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We show that the gauge invariant treatment of the Schwinger-Dyson equations of QCD leads to an

infrared finite gluon propagator, signaling the dynamical generation of an effective gluon mass,

and a non-enhanced ghost propagator, in qualitative agreement with recent lattice data. The trun-

cation scheme employed is based on the synergy between the pinch technique and the background

field method. One of its most powerful features is that the transversality of the gluon self-energy

is manifestly preserved, exactly as dictated by the BRST symmetry of the theory. We then ex-

plain, for the first time in the literature, how to construct non-perturbatively a renormalization

group invariant quantity out of the conventional gluon propagator. This newly constructed quan-

tity serves as the natural starting point for defining a non-perturbative effective charge for QCD,

which constitutes, in all respects, the generalization in anon-Abelian context of the universal

QED effective charge. This strong effective charge displays asymptotic freedom in the ultravio-

let, while in the low-energy regime it freezes at a finite value, giving rise to an infrared fixed point

for QCD. Some possible pitfalls related to the extraction ofsuch an effective charge from infrared

finite gluon propagators, such as those found on the lattice,are briefly discussed.
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It has been known for a long time that even though the gluon is massless at thelevel of the fun-
damental Lagrangian, and remains massless to all order in perturbation theory, the non-perturbative
QCD dynamics generate an effective, momentum-dependent mass, without affecting the local
SU(3)c invariance, which remains intact [1]. The existence of this mass is discovered by studying
the Schwinger-Dyson equations (SDEs) of QCD, in a gauge-invariant framework known as the
pinch technique (PT) [1, 2]. To obtain massive solutions it is necessary toinclude longitudinally-
coupled massless scalars in the Green’s functions, which play a role rather like Goldstone excita-
tions, but do not signal any sort of breakdown of local gauge symmetry, which is preserved. Like
standard Goldstone bosons these massless scalars do not appear explicitly in the S-matrix; however,
they play a crucial role in confinement, furnishing the required long rangepotential.

An effective low-energy field theory for describing the gluon mass is the gauged non-linear
sigma model known as “massive gauge-invariant Yang-Mills” [3], with Lagrangian density

LMYM =
1
2

G2
µν −m2Tr

[
Aµ −g−1U(θ)∂µU−1(θ)

]2
, (1)

whereAµ = 1
2i ∑a λaAa

µ , the λa are the SU(3) generators (with Trλaλb = 2δab), and theN×N
unitary matrixU(θ) = exp

[
i 1
2λaθ a

]
describes the scalar fieldsθa. Note thatLMYM is locally

gauge-invariant under the combined gauge transformation

A′
µ = VAµV−1−g−1[

∂µV
]
V−1 , U ′ = U(θ ′) = VU(θ) , (2)

for any group matrixV = exp
[
i 1
2λaωa(x)

]
, whereωa(x) are the group parameters. One might think

that, by employing (2), the fieldsθa can always be transformed to zero, but this is not so if theθa

contain vortices. To use theLMYM in (1), one solves the equations of motion forU in terms of the
gauge potentials and substitutes the result in the equations for the gauge potential. One then finds
the Goldstone-like massless modes mentioned above. This model admits vortex solutions [3], with
a long-range pure gauge term in their potentials, which endows them with a topological quantum
number corresponding to the center of the gauge group [ZN for SU(N)], and is, in turn, responsible
for quark confinement and gluon screening. Specifically, center vortices of thickness∼m−1, where
m is the induced mass of the gluon, form a condensate because their entropy(per unit size) is larger
than their action. This condensation furnishes an area law to the fundamental representation Wilson
loop, thus confining quarks [1, 3].

Of courseLMYM is not renormalizable, and breaks down in the ultraviolet. This breakdown
simply reflects the fact that the gluon massm in (1) is assumed to be constant, while the solutions
of the SDEs reveal that the mass is momentum-dependent, vanishing at largeq2 [1]. Specifi-
cally, when studying the SDE for the gluon propagator,∆(q2), one looks for infrared finite solu-
tions, i.e. with∆−1(0) > 0. Such solutions may be fitted by “massive” propagators of the form
∆−1(q2) = q2 +m2(q2), wherem2(q2) is not “hard”, but depends non-trivially on the momentum
transferq2. When the renormalization-group logarithms are properly taken into account in the SDE
analysis, one obtains, in addition, the non-perturbative generalization ofα(q2), the QCD running
coupling (effective charge). The presence ofm2(q2) in the argument ofα(q2) tames the Landau
singularity associated with the perturbativeβ function, and the resulting effective charge is asymp-
totically free in the ultraviolet , “freezing” at a finite value in the infrared.
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The general picture described above has received spectacular confirmation from a plethora of
lattice studies, spanning a period of several years: the gluon propagator reaches indeed a finite (non-
vanishing) value in the deep infrared, as predicted by Cornwall. This rather characteristic behavior
was already seen in early studies [4], and has been firmly established recently using large-volume
lattices, for bothSU(2) [5] andSU(3) [6] pure Yang-Mills (no quarks included).

In this talk we will present recent results from a gauge-invariant study of the coupled gluon-
ghost system of SDEs [7], yielding an infrared finite gluon propagator and a divergent (but non-
enhanced) ghost propagator, in qualitative agreement with recent latticedata [5, 6]; this behavior
has also been confirmed within the Gribov-Zwanziger formalism [8]. As the titlesuggests, we will
eventually focus on the issue of the infrared finite QCD effective charge.

Obtaining an infrared finite result for the gluon self-energy from SDEs,without violating the
underlying local gauge symmetry, is far from trivial, and hinges crucially on one’s ability to devise
a self-consistent truncation scheme that would select a tractable and, at the same time,physically
meaningfulsubset of these equations. Specifically, while in QED the Green’s functions satisfy
naive Ward Identities (WIs), in QCD they satisfy complicated Slavnov-Taylor identities (STIs),
which involve various composite ghost operators. To see how this complicates the truncation pro-
cedure of the SDEs, consider the STI of the gluon self-energy

qµΠµν(q) = 0. (3)

Eq. (3) is without a doubt the most fundamental statement at the level of Green’s functions that
one can obtain from the BRST symmetry; it affirms the transversality of the gluon self-energy and
is valid both perturbatively to all orders as well as non-perturbatively. The problem is that in the
SDE governingΠµν(q) enter higher order Green’s functions, namely the fully-dressed fundamental
vertices of the theory, which satisfy complicated STIs. Thus, whereas in QED the validity of Eq. (3)
can be easily seen at the level of the SDE, simply becauseqµΓµ(p, p+q) = e

[
S−1(p+q)−S−1(p)

]
,

in QCD proving Eq. (3) is very difficult, and requires the conspiracy of all full vertices appearing in
the SDE. Truncating the SDE naively usually amounts to leaving out some of these vertices, and,
as a result, Eq. (3) is compromised. Instead, the gauge-invariant truncation scheme [9], based on
the PT [1, 2] and its correspondence with the background field method (BFM) [10] maintains the
validity of Eq.(3) at every level of approximation.

The gluon propagator in the covariant gauges has the formi∆µν(q) =

[
Pµν(q)∆(q2)+ξ qµqν

q4

]
,

whereξ denotes the gauge-fixing parameter, Pµν(q) = gµν −qµqν/q2 is the usual transverse pro-
jector, and, finally,∆−1(q2) = q2+ iΠ(q2), with Πµν(q) = Pµν(q)Π(q2) the gluon self-energy. The
full ghost propagatorD(p2) and its self-energyL(p2) are related byiD−1(p2) = p2− iL(p2). In
the case of pure (quarkless) QCD, the new SD series [9] for the gluon and ghost propagators reads
(see also Fig. 1)

∆−1(q2)Pµν(q) =
q2Pµν(q)+ i ∑4

i=1(ai)µν

[1+G(q2)]2
,

iD−1(p2) = p2 + iλ
∫

k
Γµ∆µν(k)IΓν(p,k)D(p+k) ,

iΛµν(q) = λ
∫

k
H(0)

µρ D(k+q)∆ρσ (k)Hσν(k,q) , (4)
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Figure 1: The PT-BFM gluon-ghost system. The circles attached to the external gluons denote that, from
the point of view of Feynman rules, they are treated as background fields.

whereλ = g2CA , withCA the Casimir eigenvalue of the adjoint representation [CA = N for SU(N)],
and

∫
k ≡ µ2ε(2π)−d ∫

ddk, with d = 4− ε the dimension of space-time.Γµ is the standard (asym-
metric) gluon-ghost vertex at tree-level, and IΓν the fully-dressed one.G(q2) is thegµν component
of the auxiliary two-point functionΛµν(q), and the functionHσν is defined diagrammatically in
Fig. 1.Hσν is related to the full gluon-ghost vertex byqσ Hσν(p, r,q) = −iIΓν(p, r,q); at tree-level,
H(0)

σν = igσν . When evaluating the diagrams(ai) we use the BFM Feynman rules [10]; the BFM
fully dressed three-gluon and gluon-ghost vertices are denoted byĨΓµαβ andĨΓµ .

Notice a point of paramount importance: due to the Abelian all-order WIs thatthese two full
vertices satisfy (for allξ ), namely

qµ ĨΓµαβ = i∆−1
αβ (k+q)− i∆−1

αβ (k) , qµ ĨΓµ = iD−1(k+q)− iD−1(k), (5)

one can demonstrate thatqµ [(a1)+(a2)]µν = 0 andqµ [(a3)+(a4)]µν = 0 [11]. Thus, unlike other
treatments in the literature, within this formalism the transversality of the gluon self-energy, i.e.
Eq. (3), is preserved at every step, in absolute compliance with the BRST symmetry.

Next, following standard techniques, we expressĨΓµαβ andĨΓµ as a function of the gluon and
ghost self-energy, respectively, in such a way as to automatically satisfythe crucial WIs of Eq. (5);
failure to satisfy these WIs would invariably compromise the transversality of the answer. The
Ansatz we will use is

ĨΓµαβ = Γµαβ + i
qµ

q2

[
Παβ (k+q)−Παβ (k)

]
, ĨΓµ = Γ̃µ − i

qµ

q2 [L(k+q)−L(k)] ;

its essential feature, other than satisfying the aforementioned WIs, is the presence of massless, lon-
gitudinally coupled pole terms, which are instrumental for obtaining∆−1(0) 6= 0 [12]. These poles
are not kinematic but dynamical, corresponding to a composite (bound-state) Goldstone excitation,
enforcing the local gauge invariance. For the conventional ghost-gluon vertex IΓν , appearing in
the second SDE of (4) we will use its tree-level expression,i.e., IΓν → Γν = −pν ; this is perfectly
legitimate, since in this formalism the two ghost vertices, IΓν andĨΓµ , are different. Finally, for

Hσν we use its tree-level value,H(0)
σν .

In Fig.2, we show the numerical result for∆(q2) renormalized atµ = Mb = 4.5GeV, and the
comparison with the corresponding lattice data of Ref.[6]. In the right panel of Fig.2, we present
the dressing function for the ghost propagator, renormalized at the samepoint. While the infrared
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behavior of the ghost dressing function is in qualitative agreement with the lattice data (no power-
law enhancement [13]), there is a significant quantitative discrepancy (more than a factor of two),
mainly due to the standard approximation IΓν →−pν , motivated by the ultraviolet finiteness of IΓν

in the Landau gauge. A more sophisticated treatment of this vertex, even at the level of perturbation
theory, should reduce this difference significantly.
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Figure 2: Left Panel:The numerical solution for the gluon propagatorfrom the SDE (black continuous line)
compared to the lattice data of Ref.[6]. Right panel:The ghost dressing functionp2D(p2) obtained from the
SDE. In the insert we show the lattice data for the same quantity.

Let us now turn to the QCD effective charge. There are two main issues: (i) how to define it
consistently at the level of perturbation theory: specifically, which graphs determine the running,
and (ii) how to extend the (whatever) definition one reaches in (i) into the non-perturbative regime.

Point (i) has been addressed exhaustively in the literature [14]: the upshot is that in the context
of the PT one may replicate to all-orders in perturbation theory the prototype QED construction of
an effective charge. To fix the ideas, the PT one-loop gluon self-energy reads

∆̂−1(q2) = q2
[
1+bg2 ln

(
q2

µ2

)]
, (6)

whereb= 11CA/48π2 is the first coefficient of the QCDβ -function. Due to the Abelian WIs satis-
fied by the PT effective Green’s functions, the new propagator-like quantity ∆̂−1(q2) absorbs all the
RG-logs, exactly as happens in QED with the photon self-energy. Equivalently, sinceZg andẐA, the
renormalization constants of the gauge-coupling and the effective self-energy, respectively, satisfy
the QED relationZg = Ẑ−1/2

A , the productd̂(q2) = g2∆̂(q2) forms a RG-invariant (µ-independent)
quantity [1]; for large momentaq2,

d̂(q2) =
g2(q2)

q2 , (7)

whereg2(q2) is the RG-invariant effective charge of QCD,

g2(q2) =
g2

1+bg2 ln(q2/µ2)
=

1
bln(q2/Λ2)

. (8)

Let us now come to point (ii): assuming that one has non-perturbative information about the in-
frared behavior of the conventional gluon propagator∆(q2), how should one extract an effective

5



P
o
S
(
L
C
2
0
0
8
)
0
5
0

Infrared finite effective charge of QCD J. Papavassiliou

1E-3 0,01 0,1 1 10 100 1000
0

4

8

12

16

20

24

28

 

 

d(
q2 )

[G
eV

-2
]

q2[GeV2]

d(q2)= g2 (q2)
  = MZ

  = Mb

^

^ ^

1E-3 0,01 0,1 1 10 100 1000
0

2

4

6

8

10

12

 

 

(q
2 )
[G

eV
-2
]

q2[GeV2]

Gluon propagator
 =MZ

 =Mb

g2( 2)
[1+G(q2)]2

x

Figure 3: Left panel: The solution of SDE renormalized atµ = Mb = 4.5GeV (continuous blue curve) and
µ = MZ = 91GeV (red line+square curve). Right Panel: The corresponding PT-BFM∆̂(q2) obtained as the
convolution of∆(q2) and the functiong2(µ2)/[1+G(q2)]2.

charge, which, perturbatively, will go over to Eq. (8)? To accomplish this, one must use an addi-
tional field-theoretic ingredient: the conventional∆(q2) and the PT-BFM̂∆(q2) are related by the
formal all-order relation [15]

∆(q2) =
[
1+G(q2)

]2 ∆̂(q2) . (9)

Note that theG(q2) already appears in Eq. (4) and Fig.1. With our approximations its SDE reads

G(q2) = −
λ
3

∫

k

[
2+

(k ·q)2

k2q2

]
∆(k)D(k+q) . (10)

First of all, it is easy to verify that at lowest order theG(q2) obtained from Eq. (10) restores the
β function coefficient in front of ultraviolet logarithm. In that limit 1+G(q2) = 1+ 9

4
CAg2

48π2 ln(q2/µ2)

and∆−1(q2) = q2
[
1+ 13

2
CAg2

48π2 ln(q2/µ2)
]
. Then using Eq. (9) we recover thê∆−1(q2) of Eq. (6),

as we should. Then, non-perturbatively, one substitutes into Eq. (9) theG(q2) and∆(q2) obtained
from solving the system in Eq. (4), to obtain∆̂(q2). This latter quantity is the non-perturbative gen-
eralization of Eq. (6); for the same reasons explained above, when multiplied by g2 it should form
an RG-invariant quantity, e.g. the non-perturbative generalization ofd̂(q2). In Fig.3 we present the
combined result of the above steps:d̂(q2) is obtained from two different sets of solutions of the
system Eq. (4), one renormalized atµ = Mb = 4.5GeV and one atµ = MZ = 91GeV. Ideally the
two curves ofd̂(q2) should be identical; even though this does not happen, due to the approxima-
tions employed when solving the system of Eq. (4), the two curves are fairlyclose, indicating that
d̂(q2) is to a very good approximation an RG-invariant quantity, as it should.

We are now in the position to define the non-perturbative QCD effective charge from the RG-
invariant quantityd̂(q2). Of course, given that̂d(q2) reaches a finite value in the deep infrared,
it would be completely absurd to define the effective charge by forcing out a factor of 1/q2; such
a procedure would furnish a completely unphysical strong QCD coupling,namely one that would
vanish in the deep infrared(!) where QCD is supposed to be strongly coupled.
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Figure 4: The QCD effective charge,
α(q2) = g2(q2)/4π, extracted from Fig.3 by
factoring out a gluon mass of m(0)=500 MeV.

The correct thing to do is to factor out a “massive”
propagator, i.e. write

d̂(q2) =
g2(q2)

q2 +m2(q2)
. (11)

Of course, as we have emphasized,m2(q2) it-
self is running, which must also be taken into
account in a more sophisticated treatment. For
the purposes of this talk, however, we assume
thatm2(q2) is constant,m2(q2) = m2(0), and use
for m(0) the value of 500MeV favored by phe-
nomenology [16]. Theα(q2) obtained is shown
in Fig.(4); as announced, at low energies freezes
to a finite value, indicating the appearance of an
infrared fixed point of QCD.
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