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We report on work in progress in which we calculate the gluon structure function of a color dipole
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momentumqq̄ state added to the vacuum. We use as vacuum state a variational ground state of

the near light cone Hamiltonian. We compute the color dipolematrix element of two transverse

gluon momentum operators separated along the light cone, the Fourier transform of which is the
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momentum, reproduce the Pomeron behavior of the structure function with unit intercept.
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1. Introduction

The first support for our understanding of QCD as the theory of strong interactions has come
from deep inelastic scattering. The structure of the proton unfolds itself aspartons that experience
only interactions small in strength due to asymptotic freedom. The so obtained structure func-
tions representing the proton constituents can be considered as Fourier transforms of quark/gluon
operators separated along light like distances. Since the discovery of scaling in deep inelastic scat-
tering, calculations of perturbative corrections have strongly contributed to the credibility of QCD.
For smallxB, there appear other contributions likeαs(Q2) log(1/xB) in addition to terms from
DGLAP-evolution which need special care. It must be stressed that in a perturbative framework
structure functions themselves cannot be calculated. Euclidean lattice simulations use the operator
product expansion to get information about structure functions. In this way, the lowest moments of
the pion and nucleon structure functions have been simulated [1, 2]. Nowadays, even moments of
generalized parton distributions are being calculated [3]. Recently, loop-loop correlation functions
of tilted Wegner-Wilson loops have been computed on a Euclidean lattice [4] which can be related
to the gluon distribution function [5, 6, 7] of a color dipole or a hadron, in principle.

Independently of these investigations, the light cone lattice community has pursued [8] the
idea of a different formulation of QCD on or near the light cone. The hopehas been that a theo-
retical framework based on constituents moving along the light cone will be simple, following the
experimental discovery of quarks rather closely. Of course, the light cone approach must attempt
to incorporate the nonperturbative QCD vacuum, which is rather difficult torepresent in terms of a
Fock representation of free fields acting on a trivial vacuum. Also rewriting a spatially quantised
theory into a theory quantised on a light like surface may cause problems.

Therefore, in a recent paper [9] we have advocated a near light cone (nlc) approach in which
we strive to combine the advantages of the lattice world with the advantages of light cone simpli-
fications. Here, “near to the light cone” refers to the employment of near light cone coordinates
[10, 11] which have been initially introduced in order to investigate light front quantisation as a
limiting procedure of equal time quantised theories. These coordinates depend on the external pa-
rameterη which controls the distance to the light cone. In Ref. [9] we have found a ground state
of the near light cone Hamiltonian which, in the light cone limit, is simpler than the ground state in
equal time Hamiltonian theory. In the following, we report on work in progress, in which we use
this variationally optimized ground state wave functional to determine the full gluon distribution
function of a color dipole state, i.e. without the restriction to the computation of moments, as a first
application.

2. Definition of the color dipole and the gluon matrix element

In deep inelastic scattering the hadronic target is probed on the light cone,i.e. at equal light
cone timex+ = 0. Here,x+ = (x0+x3)/

√
2 andx− = (x0−x3)/

√
2 are the light cone temporal and

longitudinal coordinate wherex0,x3 denote the ordinary Minkowski coordinates in the laboratory
frame. In light cone quantisation one quantises on exactly such a hypersurface, i.e. on a hyper-
surface defined byx+ = 0. This has the advantage that one does not need to evolve the hadronic
wave function during the scattering process in light cone time. We analyse thegluonic structure of

2



P
o
S
(
L
C
2
0
0
8
)
0
5
2

Lattice QCD close to the light cone with applications to meson structure functions D. Grünewald

a dipole state of a fixed transversal extension~d⊥ in the following. We start from a dipole localized
in configuration space consisting of a valence quark at(x−,~x⊥,q = −~d⊥/2), a valence antiquark at
(x−,~x⊥,q̄ = ~d⊥/2) and a gluon cloud represented by a Schwinger stringS⊥(~x⊥,q,~x⊥,q̄ ; x−) connect-
ing the quark and antiquark along the transversal direction which ensures gauge invariance. This
state is projected onto a fixed center of mass momentump−,~p⊥ which means that one has to inte-
grate over all possible translations of this state decorated by the appropriate phase factore−i p− x− .
The gluon distribution functionfg/d(xB) gives the probability that a gluon carries the longitudinal
momentum fractionxB of the fast moving dipoled [12]. It is given by the Fourier transformation
of the correlation function of longitudinally separated transversal gluon electric field strength op-
erators connected by a straight Schwinger stringSA

ab in the adjoint representation and normalized
to the longitudinal momentump− of the target

fg/d(xB) =
1
xB

1
2π

∫
dz−e−i xB p− z− 1

p−
〈d(p−, ~d⊥)|G++(z−,0)|d(p−, ~d⊥)〉c . (2.1)

The index “c” implies to take the connected matrix element and|d(p−, ~d⊥)〉 denotes the dipole
state. In the light cone limit (η → 0) of the near light cone Hamiltonian, the gluon electric field
strength operators are given by the corresponding momentum operators.

G++(z−,0) = ∑
k

Πa
k(z

−,~0⊥)SA
ab(z

−,0;~0⊥)Πb
k(0,~0⊥) ,

[
Πa

k(~x),A
b
l (~y)

]
= −i δ (3)(~x−~y)δk,l δ a,b

SA
ab(z

−,0;~0⊥) =
[
P exp

{
i g
∫ z−

0
dv−Ac

−(v−,~0⊥)λ c
ad j

}]

ab
. (2.2)

The gluon electric field strength operators do not commute with the transversestrings in the dipole
wave functions as shown in Eq. (2.2). Therefore the stringS†

⊥(~xq,~xq̄;y−) arising from the links
in the outgoing dipole aty− must appear to the left of the operatorG++ and correspondingly the
stringS⊥(~xq,~xq̄;x−) in the incoming dipole atx− to the right ofG++ (see Fig. 1). Then the matrix
element with the nlc ground state|Ψ0〉 is written

〈d(p−, ~d⊥)|G++(z−,0) |d(p−, ~d⊥)〉 =
2p−V

N

∫
dx−dy−d2x⊥e−i p− (x−−y−) (2.3)

· 〈Ψ0|
1
2

Tr[S†
−(y−,x−;~xq̄)S†

⊥(~xq,~xq̄;y−)S−(y−,x−;~xq)G
++(z−,0)S⊥(~xq,~xq̄;x−)] |Ψ0〉 .

At high momentum, the quark and antiquark in the color dipole move on straight lineclassical
trajectories where they pick up non-abelian phase factors along their paths. Thereby the overlap
of the dipole state|d(p−, ~d⊥)〉 with itself is related to the matrix element of a Wegner-Wilson
loop in a pure gauge vacuum field configurations. LetS−,S†

− connect the end points of the color
dipoles along thex− - direction. Then the eikonal trajectories of the quark and antiquark (dotted
lines) together with the strings (full lines) connecting the quark and antiquarkin the color dipole
constitute the contour of the Wegner-Wilson loopW (shown in Fig. 1):

W(x−,y−;~xq,~xq̄) = S†
−(y−,x−;~xq̄)S†

⊥(~xq,~xq̄;y−)S−(y−,x−;~xq)S⊥(~xq,~xq̄;x−) . (2.4)

The constantN is determined in such a way that the dipole state satisfies the boost invariant nor-
malization〈d(p−, ~d⊥)|d(p−, ~d⊥)〉 = 2p−V, where the volume isV = L−L2

⊥.
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q q

q̄ q̄

(x−, ~xq,⊥)(y−, ~xq,⊥)

(y−, ~xq̄,⊥) (x−, ~xq̄,⊥)

(z−,~0⊥)

(0,~0⊥)

Πa
k Πb

kSA
ab

Figure 1: Graphical representation of the Wilson loop mapped out by the color dipole with a quarkq and
an antiquark ¯q moving along thex− direction. The full curve gives the strings which connect the quark and
antiquark in the dipole states. The dotted strings arise dueto the elimination of the quark spinors using the
eikonal approximation of the quark propagator. The dash dotted insertion in the so formed Wegner-Wilson
loop represents the gluon momentum correlation function.

3. Lattice calculation

Having defined the model in the continuum in the last section, we calculate the gluon distri-
bution function using the variationally optimized ground state wave functional Eq. (3.1) (below) of
the near light cone (nlc) lattice Hamiltonian in the pure gauge sector now (for details concerning
the nlc Hamiltonian and its variationally optimized ground state wave functional c.f.Ref [9]). The
effective nlc lattice Hamiltonian and a variationally optimized ground state wave functional|Ψ0〉
have been determined in ref. [9]. In our Hamiltonian approach, we stay in Minkowski time, i.e.
a Wick rotation to imaginary nlc times is not necessary. The wave functional contains a product
of single site plaquettesU−k(~x) andU12(~x) with two variationally optimized parametersρ0 and
δ0 which are functions of the lattice couplingλ = 4/g4 related to the gauge couplingg and the
distance to the light coneη normalized byNΨ

|Ψ0〉 =
√

NΨ ef [U ] |0〉 ,

f [U ] = ∑
~x

{
2

∑
k=1

ρ0(λ ,η)Tr
[

Re
(

U−k(~x)
)]

+δ0(λ ,η)Tr
[

Re
(

U12(~x)
)]}

|0〉 , (3.1)

Ui j (~x) = Ui(~x)U j(~x+~ei)U†
i (~x+~ej)U†

j (~x) , U j(~x) ≡ P exp

(
i g
∫ ~x+êj

~x
dyµ Aa

µ(y) λ a
)

. (3.2)

Here,λ a represent the generators ofSU(2), êi is the unit vector in directioni = 1,2,− and the state
|0〉 is given by the trivial ground state which is annihilated by the lattice momentaΠ̂a

k(~x) (here and
in the following quantities in lattice units are indicated by a hat) canonically conjugate to the links
U j(~y),

Π̂a
k(~x) |0〉 = 0 and〈0| Π̂a

k(~x) = 0∀~x,k,a ,
[
Π̂a

i (~x),U j(~y)
]

= λ aUi(~x)δ~x,~y δi, j . (3.3)

This ground state wave functional is similar to the ground state wave functional used in equal time
quantised lattice gauge theory [14]. However, it allows for an asymmetry in the gauge links dy-
namics in the purely transversal and the transversal longitudinal plane rendering the correspondent
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asymmetry in the Hamiltonian. Similar to the equal time case, it does not allow for a transition
from the discrete lattice to the continuum due to the lack of a scaling regime. We have optimized
this ansatz over a large region in(λ ,η)-space which allows us to extrapolate the parametersρ0,δ0

to the light coneη → 0. This limit yields the following functional behavior

ρ0(λ ,0) =

(
0.65− 0.87

λ
+

1.65
λ 2

)√
λ , δ0(λ ,0) =

(
0.05+

0.04
λ

− 1.39
λ 2

)√
λ . (3.4)

Note that the ground state Eq. (3.1) is an approximation of the fully interacting effective Hamil-
tonian and does not rely on any truncated Fock space expansion around the perturbative vacuum.
In order to transcribe the continuum definition of the gluon distribution function Eq. (2.1) to the
lattice, we replace all integrations by sums over lattice sites times the correspondent lattice spacing.
To compute the gluon matrix elements one has to commute the momentum operators to the left or
to the right until they stand directly in front of the trivial ground “ket” state|0〉 or the correspond-
ing “bra” state〈0| which they annihilate (cf. Eq. (3.3)). Then, the matrix elements do only depend
on the links which means that they can be evaluated by standard methods. (Inthe following, we
assume that~d⊥ is parallel to one of the transversal coordinate axes, i.e.~d⊥ = |d̂⊥| ·~ek with k = 1).

For the evaluation of the matrix elements discussed in section 2 the wave functional |Ψ0 >

plays the essential role. The gauge dynamics in the transverse(1,2) plane is strongly coupled as
shown by the parameterδ0(λ ,0) ≈ 0 (cf. Eq. (3.4)). A strong coupling approximation Eq. (3.5)
turns out to be valid even for values ofλ which are far beyondλ << 1, i.e. λ = 10 as proven
by actual Monte Carlo sampling of the ground state wave functional Eq. (3.1) [15]. In the light
cone limit η → 0 the gauge dynamics in each of the hyperplanes(−,1) and(−,2) is essentially
two dimensional because of the small coupling of their dynamics via the gauge fluctuations in the
(1,2) plane. In two dimensions with free boundary conditions the strong coupling approximation
is exact. It is here where we see an important simplification of the gluon dynamics on the light
cone compared with equal time Hamiltonian QCD. Under these conditions, we have the following
standard area law behavior for Wegner-Wilson loops in the(−,k) directions

〈Ψ0|
1
2

Tr
[
W(0, ẑ−;0,d⊥)

]
|Ψ0〉 =

(
〈Ψ0|

1
2

Tr [U−k ] |Ψ0〉
)d̂⊥ |ẑ−|

, area= d̂⊥ |ẑ−|a⊥a− . (3.5)

Factorization is also true for expectation values of the product of two Wegner-Wilson loops which
do not overlap. Single plaquette expectation values with respect to the ground state wave functional
are given by

f1k ≡ 〈Ψ0|
1
2

Tr [U−k ] |Ψ0〉 =
I2(4ρ0)

I1(4ρ0)
+O(δ 2

0 ) ∈ [−1,1] . (3.6)

Here, In denote the modified Bessel functions of the first kind. One obtains three contributions
< d|Ĝ++

i (ẑ−,0)|d >c with i = 1,2,3 to the matrix element of< d|Ĝ++(ẑ−,0)|d >c. The first
contribution is given by the application1 of both of the momentum operators of the correlation
function Eq. (2.2) onto either the transversal Schwinger string of the incoming or the outgoing
dipole state. Hence, this matrix element is given by

1
p̂−

< d|Ĝ++
1 (ẑ−)|d > =

3
4

d̂⊥ δẑ−,0 . (3.7)

1Here,Π̂k applied onto an operator means to take the commutator ofΠ̂k with this operator
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It is proportional to the transversal extension of the dipole and to the Casimiroperator of the
fundamental representation. It has a non-vanishing support only at zero separation̂z− = 0, i.e. for
overlapping gluon operators. Forẑ− = 0 the operator̂G++(0) represents the gluonic longitudinal
momentum density operatorT++(0) at the origin(0,~0⊥). Therefore this contribution is associated
with the number of gluons in the flux tube of the color dipole which increases linearly with the
length of the tube. Beside this trivial dependence ond̂⊥, this matrix element is extremely localized
in configuration space, i.e. its Fourier transformation is uniformly distributed inxB.

The second matrix element< d|G++
2 |d > /p̂− is given by the application of the first mo-

mentum operator of the correlation function Eq. (2.2) onto the transversalSchwinger string of the
incoming dipole state and the application of the second momentum operator onto thetransversal
Schwinger string of the outgoing dipole state or vice versa. This matrix elementreads

1
p̂−

< d|Ĝ++
2 (ẑ−)|d >=

3
4

d̂⊥ cos
(
p̂− ẑ−

)
f d̂⊥ |ẑ−|
1k /

(

∑̂
x−

cos
(
p̂− x̂−

)
( f1k)

d̂⊥ |x̂−|
)

. (3.8)

Here, the denominator represents the normalization of the hadronic stateN/V̂. The numerator is
again proportional to the transversal extension of the dipole and to the Casimir operator of the
fundamental representation. The application of the gluon momentum operators bring the incoming
and outgoing color dipole states into the adjoint representation, i.e. they represent excited states.
The adjoint Schwinger string which ensures gauge invariance of this excited state corresponds to a
gluon propagating along the light cone in the eikonal approximation. The generated excited state
is equivalent to a state with two dipoles which accounts for hadronisation. Westudy two dipoles
sizes: (̂d⊥ = 5 andd̂⊥ = 30). Its behavior is determined by the area law behavior of the Wegner-
Wilson loop. For small̂d⊥, the Wegner-Wilson loop decreases slowly as a function ofẑ−.For large
values ofd̂⊥, correlation functions at non-vanishingẑ− are highly suppressed and one recovers the
extremely localized behavior of the first matrix element, i.e. a Kronecker delta inẑ−. Hence, after
the Fourier transformation this contribution to the gluon distribution function is also flat for large
d̂⊥.

The third part of the matrix element is the vacuum fluctuation term which originates from the
application of the momentum operators of the correlation function Eq. (2.2) onto the ground state
wave functional Eq. (3.1). Its magnitude is considerably smaller than the magnitudes of the first
two contributions. This is due to the fact, that the connected matrix element subtracts exactly these
kinds of vacuum to vacuum transitions. Hence, this part of the matrix elementcan be neglected.

An interpretation of our results has to be qualitative since our wave functional does not allow
a continuum limit of vanishing lattice size. If we use a transverse lattice size equal to the resolu-
tion of the probea⊥ = 1/Q where Q is the scale of the gluon structure function , then one sees
that increasing resolution at fixed physical dipole sized generates a strongly localized correlation
function of gluon field strengths along the light cone. This feature yields a gluon structure function
of the dipole which behaves like the Pomeron structure function with unit intercept, i.e.

lim
Q|~d|→∞

fg/d(xB,Q2) ∼ 1
xB

. (3.9)

Modeling the hadron as a simple dipole of fixed sized without any detailed quark-antiquark wave
function, one cannot expect a meaningful gluon structure function forlargexB. At large values
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of xB, the gluon distribution function has to decrease with the number of spectator partons [16].
But, the gluon in our model does not know about the spectatorq andq̄ xB-distributions, since they
are not yet implemented in our simple approach. In a forthcoming paper however, we model the
quark/antiquark distributions explicitly.

Since the ground state wave functional ansatz Eq. (3.1) does not provide a well defined con-
tinuum limit the exact prefactor of our calculations cannot be trusted. There have been indications
for scaling solutions for equal time Hamiltonian QCD in a guided Greens functionMonte-Carlo
sampling of the ground state probability density [17]. The ground state wavefunctional used in
that reference includes extended plaquette terms similar to improved actions in Euclidean lattice
approaches. In ref. [15] the vacuum state in the light cone limit is exactly given by a weighted sum
of plaquette plaquette correlations separated along the spatial light cone coordinate. This vacuum
will give a dressed dipole state which contains fluctuations of the transverse string in the dipole
which lead to an additional cross section at smallxB. Ultimately theqq̄ ground state is given by
applying the imaginary time evolution operator exp(−P+ x+) on the dipole in the limitx+ → ∞.
This means that the world sheet swept out by the color dipole in the ground state will not be only
given by a rectangular Wegner-Wilson loop. As said the transversal Schwinger strings which fol-
low straight lines in the strong coupling approximation are washed out and yield a more subtle
structure of the gluon distribution functions than the Pomeron behavior.
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