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1. Introduction

The first support for our understanding of QCD as the theory of gtnaeractions has come
from deep inelastic scattering. The structure of the proton unfolds itspHir&sns that experience
only interactions small in strength due to asymptotic freedom. The so obtainstiusér func-
tions representing the proton constituents can be considered as Fanifotms of quark/gluon
operators separated along light like distances. Since the discoverglioigsimn deep inelastic scat-
tering, calculations of perturbative corrections have strongly contdiotéhe credibility of QCD.
For smallxg, there appear other contributions like(Q?)log(1/xg) in addition to terms from
DGLAP-evolution which need special care. It must be stressed that émtarpative framework
structure functions themselves cannot be calculated. Euclidean lattice simgilad®the operator
product expansion to get information about structure functions. In tays thie lowest moments of
the pion and nucleon structure functions have been simulated [1, 2]. ddgwaeven moments of
generalized parton distributions are being calculated [3]. Recently,ltmypeorrelation functions
of tilted Wegner-Wilson loops have been computed on a Euclidean lattice jéhwhn be related
to the gluon distribution function [5, 6, 7] of a color dipole or a hadron, in@ple.

Independently of these investigations, the light cone lattice community hasegouf8] the
idea of a different formulation of QCD on or near the light cone. The Hagebeen that a theo-
retical framework based on constituents moving along the light cone will bdesifgtiowing the
experimental discovery of quarks rather closely. Of course, the lghe @approach must attempt
to incorporate the nonperturbative QCD vacuum, which is rather difficutigoesent in terms of a
Fock representation of free fields acting on a trivial vacuum. Also rewrgispatially quantised
theory into a theory quantised on a light like surface may cause problems.

Therefore, in a recent paper [9] we have advocated a near ligbt(ode) approach in which
we strive to combine the advantages of the lattice world with the advantagesiocdige simpli-
fications. Here, “near to the light cone” refers to the employment of nelar éigne coordinates
[10, 11] which have been initially introduced in order to investigate lighttfiqurantisation as a
limiting procedure of equal time quantised theories. These coordinatesdlepehe external pa-
rametern) which controls the distance to the light cone. In Ref. [9] we have foundargl state
of the near light cone Hamiltonian which, in the light cone limit, is simpler than thergtstate in
equal time Hamiltonian theory. In the following, we report on work in progyé@s which we use
this variationally optimized ground state wave functional to determine the fulihgtlistribution
function of a color dipole state, i.e. without the restriction to the computation of mtsyes a first
application.

2. Definition of the color dipole and the gluon matrix element

In deep inelastic scattering the hadronic target is probed on the light icenat equal light
cone timex™ = 0. Herext = (xX°+x3) /v/2 andx™ = (xX° — x3) /+/2 are the light cone temporal and
longitudinal coordinate whené, x® denote the ordinary Minkowski coordinates in the laboratory
frame. In light cone quantisation one quantises on exactly such a hyfaeesui.e. on a hyper-
surface defined by = 0. This has the advantage that one does not need to evolve the hadronic
wave function during the scattering process in light cone time. We analysguibieic structure of
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a dipole state of a fixed transversal extengiorin the following. We start from a dipole localized
in configuration space consisting of a valence quarkatX, q = —d, /2), a valence antiquark at
(X, X g= d /2) and a gluon cloud represented by a Schwinger SBING, q,X. g; X~ ) connect-
ing the quark and antiquark along the transversal direction which engarege invariance. This
state is projected onto a fixed center of mass momemtung, which means that one has to inte-
grate over all possible translations of this state decorated by the appeqise factog ' P-X .
The gluon distribution functiorfy,4(xg) gives the probability that a gluon carries the longitudinal
momentum fractiorxg of the fast moving dipolel [12]. It is given by the Fourier transformation
of the correlation function of longitudinally separated transversal gllectre field strength op-
erators connected by a straight Schwinger st@}gin the adjoint representation and normalized
to the longitudinal momenturp_ of the target

11 ; -1 - 5
fg/a(Xs) = X*Bﬁ/dfeilepfz F<d(p—»dL)\G++(27>0)’d(p—adﬂ>o (2.1)

The index “c” implies to take the connected matrix element &g_,d, )) denotes the dipole
state. In the light cone limitr{ — 0) of the near light cone Hamiltonian, the gluon electric field
strength operators are given by the corresponding momentum operators

Gz 0) = ¥ Mz 0.)$h(z .0:0)M0.0) . [MER.AYY)| = ~i8°(R-9) 8 5

£(z7,0:0,) = [ﬁexp{ig/()z dv A (v',0.) A%} (2.2)

The gluon electric field strength operators do not commute with the transterggs in the dipole
wave functions as shown in Eq. (2.2). Therefore the stﬁhg?q,iq;y‘) arising from the links
in the outgoing dipole ay— must appear to the left of the operatr* and correspondingly the
string S, (X4, Xg; X ) in the incoming dipole at~ to the right ofG™* (see Fig. 1). Then the matrix
element with the nlc ground staft¢/y) is written

(d(p-,d1)|6* (2, 0)ld(p-,d,)) = 2B [axdy dx e P () 23

(ol STHS (v X 1%)S] (Re Ky ) S (v X %)G (2,0 (R Hpx )] Wo)

At high momentum, the quark and antiquark in the color dipole move on straightltssical
trajectories where they pick up non-abelian phase factors along theg. peltereby the overlap
of the dipole statdd(p_,d,)) with itself is related to the matrix element of a Wegner-Wilson
loop in a pure gauge vacuum field configurations. Se,tSf connect the end points of the color
dipoles along the - direction. Then the eikonal trajectories of the quark and antiquark @lotte
lines) together with the strings (full lines) connecting the quark and antigoahe color dipole
constitute the contour of the Wegner-Wilson |oaf(shown in Fig. 1):

WX,y %, %) = S (¥, x %) S| (%, Xq:y ) S (VX i%)SL (%, XgiX ). (2.4)

The constanN is determined in such a way that the dipole state satisfies the boost invaniant no
malization(d(p_,d, )|d(p_,d,)) = 2p_V, where the volume i¥ =L_L?2.
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Figure 1: Graphical representation of the Wilson loop mapped out byctilor dipole with a quark and
an antiquarkg moving along the<_ direction. The full curve gives the strings which conneet ¢juark and
antiquark in the dipole states. The dotted strings arisetaltiee elimination of the quark spinors using the
eikonal approximation of the quark propagator. The dastedansertion in the so formed Wegner-Wilson
loop represents the gluon momentum correlation function.

3. Lattice calculation

Having defined the model in the continuum in the last section, we calculate tbe distri-
bution function using the variationally optimized ground state wave functional¥E1) (below) of
the near light cone (nlc) lattice Hamiltonian in the pure gauge sector now étailsl concerning
the nlc Hamiltonian and its variationally optimized ground state wave functiondReff[9]). The
effective nic lattice Hamiltonian and a variationally optimized ground state wawifinal |Yo)
have been determined in ref. [9]. In our Hamiltonian approach, we stayinkdwski time, i.e.
a Wick rotation to imaginary nlc times is not necessary. The wave functioméhics a product
of single site plaquetted_(X) andU;2(X) with two variationally optimized parameteps and
& which are functions of the lattice coupling= 4/g* related to the gauge couplirggand the
distance to the light cong normalized byNy

Wo) = Vel [0},

=3 {élpom,nm [Re(Ui®)) | +&(A,m)Tr | Re(Ura(®) ) | } 0. @D

€

S+
Ui (®) = Ui(N)Uj(X+8) U (x+ &)U (%) Uj(i)zgzexp<i g/x dy A‘Z(y))\a>. (3.2)

Here,A? represent the generators®lf)(2), & is the unit vector in direction= 1,2, — and the state
|0) is given by the trivial ground state which is annihilated by the lattice momﬁp@) (here and
in the following quantities in lattice units are indicated by a hat) canonically cotgugahe links

Ui (¥),
A8(X) [0) =0 and (0] AR(X) =0vX ka . [AXR,U(9)] =A*Ui(X) &gy (3:3)

This ground state wave functional is similar to the ground state wave funttised in equal time
quantised lattice gauge theory [14]. However, it allows for an asymmetryeigaluge links dy-
namics in the purely transversal and the transversal longitudinal pladeniag the correspondent
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asymmetry in the Hamiltonian. Similar to the equal time case, it does not allow for sitipan
from the discrete lattice to the continuum due to the lack of a scaling regime. Weoptimized
this ansatz over a large region(ih, n)-space which allows us to extrapolate the parameigr&
to the light conap — 0. This limit yields the following functional behavior

Po(A,0) = <0.65— O'Tm+ 1;525> VA, &(A,0)= (0.05+ %‘— 1/\329> VA (3.4)
Note that the ground state Eq. (3.1) is an approximation of the fully interactiagtige Hamil-
tonian and does not rely on any truncated Fock space expansiordatmiperturbative vacuum.
In order to transcribe the continuum definition of the gluon distribution fundiq. (2.1) to the
lattice, we replace all integrations by sums over lattice sites times the corresydeitice spacing.
To compute the gluon matrix elements one has to commute the momentum operatorsftamthe le
to the right until they stand directly in front of the trivial ground “ket” sté or the correspond-
ing “bra” state(0| which they annihilate (cf. Eq. (3.3)). Then, the matrix elements do only depen
on the links which means that they can be evaluated by standard methodse {tllowing, we
assume thaﬂl is parallel to one of the transversal coordinate axesoTLe.: |dl| -8 withk=1).

For the evaluation of the matrix elements discussed in section 2 the wave fuah¢tHpm>
plays the essential role. The gauge dynamics in the transi{grdgeplane is strongly coupled as
shown by the parametép(A,0) ~ 0 (cf. Eq. (3.4)). A strong coupling approximation Eq. (3.5)
turns out to be valid even for values #fwhich are far beyond << 1, i.e. A =10 as proven
by actual Monte Carlo sampling of the ground state wave functional EQ. [B]. In the light
cone limitn — O the gauge dynamics in each of the hyperplaiesl) and (—, 2) is essentially
two dimensional because of the small coupling of their dynamics via the gawugedtions in the
(1,2) plane. In two dimensions with free boundary conditions the strong couptipgaimation
is exact. It is here where we see an important simplification of the gluon dysamithe light
cone compared with equal time Hamiltonian QCD. Under these conditions, veetmiollowing
standard area law behavior for Wegner-Wilson loops in(thg) directions

1 o 1 d |z -
<LIJ0|§Tr [W(0,27;0,d,)] |Wo) = (<W0|2Tr[uk]]%)> , area=d, [Z la,a_. (3.5)

Factorization is also true for expectation values of the product of two ¥egfison loops which
do not overlap. Single plaguette expectation values with respect to thedstate wave functional
are given by

12(4p0)
11(4p0)
Here, |, denote the modified Bessel functions of the first kind. One obtains thrgelmdions

< d|G*(27,0)|d >¢ with i = 1,2,3 to the matrix element ok d|G**(2~,0)|d >¢. The first
contribution is given by the applicatibrof both of the momentum operators of the correlation
function Eq. (2.2) onto either the transversal Schwinger string of themimgp or the outgoing
dipole state. Hence, this matrix element is given by

+0(88) e [-1,1]. (3.6)

1
fuc = (Wol 5Tr[U ][ Wo) =

ﬁl <d|Gi (@ )|d> = Zd} 5 o (3.7)

IHere, Mk applied onto an operator means to take the commutatdy, ofith this operator
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It is proportional to the transversal extension of the dipole and to the Caspeiator of the
fundamental representation. It has a non-vanishing support onér@separatiog— = 0, i.e. for
overlapping gluon operators. Far = 0 the operatoé**(O) represents the gluonic longitudinal
momentum density operat®r * (0) at the origin(0,0, ). Therefore this contribution is associated
with the number of gluons in the flux tube of the color dipole which increasearlingith the
length of the tube. Beside this trivial dependencefgnthis matrix element is extremely localized
in configuration space, i.e. its Fourier transformation is uniformly distributed.in

The second matrix elemert d|G;"|d > /p_ is given by the application of the first mo-
mentum operator of the correlation function Eq. (2.2) onto the transv@calinger string of the
incoming dipole state and the application of the second momentum operator otarikeersal
Schwinger string of the outgoing dipole state or vice versa. This matrix elamas

pl <d|Git(Z)|d>= —dl cos(p- dL \?I/ (Zcos k)dA”XN) : (3.8)

Here, the denominator represents the normalization of the hadronid\stdteThe numerator is
again proportional to the transversal extension of the dipole and to thimi€Caperator of the
fundamental representation. The application of the gluon momentum oysebatay the incoming
and outgoing color dipole states into the adjoint representation, i.e. thessespirexcited states.
The adjoint Schwinger string which ensures gauge invariance of thied)state corresponds to a
gluon propagating along the light cone in the eikonal approximation. Therged excited state

is equwalent to a state with two dipoles which accounts for hadronisationstidy two dipoles
sizes: Ch =5 anddL = 30) Its behavior is determined by the area law behavior of the Wegner-
Wilson loop. For smaldL, the Wegner-Wilson loop decreases slowly as a functicgar dfor large
values ofdl, correlation functions at non-vanishi@g are highly suppressed and one recovers the
extremely localized behavior of the first matrix element, i.e. a Kronecker defta.irlence, after
the Fourier transformation this contribution to the gluon distribution function @ féds for large

d,.

The third part of the matrix element is the vacuum fluctuation term which origirieden the
application of the momentum operators of the correlation function Eq. (2t@)tba ground state
wave functional Eqg. (3.1). Its magnitude is considerably smaller than theitdgs of the first
two contributions. This is due to the fact, that the connected matrix elemenastsatixactly these
kinds of vacuum to vacuum transitions. Hence, this part of the matrix eleraarie neglected.

An interpretation of our results has to be qualitative since our wave furatttmes not allow
a continuum limit of vanishing lattice size. If we use a transverse lattice sizad &mthe resolu-
tion of the probea;, = 1/Q where Q is the scale of the gluon structure function , then one sees
that increasing resolution at fixed physical dipole sizgenerates a strongly localized correlation
function of gluon field strengths along the light cone. This feature yields@ngstructure function
of the dipole which behaves like the Pomeron structure function with unit epérce.

1

lim fqq(X ~— 3.9
o o/d(X8, Q) . (3.9)

Modeling the hadron as a simple dipole of fixed silz&ithout any detailed quark-antiquark wave
function, one cannot expect a meaningful gluon structure functiotafge xg. At large values
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of xg, the gluon distribution function has to decrease with the number of spectatonp [16].
But, the gluon in our model does not know about the spectptordq xs-distributions, since they
are not yet implemented in our simple approach. In a forthcoming papervieowee model the
quark/antiquark distributions explicitly.

Since the ground state wave functional ansatz Eq. (3.1) does not prawviell defined con-
tinuum limit the exact prefactor of our calculations cannot be trusted.€Ttgre been indications
for scaling solutions for equal time Hamiltonian QCD in a guided Greens funiMiome-Carlo
sampling of the ground state probability density [17]. The ground state fumetional used in
that reference includes extended plaquette terms similar to improved actioosliddan lattice
approaches. In ref. [15] the vacuum state in the light cone limit is exastgnddy a weighted sum
of plaquette plaquette correlations separated along the spatial light cortinade. This vacuum
will give a dressed dipole state which contains fluctuations of the traresgéiiag in the dipole
which lead to an additional cross section at sgll Ultimately theqq ground state is given by
applying the imaginary time evolution operator €x; x™) on the dipole in the limix™ — co.
This means that the world sheet swept out by the color dipole in the grdatedvell not be only
given by a rectangular Wegner-Wilson loop. As said the transvers$aliSger strings which fol-
low straight lines in the strong coupling approximation are washed out atdl imore subtle
structure of the gluon distribution functions than the Pomeron behavior.

References

[1] M. Gockeler, R. Horsley, D. Pleiter, P. E. L. Rakow and @Ghigrholz [QCDSF Collaboration], Phys.
Rev. D71 (2005) 114511 [arXiv:hep-ph/0410187].

[2] J. W. Negeleet al,, Nucl. Phys. Proc. Suppl28(2004) 170 [arXiv:hep-lat/0404005].

[3] P. Hagler, J. W. Negele, D. B. Renner, W. Schroers, T. €ippnd K. Schilling [LHPC collaboration
and SESAM collaboration], Phys. Rev.d8 (2003) 034505 [arXiv:hep-lat/0304018].

[4] M. Giordano and E. Meggiolaro, arXiv:0808.1022 [hela
[5] N. N. Nikolaev and B. G. Zakharov, Z. Phys.4® (1991) 607.
[6] K.J.Golec-Biernat and M. Wusthoff, Phys. Rev6eD (1999) 114023 [arXiv:hep-ph/9903358].

[7]1 A. 1. Shoshi, F. D. Steffen, H. G. Dosch and H. J. Pirnery®tiRev. D66 (2002) 094019
[arXiv:hep-ph/0207287].

[8] S. Dalley, “Light cone physics: Hadrons and beyond: estings. 2003".

[9] D. Grunewald, E. M. llgenfritz, E. V. Prokhvatilov and H.. Pirner, Phys. Rev. 07 (2008) 014512
[arXiv:0711.0620 [hep-lat]].

[10] E. V. Prokhvatilov and V. A. Franke, Sov. J. Nucl. Ph%98.(1989) 688 [Yad. Fiz49(1989) 1109].
[11] F. Lenz, H. W. L. Naus and M. Thies, Annals Ph283(1994) 317.
[12] J. C. Collins and D. E. Soper, Nucl. Phys1B4(1982) 445.

[13] A. 1. Shoshi, F. D. Steffen, H. G. Dosch and H. J. Pirndry$? Rev. D68 (2003) 074004
[arXiv:hep-ph/0211287].

[14] S. A. Chin, O. S. Van Roosmalen, E. A. Umland and S. E. KmgRhys. Rev. 81 (1985) 3201.



Lattice QCD close to the light cone with applications to nresgucture functions D. Grinewald

[15] D. Grunewald, Phd. thesis, University of Heidelbergikérsitatsbibliothek Heidelberg,
http://www.ub.uni-heidelberg.de/archiv/8601/.

[16] R. Blankenbecler and S. J. Brodsky, Phys. Rel(§1974) 2973.
[17] M. Beccaria, Phys. Rev. B2 (2000) 034510 [arXiv:hep-lat/0003016].



