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1. Introduction

We investigate the electromagnetic structure of compositesystems in the framework of rela-
tivistic quantum mechanics (RQM) in the case of high momentum transfer. The motivation of our
work is closely connected with the JLab 12 GeV Upgrade program. One of the most important
parts of this program is the investigation of the electromagnetic structure of composite systems
at high momentum transfer [1]. At low energies the electromagnetic structure of such systems is
described by well-known nonrelativistic methods. If energies increase, these methods fail and we
should use relativistic ones. In the case of the highest energies, perturbative QCD (pQCD) should
provide the most reliable description [2]. However, the question when pQCD starts to become valid
is still open.

Here we investigate the electromagnetic structure of the deuteron as the simplest nucleon-
nucleon system and the pion as the simplestqq̄ system. In future experiments of JLab the predicted
behaviour of the form factors is expected to coincide with pQCD predictions for both the deuteron
and the pion [1].

pQCD predictions are available for asymptotically high momentum transfers. So the region of
future JLab experiment could be considered as asymptotical. That’s why it is interesting to study
the asymptotics of the deuteron and pion form factors. In this paper the asymptotical regime of
the instant form of relativistic quantum mechanics [3, 4, 5]is investigated for the deuteron and the
pion.

2. Instant form of relativistic quantum mechanics

Let us describe briefly our model of relativistic quantum mechanics. In this section we also
present the derivation of the electromagnetic pion form factor (see also [3]).

The charge form factor of a pion can be obtained from the electromagnetic current matrix
element for a composite system in an arbitrary coordinate frame

〈pπ | jµ |p′π〉 = (pπ + p′π)µ Fπ(Q2), (2.1)

Fπ(Q2) – the electromagnetic form factor of the pion, describing the transition dynamics is an
invariant function, the four-vector(pπ − p′π)µ describes the geometric (transformation) properties
of the matrix element,pπ – the four-momentum of the pion.

In RQM the Hilbert space of composite particle states is the tensor product of single particle
Hilbert spaces:Hqq̄ ≡ Hq ⊗Hq̄ and the state vector in RQM is a superposition of two-particle
states. As a basis inHqq̄ one can choose the following set of vectors:

|~p1 ,m1; ~p2 ,m2〉 = |~p1 ,m1〉⊗ |~p1 ,m2〉 ,

〈~p ,m |~p ′ ,m′〉 = 2p0 δ (~p−~p ′)δmm′ , (2.2)

Here~p1 , ~p2 — are particle momenta,m1 , m2 — spin projections.
Since we consider the two-quark system as one composite system, the natural basis is one with

separated center-of-mass motion:

|~P,
√

s, J, l, S, mJ 〉 , (2.3)
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with Pµ = (p1 + p2)µ , P2
µ = s,

√
s — the invariant mass of two-particle system ,l — the angular

momentum in the center-of-mass frame,S — the total spin,J — the total angular momentum,mJ

— the projection of the total angular momentum.
The basis (2.3) is connected with (2.2) through the Clebsch –Gordan decomposition of the

Poincaré group [6].
Now the decomposition of the electromagnetic current matrix element for the composite sys-

tem (2.1) in the basis (2.3) has the form

(pπ + p′π)µ Fπ(Q2) = ∑
∫

d~P
NCG

d~P′

N ′
CG

d
√

sd
√

s′ 〈pπ |~P,
√

s,J, l,S,mJ〉

×〈~P,
√

s,J, l,S,mJ | jµ | ~P′,
√

s′,J′, l′,S′,mJ
′〉〈~P′,

√
s′,J′,′ ,S′,mJ

′|pπ
′〉 . (2.4)

Here the sum is over the discrete variables of the basis (2.3). 〈~P ,
√

s, J, l, S, mJ|pπ〉 is the compos-
ite system wave function,

〈~P ′,
√

s′, J′, l′, S′, m′
J| pπ〉 = Nπδ (~P ′−~pc)δJJ′δmJm′

J
δll′δSS′ ϕJ

lS(k) . (2.5)

s = 4(k2+M2) , M is the quark mass,Nπ ,NCG are factors due to normalization. The concrete form
of Nπ andNCG will not be used.

The basis (2.3) is the relativistic analogue of the basis of generalized spherical functions of
nonrelativistic quantum mechanics (see, e.g. [7]). In thisbasis the pion wave function is the
eigenfunction of the operatorŝJ2 , Ĵ3 , l̂2 as well as of the operator of the total spin squaredŜ2,
defined in an invariant way (see, e.g. [8]). All the operatorshave zero eigenvalues, because in
the pionJ = l = S = 0. The quark spin properties are taken into account in the basis (2.3) by the
corresponding Clebsh–Gordan decomposition.

In this approach we represent the pion electromagnetic formfactor in the relativistic impulse
approximation by the following integral form:

Fπ(Q2) =

∫

d
√

sd
√

s′ϕ(k)g0(s,Q
2,s′)ϕ(k′) . (2.6)

Here g0(s,Q2,s′) is the so called free two-particle form factor to be derived by the methods of
relativistic kinematics [6],ϕ(k) is a phenomenological wave function normalized with account of
the relativistic density of states [6]:

ϕ(k) = 4

√

4(k2 + M2)k u(k),
∫

dk k2u2(k) = 1 . (2.7)

Hereu(k) is a nonrelativistic wave function.
While obtaining (2.6) we do not use a fixed coordinate frame (for example, Breit frame) or

fixed ("good") current components, as one usually does in other RQM approaches [9]. In this
respect our calculations are Lorentz-covariant. Our current matrix element satisfies conservation
laws, so that the current operator of the composite system does not only contain the contribution of
one-particle currents, but of two-particle currents too [6].

The deuteron form factors could be obtained in the same way. They have the following form:

GC(Q2) = ∑
l,l′

∫

d
√

sd
√

s′ ϕl(s)gll′
0C(s ,Q2 ,s′)ϕl′(s

′) ,
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GQ(Q2) =
2M2

d

Q2 ∑
l,l′

∫

d
√

sd
√

s′ ϕl(s)gll′
0Q(s ,Q2 ,s′)ϕl′(s

′) , (2.8)

GM(Q2) = −Md ∑
l,l′

∫

d
√

sd
√

s′ ϕl(s)gll′
0M(s ,Q2 ,s′)ϕl′(s

′) .

Here ϕl(s), l, l′ = 0,2 are the deuteron wave functions in the sense of RQM,gll′
0i , i = C,Q,M are

the relativistic free two-particles charge, quadrupole, and magnetic form factors [10].

3. Deuteron form factors asymptotics

First, let us make some remarks about the deuteron wave functions used in (2.8). In modern
calculations the deuteron wave functions usually are of thefollowing analytic form in the momen-
tum representation (see, e.g., Refs. [11, 12, 13]):

u0(k) =

√

2
π ∑

j

C j

(k2 + m2
j)

, u2(k) =

√

2
π ∑

j

D j

(k2 + m2
j)

, (3.1)

or in the coordinate representation:

u0(r) = ∑
j

C jexp(−m j r) , u2(r) = ∑
j

D jexp(−m j r)

[

1+
3

m j r
+

3
(m j r)2

]

, (3.2)

herem j = α + m0( j−1) , α =
√

M |εd|, M is the average nucleon mass,εd – the binding energy
of the deuteron. The coefficientsC j, D j, the maximal value of the indexj andm0 are determined
by the best fit of the corresponding solution of the Schrödinger equation.

The standard behavior of the functions at short distances:

u0(r) ∼ r , u2(r) ∼ r3 , (3.3)

is provided by imposing the following conditions on the coefficients in (3.2):

∑
j

C j = 0 , ∑
j

D j = ∑
j

D jm
2
j = ∑

j

D j

m2
j

= 0 . (3.4)

Now let us turn to the asymptotics. In our paper [14] we obtainthe asymptotic series for the
deuteron form factors. The main asymptotic term for the deuteron form factor

Fd(Q2) =
√

G2
C(Q2)+ 8

9η2G2
Q(Q2)+ 2

3η G2
M(Q2) has the form:

Fd(Q
2) ∼ 1

(Q2)4 . (3.5)

Let us compare the obtained asymptotic predictions with experimental data. Fitting the existing
experimental points for the seven highest attained values of momentum transfer [15] in the region
3.040–5.955 (GeV/c)2 by a power-law function we obtain the following estimate forEq. (3.5) with
a normalizedχ2 = 1.34:

Fexp
d (Q2) ∼ 1

(Q2)3.76±0.41 . (3.6)
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So, comparing Eqs. (3.5) and (3.6) one can see that up to fitting accuracy, the experimental data
are described by the relativistic formula (3.5).

Let us note that this result does not depend on the actual model of the NN-interaction and in
fact is due to the general conditions (3.3) and (3.4) only. So, in the recent JLab experiments the
range of momentum transfers, which can be characterized as an asymptotic one for our relativistic
two-nucleon model of deuteron, is reached. Let us emphasizethat this concerns our relativistic
approach only. For example, in the relativistic approach ofRef. [16] the asymptotic decrease is
faster than the experimental one and even faster than that ofthe quark-counting prediction.

Let us compare our results with those of the quark approach and of QCD in more detail. At
Q2 → ∞ there exists the well established prediction in the framework of these approaches [17, 18]:

Fd(Q
2) ∼ Q−10 . (3.7)

As one can see, this prediction does not agree with the current experiment (3.6). So let us discuss
the possibility to incorporate the QCD predictions in the nucleon–nucleon dynamics. We formulate
the problem in the following way: what kind of behavior at small distances should the deuteron
wave function have, or, in other words, how has the nucleon-nucleon potential at short distances to
be modified, in order to obtain the asymptotic behavior of theelectromagnetic deuteron form factors
predicted by QCD? The answer can be obtained easily and the analysis shows that the quark-model
asymptotic behavior could be derived in the nucleon dynamics formalism if in addition to the
conditions (3.4) for thes-wave function (3.1) the following condition is imposed:

∑
j

C jm
2
j = 0 . (3.8)

This condition means that in the vicinity of zero the wave function has the following form:

u0(r) ∼ r + ar3 , u′′0(0) = 0 . (3.9)

So, we have solved some kind of inverse problem: we found a condition for the deuteron
wave function to give the asymptotic behavior of the deuteron electromagnetic form factors (in the
framework of the two-nucleon model of deuteron) given by thequark approach.

4. Pion form factor asymptotics

The main asymptotic term for the electromagnetic pion form factor in the relativistic con-
stituent quark model is of the following form:

Fπ(Q2) ∼ 25/2M
Q

e−
QM
4b2 . (4.1)

Here the quark massM andb are parameters of the constituent quark model [3]. Let us note, that
this formula is obtained for structureless quarks. In our relativistic approach it is possible to take
into account quark structure by introducing quark form factors [3]. But quark form factors don’t
influence the decrease of the pion form factor, they just add logarithmic corrections. So in this
paper we will work with structureless quarks.
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We also present the main asymptotic term in the small quark-mass limit:

Fπ(Q2) ∼ 14
√

2b2

Q2 . (4.2)

In eπ scattering in the case of low momentum transfer, the electron interacts not only with the
constituent quarks but also with the sea-quarks cloud, so with an object of bigger mass. But if
the energy is increased this cloud becomes smaller and smaller for the electron. So asymptotically
high momentum tranfers lead us to asymptotically small quark masses. One can see that the main
asymptotic term coincides with the pQCD predictions (Fπ(Q2) ∼ 1/Q2).

5. Conclusion

JLab predicts the pQCD-coinciding behavior of form factorsof the deuteron and pion in future
experiments. In our work we show that this behavior could be obtained in a relativistic two-nucleon
model for the deuteron and a relativistic constituent-quark model for the pion with some restric-
tions.
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