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Transverse momentum dependent parton distribution functions (TMDPDFs) encode information
about the intrinsic motion of quarks inside the nucleon. They are important non-perturbative
ingredients in our understanding of, e.g., azimuthal asymmetries and other qualitative features in
semi-inclusive deep inelastic scattering experiments. We present first calculations on the lattice,
based on MILC gauge configurations and propagators from LHPC. They yield polarized and
unpolarized transverse momentum dependent quark densities and enable us to test the assumption
of factorization in x and k⊥. The operators we employ are non-local and contain a Wilson line,
whose renormalization requires the removal of a divergence linear in the cutoff a−1.

LIGHT CONE 2008 Relativistic Nuclear and Particle Physics
July 7-11, 2008
Mulhouse, France

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:bmusch@ph.tum.de


P
o
S
(
L
C
2
0
0
8
)
0
5
3

Transverse Momentum Distributions from Lattice QCD Bernhard U. Musch

1. Introduction

Semi-inclusive deeply inelastic scattering (SIDIS) experiments are sensitive to many correla-
tions between the direction of parton and hadron spins and intrinsic transverse momenta. These
have been parameterized in a systematic manner using transverse momentum dependent parton
distribution functions (TMDPDFs), see [1]. TMDPDFs describe the distribution of partons carry-
ing a longitudinal momentum fraction x and an intrinsic transverse momentum k⊥ in a hadron as
illustrated in Fig. 1. Here we give an update of our effort [2] to develop techniques suitable for
the calculation of TMDPDFs on the lattice. Note that TMDPDFs are not to be confused with gen-
eralized parton distribution functions (GPDs), which provide probability distributions with respect
to the impact parameter b⊥ rather than k⊥. For an overview of recent hadron structure studies in
lattice QCD, we refer to [3].

Fig. 2 illustrates the factorization of SIDIS into perturbative and non-perturbative parts. The
lower blob represents the non-perturbative contribution of the nucleon and is described by

Φ
[Γ](x,k⊥;P,S)≡ 1

2

∫
dk−

∫ d4`

(2π)4 e−ik·` 〈P,S| q̄(`)Γ UC (`,0) q(0) |P,S〉 , (1.1)

where |P,S〉 represents a nucleon state of momentum P and spin S, Γ is a Dirac matrix and k is the
quark momentum, with k+ = xP+. The Wilson line UC (`,0) connecting the quark operators ensures
gauge invariance. In SIDIS, UC (`,0) = U[`,`+∞n̂−]U[`+∞n̂−,∞n̂−]U[∞n̂−,0] is a concatenation of three
straight Wilson lines running to light cone infinity and back [4, 5].

Figure 1: Illustration of a nucleon
with large momentum P.
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Figure 2: Factorized tree level diagram of SIDIS.

Some examples of TMDPDFs are f1, g1L and g1T , defined via [1]

Φ
[γ+](x,k⊥;P,S) = f1(x,k2

⊥) (1.2)

Φ
[γ+γ5](x,k⊥;P,S) =

mN

P+ S+ g1L(x,k2
⊥) +

k⊥ ·S⊥
mN

g1T (x,k2
⊥). (1.3)

2. TMDPDFs from the Euclidean lattice

In this exploratory study, we simplify the calculation and employ a single straight Wilson line
UC (`,0) = U[`,0] running from 0 to `. In this case, the matrix element appearing in eq. (1.1) can be
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evaluated directly on the Euclidean lattice, as long as we set `0 = 0. To facilitate the translation of
the correlators evaluated on the lattice into TMDPDFs, we first parameterize the matrix element in
terms of Lorentz-invariant amplitudes Ãi(`2, ` ·P), for example

〈P,S| q(`)γµ U q(0) |P,S〉= 4 Ã2 Pµ +4imN
2 Ã3 `µ , (2.1)

〈P,S| q(`)γµγ
5 U q(0) |P,S〉=−4mN Ã6 Sµ −4imN Ã7 Pµ `·S +4mN

3 Ã8 `µ `·S. (2.2)

The amplitudes Ãi(`2, `·P) are extracted on the lattice and then Fourier transformed into TMDPDFs.
For example, from eqns. (1.2), (1.1) and (2.1) we get

f1(x,k2
⊥) =

∫
∞

−∞

d(`·P)
2π

e−i ·̀Px
∫

∞

0

d(−`2)
4π

J0(
√
−`2 |k⊥|) 2 Ã2(`2, `·P), (2.3)

where J0 is a Bessel-function. The restriction to `0 = 0 on the lattice translates into the constraints

`2 ≤ 0, |` ·P| ≤ |~̀||~P|, (2.4)

which preclude us from evaluating the full x- and k⊥-dependence directly as in eq. (2.3), but are
harmless if we are only interested in the first Mellin moment, i.e., if we integrate over x. For
example, we obtain

f (1)
1 (k2

⊥)≡
∫ 1

−1
dx f1(x,k2

⊥) =
∫

∞

0

d(−`2)
4π

J0(
√
−`2 |k⊥|) 2Ã2(`2, `·P = 0), (2.5)

g(1)
1T (k2

⊥)≡
∫ 1

−1
dx g1T (x,k2

⊥) =
∫

∞

0

d(−`2)
4π

J1(
√
−`2 |k⊥|)√
−`2 |k⊥|

`2m2
N 2Ã7(`2, `·P = 0). (2.6)

3. Simulation technique and parameters

The matrix element 〈P,S| q̄(`)ΓU[`,0] q(0) |P,S〉 is evaluated us-

(0,0)

(6,3)

Figure 3: Step-like
approximatin of an
oblique link path.

ing ratios of three- and two-point functions as described in Ref. [2].
The non-local operator OΓ(`)≡ q̄(`)ΓU[`,0] q(0) inserted in the three-
point function contains the Wilson-line U[`,0], which is implemented
as a product of link variables. For oblique angles, we approximate a
straight line by a step-like path as illustrated in Fig. 3.

For our studies we work with MILC gauge configurations [6]
based on an AsqTad improved staggered quark action with 2+1 fla-
vors on a 203 × 64 lattice with a lattice spacing a ≈ 0.12fm and a
strange quark mass ams = 0.050. We have used three different light quark masses, amu,d = 0.020
(mπ ≈ 500MeV, 239 configurations), amu,d = 0.030 (mπ ≈ 600MeV, 281 configurations) and the
three-flavor degenerate case amu,d = 0.050 (mπ ≈ 760MeV, 213 configurations).

The gauge configurations have been HYP smeared and bisected in the temporal direction to
double statistics. We are using domain wall propagators and sequential propagators previously
calculated by the LHPC collaboration on these configurations, with the valence quark mass tuned
to match the staggered sea quarks (see, e.g., [7]). The sequential propagators feature a source-sink
separation of tsink − tsource = 10, and are available for two lattice nucleon momenta ~P = (0,0,0)
and ~P = (−1,0,0), the latter corresponding to 500MeV in physical units. We neglect contributions
from disconnected diagrams. We have developed our software using the Chroma library [8].
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Figure 4: (a) Amplitude 2Re Ã2(`2, `·P = 0) for up quarks. The continuous curves are fits of the
form C1 exp(−`2/σ2

1 )+C2 exp(−`2/σ2
2 ). We have used three different sets of renormal-

ization constants: For the upper curve, we have determined aδm from 1-loop perturbation
theory, for the two lower curves we have employed two variants of the taxi driver method.
(b) The same for the amplitude −2Re Ã7(`2, `·P = 0).

4. Renormalization of the Wilson Lines

The Wilson line U[`,0] in our non-local operator gives rise to a linear divergence, which has
to be removed by a renormalization constant δm proportional to the cutoff, given by a−1 on the
lattice. Refs. [9, 10] show within continuum theory that the renormalized operator is of the form

OΓ
ren(`) = Z−1 exp(−δm L) OΓ(`). (4.1)

Here Z−1 subsumes renormalization factors associated with divergences at the end points, and L is
the total length of the smooth Wilson line.

In lattice QCD, the linear divergence has been a long standing issue in the context of heavy
quark propagators [11]. We have calculated aδm for link paths on the axes in leading order pertur-
bation theory, adapting the procedure in Refs. [12, 13] to our action according to Refs. [14, 15].

However, perturbation theory is not expected to give accurate results. Therefore we have also
sought to determine aδm non-perturbatively with our “taxi driver method”, which is based on the
assumption that on the lattice, L in eq. (4.1) is given by the total number of link variables, and thus
allows us to deduce the renormalization constants from the comparison of straight and step-like
link paths. There are two variants of this method, one based on data from Wilson lines in a Landau
gauge fixed ensemble, and one based on Wilson loops. For the moment, we assume that the quark
mass dependence is weak, and use the constants determined on the three-flavor degenerate lattice
also for the lighter quark masses. We are currently testing the validity of the taxi driver approach
and alternative methods on several different lattice spacings.

5. Results with Preliminary Renormalization

Here we present some results obtained by applying the techniques sketched above. Note that at
the present stage we regard our renormalization procedure still as preliminary. In the following, we
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label our distributions “sW” to indicate that they are based on straight Wilson lines and are therefore
not strictly identical to the TMDPDFs defined and used in the literature and for the description of,
e.g., SIDIS.

In Fig. 4a we display results for 2Ã2(`2, `·P = 0). They are obtained from a three-point func-
tion with the operator Oγ4

(`), where the Wilson line is renormalized using different approaches
as described above. The overall normalization can be obtained requiring charge conservation,
2Ãu−d

2 (0,0) = 1. Applying eq. (2.5) to the fit results, we get f (1)sW
1 (k2

⊥) as plotted in Fig. 5a, which
is interpreted as the unpolarized distribution of quarks in the unpolarized nucleon in Fig. 6a. In
the unpolarized channels, the nucleon looks axially symmetric. For the large pion masses currently
analyzed, the quark mass dependence of the width of this distribution appears to be rather weak,
see Fig. 5c.

Based on perturbative arguments in the continuum one finds that, e.g., f1 behaves as f1(x,k2
⊥)∼

1/k2
⊥ for large transverse momentum k⊥, see Refs. [16, 17]. Without further regularization, this

leads to divergent k⊥-integrals and prohibits a simple definition of k⊥-moments1. At the present
stage, we do not encounter these difficulties because we parametrize our results with Gaussians,
which are well-behaved. All results below related to k⊥-moments should be interpreted in this con-
text. Further studies are necessary to find out whether this procedure entails hidden dependence on
the lattice cutoff.

The axial symmetry is distorted in the polarized case. As an example, we can consider the
distribution of quarks with positive helicity λ=+1, corresponding to an operator OΓ(`) with Γ =
γ+ 1

2(1+ γ5) in a nucleon transversely polarized with transverse spin S⊥. Using eqns. (1.2), (1.3)

ρ(k⊥,S⊥) ≡
∫ 1

−1
dx Φ

[γ+(1+γ5)/2](x,k⊥;P,S) =
1
2

(
f (1)
1 (k2

⊥) +
k⊥ ·S⊥

mN
g(1)

1T (k2
⊥)

)
. (5.1)
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Figure 5: (a) f (1)sW
1 (k2

⊥) for up quarks as obtained from the Fourier transform of the fits in Fig. 4a.

(b) |k⊥|
mN

g(1)sW
1T (k2

⊥) for up quarks as obtained from the fits in Fig. 4b.
(c) Linear chiral extrapolation of the root mean squared transverse momentum 〈k2

⊥〉1/2

from f (1)sW
1 (k2

⊥) for up quarks minus down quarks.

1Thanks are due to M. Diehl for pointing this out to us.
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Figure 6: Quark density plots. Here the renormalization constants have been chosen according to
the taxi driver method based on Wilson lines.
(a) f (1)sW

1 (k2
⊥) =

∫
dxΦ[γ+](x,k⊥) for up quarks at mπ = 500MeV. We interpret this as

the charge density of up quarks in the nucleon in the transverse momentum plane.
(b) Density ρ(k⊥,S⊥) of up quarks with positive helicity λ =+1 (i.e., with spin point-
ing in z-direction) in a nucleon polarized in transverse x-direction S⊥ = (1,0), evaluated
at a pion mass mπ = 500MeV. The distribution features an average transverse momen-
tum shift 〈kx〉 = (67±5stat±3renorm.)MeV, where the uncertainty from renormalization
has been estimated from the comparison of the three different sets of renormalization
constants employed in Figs. 4 and 5.
(c) Same as in (b) but for down quarks. The average transverse momentum shift 〈kx〉 =
(−24±5stat±3renorm.)MeV has the opposite sign as for up quarks.
(d) Same as in (b) for up quarks minus down quarks. The deformation appears amplified.
Note that this is not a density and not necessarily positive.
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This density is axially asymmetric due to the contribution from the TMDPDF g1T , which contains
information about the correlation of spins and momenta of the form~s·~P k·S ∼ λ k⊥·S⊥. According
to eq. (2.6), we obtain g(1)sW

1T (k2
⊥) from the amplitude Ã7, as shown in the case of up quarks in

Fig. 4b and 5b. For down quarks, the results are of opposite sign and smaller by a factor of about
1/6. In terms of the density ρ(k⊥,S⊥), we find that quarks of a specific polarization can have a
non-vanishing average transverse momentum

〈k⊥〉=
∫

d2k⊥ k⊥ρ(k⊥,S⊥)∫
d2k⊥ ρ(k⊥,S⊥)

(5.2)

and that it is opposite in sign for up- and down quarks, see Figs. 6b and 6c. That such deformed
quark densities are to be expected has been mentioned, e.g., in Ref. [18]. Similar deformations
have also been observed in the framework of GPDs in [19, 20].

6. Testing factorization in x and k⊥

In previous sections we have studied lat-

Figure 7: Unrenormalized data for Re Ã2(`2, `·P)
from up minus down quarks at mπ = 600MeV.

tice data for `·P = 0. Let us now explore the
`·P-dependence of Ã2(`2, `·P). The first in-
tegral in eq. (2.3) shows that it is related to
the Bjorken-x-dependence of f sW

1 (x,k⊥) via
a Fourier transformation. Figure 7 gives an
overview of the unrenormalized data avail-
able for Re Ã2 for up minus down quarks.
The sector with data points is constrained by
eq. (2.4) and the largest available nucleon mo-
mentum |~P| of about 500MeV. Figure 8 dis-
plays the `·P-dependence of the real and imag-
inary parts of Ã2 and reveals consistency of
our results with Ãi(`2, `·P) = Ã∗i (`

2,−`·P),
which follows from the transformation prop-
erty of the matrix element under Hermitian
conjugation.

In phenomenological applications, it is often assumed that f1(x,k⊥) factorizes into an x-
and a k⊥-dependent part, see, e.g., [21]. In our case, the hypothesis that f sW

1 is of the form
f sW
1 (x,k⊥) = f̂sW

1 (x) f (1)sW
1 (k⊥) translates into Ã2(`2, `·P) = Â2(`·P) Ã2(`2,0) using the Fourier

transform eq. (2.3). To test this hypothesis, we introduce a scaled amplitude

Â2(`2, `·P) ≡ Ã2(`2, `·P)
Re Ã2(`2,0)

. (6.1)

Note that renormalization factors cancel in this ratio. If factorization holds, Â2(`2, `·P) should
be `2-independent. We plot this quantity in Fig. 9a, selecting the imaginary part as an example.
No significant `2-dependence is visible, i.e., we confirm the factorization hypothesis within the
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accessible kinematic range and within our statistics. Given that Â2(`2, `·P) is approximately `2-
independent, we can plot it with respect to `·P as in Figs. 9b and 9c. It is interesting to see that the
result is qualitatively similar to the Fourier transform

∫
dxexp(i`·Px) f1(x) of a phenomenological

parametrization of the PDF f1(x), such as the one provided by CTEQ5 [22].

7. Conclusions and Outlook

Presently, we employ a straight Wilson line between the quark fields in the definition of TMD-
PDFs. We have shown first preliminary results from lattice QCD for the TMDPDFs f sW

1 and gsW
1T as

a function of transverse momentum. We find that densities of longitudinally polarized quarks in a
transversely polarized proton are deformed. Moreover, we confirm that the factorization hypothesis
f sW
1 (x,k⊥) = f̂sW

1 (x) f (1)sW
1 (k⊥) is valid within the statistics and kinematic region of our data set.

Concerning our renormalization procedure, further investigations are in progress. Further-
more, we would like to extend our work towards non-straight Wilson lines, similar to those appear-
ing in the definition of TMDPDFs for experimental processes such as SIDIS.
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on the (`2, `·P)-plane. (a): Real part. (b): Imaginary part. For the sake of clarity, we have
added offsets in the ordinate. The dashed lines indicate the respective zero lines.
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Figure 9: (a): Test of factorization for Im Ã2 at mπ ≈ 600MeV for up minus down quarks. The
statistical errors of the data points shown are correlated. No statistically significant devi-
ation from factorization (dashed lines) is visible.
(b) and (c): Â2(`2, `·P) for up minus down quarks plotted with respect to `·P. At each
value of `·P (indicated by color), results for a number of values of `2 are plotted. Small
offsets have been introduced for clarity. If factorization were strongly violated, the data
points at a given value of `·P would not lie close together. The dashed curve is a Fourier
transform of the CTEQ5M parton distribution function f1(x) [22] at a scale of Q2 =
(2GeV)2. The gray bands are polynomial fits to the lattice data. In (b), the fit function is
of the form 1+ c2(`·P)2 + c4(`·P)4, and in (c) it is of the form c1(`·P)+ c3(`·P)3.
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