 11] the infrared bagndonditionG(0), i.e. the value
of the ghost dressing function at zero momentum, has beetifidd as a parameter that allows
to switch between these two types. Cleai®(0)~* = 0 corresponds to an infrared diverging
ghost dressing function implementing the scaling solutiwhereasG(0) = const produces an
infrared finite ghost by construction. The gluon propagagothen either massive in the sense
thatD(0) = lim 2 Z(p?)/p? = const for decoupling, or has the power like behavior (1.2) with
K = Kc = (93— 1/1201) /98 ~ 0.595353 [5] in the case of scaling. The corresponding nurakric
solutions of the coupled ghost and gluon DSEs have beenndeted in [13] and are shown in
fig. 1.

The decoupling type of solution contains an arbitrary anfikad parameter: the value of the
ghost at zero momentum and correspondingly the finite Va(@ of the gluon. If the gluon were a
massive, physical particle this value could be fixed fromeekpent. However, even for decoupling
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Figure 1: Numerical solutions for the ghost and gluon dressing fumctvith two different boundary con-
ditions G(0). The results displayed here are obtained within the trumecatcheme introduced in [13].
Differences to the scheme defined in [14] are, however, oaly small and would not be visible in the plots.
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the gluon isnot massive in this sense [13] and it is therefore hard to see@y could be fixed
unambiguously. This problem is absent for the scaling tyfs®lutions.

Although both types of solutions can be obtained from the §SBeir status is certainly
different. From the discussion in the introduction we ndtat tonly the scaling type of solutions
agrees with the Kugo-Ojima scenario in the sense that iespands to an unbroken global gauge
symmetry. On the other hand, a broken global gauge symnwe#rgliear signal for a system in the
Higgs phase. We are therefore led to the conclusion thattiig solution represents the confined
phase of Yang-Mills theory, whereas the decoupling typeohfteons represents something like a
Higgs phase. These arguments and additional ones related tweaking of BRST symmetry in
the decoupling case are discussed in detail in [13].

3. DSEs on a torus: finite volume effects

In general there are some caveats in comparing results fierodntinuum Dyson-Schwinger
approach to those of lattice calculations (see [15] and rifsrein). The quantitative aspects of
the continuum solutions depend on the details of the chagendtion scheme, whereas the lattice
calculations ara@b initio. Gauge fixing is different in the two approaches and the tffetGribov
copies have to be taken into account. Furthermore, latéiliations are carried out on a compact
manifold, and therefore one has to deal with effects due itefumlume and lattice spacing.

J= L = 6.0 fm

: —L=17.7fm ] 10r L =6.0fm =
ar

— Continuum (decouplmg} - IC_Zon%leJ?ufr%n(decouplmg)

plGeVl

L —L=4.6fm
10: —L=6.9fm
—L=9.7fm
L =13.8fm .
N — Continuum (scaling)
o ]
N—r’
o

p[GeV]

Figure 2: Numerical solutions for the ghost and gluon dressing famciin the continuum and on tori with
different volumes. In the upper panel we display solutiohthe decoupling type, whereas on the lower
panel scaling solutions are shown.
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To quantify the "plain’ volume effects (i.e. those not coatsel to the gauge fixing procedure)
we formulated the DSESs on a torus without changing the titimeacheme. Scaling solutions on
a torus have been found in [16], whereas solutions of deawyptpe have been produced in [17].

In general, one would expect to see differences to the qureing continuum solutions for
small volumes, which disappear continuously when the velisrchosen larger and larger. This
is indeed the case as shown in fig. 2. For both types of sokitiem obtain a smooth infinite
volume/continuum limit as the volumes are increased

It is apparent from the results of fig. 2 that volume&/of (15fm)* and more are necessary to
observe signals of the infinite volume/continuum behavfdhe dressing functions also on a torus.
As discussed in detalil in [16] the technical reason for thithat one needs a range of momepta
with {f << p << Aqcp to observe this behavior; these three scales need to beysigigarated. In
addition it is worth noting that the infrared behavior of #Beeen’s functions does not reflect dy-
namical properties of the theory. These play a role at momeinthe order of or larger thalgcp
and are not plagued by volume effects of this magnitude.if®cal decoupling on the other hand
are phenomena that occur due to the absence of dynamics died¢ipeinfrared momentum region.
They are characteristic of the global properties of theth@s e.g. the conservation or breaking
of global gauge symmetries. Scaling is also related to tmeimiance of the Faddeev-Popov de-
terminant represented by the ghost degrees of freedom inftlaeed. This dominance allows for
the formulation of an infrared effective theory where thenyalills part of the Lagrangian can be
neglected [19].

4. Dynamical chiral symmetry breaking

In the quark Dyson-Schwinger equation the central objegpossible for dynamical chiral
symmetry breaking is the quark-gluon vertex as the soleerasf quark-gluon interactions. Based
on the scaling type of infrared solutions (2.1), one canweettie analytical infrared behavior of
this vertex [20]. To this end one has to carefully distinguibe cases of broken or unbroken
chiral symmetry. Whereas in the broken case the full quéuksgvertexl", can consist of up to
twelve linearly independent Dirac tensors, these reduaeriaximum of six when chiral symmetry
is realized in the Wigner-Weyl mode. Correspondingly, akbrosymmetry induces two tensor
structures in the quark propagator, whereas only one isvledn chiral symmetry is restored. In a
similar way, chiral symmetry breaking reflects itself in gv&reen’s function with quark content.

The presence or absence of the additional tensor structumes out to be crucial for the
infrared behavior of the quark-gluon vertex. When chirahsyetry is broken (either explicitly
or dynamically with a valence quark mass> Aqcp) One obtains a self-consistent solution of the
vertex-DSE which behaves like [20]

)\DXSBN (pZ)—l/Z—K. (41)

HereA denotes generically any dressing of the twelve tensortsires. If, however, chiral sym-
metry is unbroken one obtains the weaker singularity

AXS~ (p?) <. (4.2)

1A corresponding comparison in refs. [17, 18] is misleadimge in these works decoupling solutions on a torus
have been compared with the scaling solution in the contmuu
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As a consequence the running coupling from the quark-glwetex either is infrared divergent
(infrared slavery’) or develops a fixed point:

1 conskd™ by

a%(p®) = ay [A (P 1Z:(pP)]?Z(p?) ~ { PN (4.3)

%fégs . XS
(Here we use that the quark propagator is constant in tharady i.e.Z¢ (p?) ~ const[21].) Note
that in all couplings the irrational anomalous dimensionk{ of the individual dressing functions
cancel in the RG-invariant products.

Besides the divergence (4.2) of the quark-gluon vertex alitmomenta going to zero there
also exists a soft collinear-like divergence dependery apbn the external gluon momentuh
[20]:

M~ (k)< Y2 (4.4)
This additional divergence has two interesting consege®nEirst, one can analyze the behavior
of the quark four-point functiom (k?) which includes the (static) quark potential. With (4.1) and
(4.2), one obtaingi (k%) ~ 1/k* in the Nambu-Goldstone artd(k?) ~ 1/k? in the Wigner-Weyl
realization of chiral symmetry. This leads to a quark-aumidx potential of

1 30 ik 2 Ir| : DxSB
V(r)_(2n)3/d & H (K?) N{ﬁ:xs (4.5)
which establishes a link between dynamical chiral symmiateaking and confinement [20].

The second consequence concerndJfie)-problem. A confinement driven mechanism for
the generation of the topological mass of tjien the chiral limit has been suggested by Kogut and
Susskind many years ago [22]. It involves the calculatioa oértain type of diagram ('diamond
diagram’), which generates such a mass in the presence ofrared divergent gluon propagator
D(k) ~ 1/k* for k*» — 0. Today we have excellent evidence that the gluon propagatmot be
that singular. However, there is the above-mentioned $amigyin the quark-gluon vertex. Indeed,
the combination of a gluon propagator and two dressed esraippearing in the diamond diagram
gives precisely a singularity of necessary strength:

Z k2 K20 o k2 2K o
roe) 20 drae) 20 ey e O e e .6
One then obtains the massag, m,, and the singlet-octet mixing angéeof [23]
6=-232, m, = 479MeV, m, = 906MeV 4.7)

in the chiral limit. These values demonstrate that the Kedugskind mechanism works in princi-
ple. Via the Witten-Veneziano relation one obtains the logical susceptibilityx? of

X% = (169 MeV)* | (4.8)

in qualitative agreement with lattice results [24].
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