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The exactly solvable Federbush model, describing two species of massive fermions with vector
current – axial-vector current interaction in two dimensions, is studied in terms of light front (LF)
space-time and field variables using Hamiltonian framework. The aim is to compare vacuum
states and correlation functions constructed from known operator solutions of the field equations
with those of the conventional space-like (SL) form of the theory. As a prerequisite, SL and LF
treatment of free massive fermion fields is compared and the necessity to replace usual Wick or-
dering by the "triple-dot ordering" is briefly mentioned within the nonperturbative bosonization of
Lehmann and Stehr. Here the main mathematical subtlety is a correct mathematical definition of
the exponential function of the functional bilinear in fermion Fock operators. In order to gain an
insight to the vacuum structure at a simpler level, the massless Thirring model in the Klaiber’s for-
mulation is re-analyzed and its physical vacuum is derived using the Bogoliubov transformation
similar to the transformation proposed by Mattis and Lieb in the case of the Luttinger model.
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1. Introduction

There exist striking differences between the conventional space-like (SL) and light-front (LF)
forms of field theories. This is true for the mathematical structure as well as for some physical
aspects (number and nature of field variables, structure of the Poincare algebra, status of the vacuum
states, etc.). What is the relation between the two formulations of quantum field theory (QFT)?

An indication is provided by the perturbative analysis of the Yukawa model [1] which showed
that LF Fock operators are represented as complicated superpositions of the creation and annihila-
tion operators of the SL theory. It would be desirable to verify and extend this picture nonperturba-
tively. This is a highly non-trivial task due to a very complicated mathematical structure of realistic
QFT models. A useful idea could be to study exactly soluble models where operator solutions of
the field equations are known and the nonperturbative (NP) correlation functions can be calculated.
Thus, the role of the vacuum state and of the operator part in both schemes can be compared.

The sketched program is far from being trivial in view of surprising complexities found in
exactly solvable SL models (nonperturbative bosonization [2], Federbush correlation functions [3]).

The LF formulation of these models seems to be much simpler, first of all due to the simpli-
fied vacuum state. A possible but highly improbable explanation is that the LF formulation is an
inconsistent scheme. Perhaps some mistakes have been done in the SL theory: why the correlation
functions have been calculated using the Fock vacuum |0〉 [4, 3]? This state is not an eigenstate of
the full Hamiltonian and hence it cannot be the true ground state! On the other hand, the LF Fock
vacuum is often the physical ground state, i.e. the eigenstate of Hamiltonian with minimal energy.

In the present contribution, the search of the relationship (a " bridge") between the LF and SL
forms of QFT is started in the area of soluble models where one can get complete NP answers and
see in details how each scheme works. One of the main ideas will be to write the SL Hamilto-
nian in terms of composite boson operators. In this way, the interacting terms become bilinear and
could be in principle diagonalized by means of a Bogoliubov transformation. Then the true lowest-
energy eigenstate will be a transformed Fock vacuum (an exponential state) and the correlation
functions should be calculated as its expectation values. The massless Thirring model and (mas-
sive) Federbush model will be analyzed in this way. Since some related mathematical complexities
(a correctly defined exponential function of a functional bilinear in fermion Fock operators) were
studied within the NP bosonization of the free massive SL fermion field [2], its simplified treat-
ment along with the LF version is discussed, too. The hope is that one can eventually arrive at a
reconciliation of the physical contents of the SL and LF forms of two dimensional models.

2. Free massive fermion fields in D=1+1

The Lagrangian of the free massive fermion field in D=1+1 and the general solution of its
Dirac equation

(
iγµ∂µ −m

)
ψ(x) = 0 with 2×2 matrices γµ = (γ0 = σ1,γ

1 = iσ2),α = γ0γ1, is

L =
i
2

ψγ
µ
↔
∂µ ψ−mψψ, ψ(x) = N

∫
d2 pδ (p2−m2)a(p)u(p)e−ip.x. (2.1)

After p0 integration and reinterpretation of negative-energy solutions, it takes the form

ψ(x) =
∫ d p√

2π

[
b(p)u(p)e−ip̂.x +d†(p)v(p)eip̂.x], p̂.x = E(p)t− px, E(p) =

√
p2 +m2 (2.2)
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with the Fock anticommutators
{

b(p),b†(q)
}

=
{

d(p),d†(q)
}

= δ (p−q). The "spinors" are

u(p) =
1√

2E(p)

(√
p−√
p+

)
, v(p) =

1√
2E(p)

(
−
√

p−√
p+

)
, p± = E(p)± p. (2.3)

The currents jµ(x) =: ψ(x)γµψ(x) := (ψ†ψ,ψ†αψ), jµ

5 (x) =: ψ(x)γµγ5ψ(x) := ( j1, j0),

j0(1)(x) =
1

2π

+∞∫
−∞

dp
+∞∫
−∞

dq
{

f1(2)(p,q)
[
b†(p)b(q)ei(p̂−q̂).x−d†(q)b(p)e−i(p̂−q̂).x]

+ f2(1)(p,q)
[
b†(p)d†(q)ei(p̂+q̂).x−b(q)d(p)e−i(p̂+q̂).x]}

contain the kinematical functions f1, f2 coming from the nontrivial spinor structure:

f1(2)(p,q) =
1

2
√

E(p)E(q)

[√
p+q+±

√
p−q−

]
. (2.4)

The free-field commutator at unequal times can be straightforwardly calculated,[
jµ(x), jν(y)

]
=−i : ψ(x)γµS(x− y)γν

ψ(y) : + i : ψ(y)γνS(y− x)γµ
ψ(x) :

+Tr
{

S(−)(x− y)γνS(+)(y− x)γµ −S(−)(y− x)γµS(+)(x− y)γν
}
. (2.5)

The fermionic two-point functions S(x− y) = S(+)(x− y)+S(−)(x− y), with z = x− y, are

S(±)(z) =
i

2π

(
iγµ

∂
x
µ +m

)∫
d2 p δ (p2−m2)θ(±p0)e±ip.z =

i
4π

∫ d p
E(p)

(
m p−

p+ m

)
e±ip̂.z. (2.6)

At x0 = y0, the last term in (2.5) is the c-number term,
[

j0(0,x), j1(0,y)
]
= i/π∂x δ (x− y). Does

the LF theory agree with the result (2.5) and the above Schwinger term?
The Lagrangian (2.1) takes in terms of the LF fermionic field components ψ2 and ψ1 the form

Ll f = iψ†
2

↔
∂+ ψ2 + iψ†

1

↔
∂− ψ1−m(ψ†

2 ψ1 +ψ
†
1 ψ2), (2.7)

We are using the representation where γ5 = diag(1,−1). The LF Dirac matrices γ± = γ0± γ1

satisfy the algebra γ+γ−+ γ−γ+ = 41̂ which allows one to define projectors Λ± = 1/4γ∓, Λ+ +
Λ− = 1̂ leading to the LF form (2.7) of the Lagrangian. The Dirac equation separates into two
equations – the dynamical for ψ2 and the non-dynamical for the ψ1 component, 2i∂+ψ2(x) =
mψ1(x), 2i∂−ψ1(x) = mψ2(x). The latter can be inverted to express ψ1 in terms of ψ2:

ψ1(x) =
m
2i

∂
−1
− ψ2(x) =

m
4i

∫ +∞

−∞

dy−ε(x−− y−)ψ2(x+,y−). (2.8)

Evidently, the matrix and "spinor" structure plays only a marginal role in the LF case, simplifying
the picture considerably, while the matrix algebra in the SL case is in principle as complicated as in
3+1 dimensions. The LF description is more adequate because there is no spin in one space dimen-
sion and the whole machinery of the spinors and matrices is redundant. The fermionic character of
ψ field is maintained (two components, anticommutators instead of commutators).
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The field expansion, with p̂.x = 1
2 p+x−+ 1

2 p̂−x+, p̂− = m2

p+ ,

ψ =

(
ψ1

ψ2

)
=

∞∫
0

dp+

2
√

2π

[( m
p+

1

)
b(p+)e−ip̂.x +

(
− m

p+

1

)
d†(p+)eip̂.x], (2.9)

leads to the currents

j+(−)(x) = 2 : ψ
†
2(1)(x)ψ2(1)(x) := 2

∞∫
0

dp+

2
√

2π

∞∫
0

dq+

2
√

2π

( m2

p+q+

)[
b†(p+)b(q+)ei(p̂−q̂).x−

−d†(q+)d(p+)e−i(p̂−q̂).x±b†(p+)d†(q+)ei(p̂+q̂).x∓b(q+)d(p+)e−i(p̂+q̂).x]. (2.10)

One reproduces the commutation relation (2.5). For example, we get[
j+(x), j+(y)

]
= 4 :

[
ψ

†
2 (x)ψ2(y)−ψ

†
2 (y)ψ(x)

]
:
[
S22(z)+S∗22(z)

]
+4
[
S2

22(z)−S∗222(z)
]

(2.11)

where S22 is the two-point function, S22(x− y) = 〈0|ψ(x)ψ†(y)|0〉 = 1/8π
∫

∞

0 d p+e−ip̂.(x−y−iε) of
the dynamical component. The small imaginary part ±iε is crucial for convergence of the integral
and for the correct equal LF time limit of (2.11) – the correct c-number Schwinger term is obtained:

S22(δ ,x−− y−) =− m
4π

√
iδ

x−− y−− iε
K1
(
m
√

iδ (x−− y−− iε)
)

=− 1
4π(x−− y−− iε)

,

S2
22(δ ,x−− y−)−S∗222(δ ,x−− y−) =

(−i
4π

)2 1
(x−− y−− iε)2 −

( i
4π

)2 1
(x−− y−+ iε)2 =

=
( i

4π

)2
∂

x
−

[ 1
x−− y−− iε

− 1
x−− y−+ iε

]
=

i
8π

∂
x
−δ (x−− y−). (2.12)

3. Non-perturbative bosonization of Lehmann and Stehr

A bosonization of free massive fermion, more general than the perturbative approach of Cole-
man, was formulated in [2]. It starts from the "integrated current" σ(x) defined by

j0(x) =
1√
π

∂1σ(x), j1(x) =− 1√
π

∂0σ(x) ⇒ σ(x) =
√

π

∫ x1

−∞

dξ : ψ
†
ψ : (x0,ξ ). (3.1)

Due to ∂µ jµ

5 = 2imψγ5ψ , it satisfies ∂µ∂ µσ(x) = 2im
√

π : ψγ5ψ :. The task is to find the rhs of
the latter equations in terms of σ(x). The main object of the study is Eλ (x) =

.
: exp

(
2
√

πiλσ(x)
).
:

regularized by the "triple-dot ordering" [5]. The usual normal ordering is not sufficient for bilinears
due to extra divergences. Powers in the expansion are defined in terms of

.
: σ(x1) . . . σ(xn)

.
: = σ(x1) . . .σ(xn)−

n

∑
r=1

∑
P
〈σ(xi1) . . .σ(xir)〉0

.
: σ(x j1) . . .σ(x jn−r)

.
: . (3.2)

as
.
: σn(x)

.
: = limx1,...,xn→x

.
: σ(x1) . . .σ(xn)

.
:. The first sum indicates partitions of indices 1, . . .n

into disjoint subsets with i1 < i2 < .. . < ir, j1 < j2 < .. . jn−r. The final results are

: ψψ :=− m√
π

.
: σ sin(2

√
πσ)

.
:, : ψγ

5
ψ :=

im√
π

.
: σ [cos(2

√
πσ)−1]

.
: . (3.3)

The analysis shows that the LF version is much simpler due to the simplified spinor structure.
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4. Klaiber’s formulation of the massless Thirring model

The massless Thirring model is defined by the Lagrangian density and the field equations

L =
i
2

Ψγ
µ
↔
∂µ Ψ−gJµJµ ,

iγµ
∂µΨ(x) =−gJµ(x)γµΨ(x), Jµ = Ψγ

µ
Ψ, ∂µJµ(x) = 0. (4.1)

The solution is given in terms of the integrated current j(x) and the free field γµ∂µψ(x) = 0:

Ψ(x) = ei(g/
√

π) j(x)
ψ(x), jµ(x) =

1√
π

∂µ j(x), Jµ(x) = jµ(x). (4.2)

Free fields define the solution of the interacting model. The expansion of the ψ field is

ψ(x) =
1√
2π

∫
d p1{b(p1)e−ip.x +d†(p1)eip.x}u(p1), p0 = |p1|

{b(p1),b†(q1)}= {d(p1),d†(q1)}= δ (p1−q1), b(k1)|0〉= d(k1)|0〉= 0. (4.3)

The spinor u(p1) satisfies (γ.p)u(p1) = 0, where u†(p1) =
(
θ(−p1),θ(p1)

)
. Vector current can

be represented in terms of composite operators c(k),c†(k), having the property c(k)|0〉= 0, as

jµ(x) =− i√
2π

∫ dk1
√

2k0
kµ
{

c(k1)e−ik.x− c†(k1)eik.x},
c(k1) =

i√
k0

∫
d p1{

θ
(

p1k1)
)[

b†(p1)b(p1 + k1)−d†(p1)d(p1 + k1)
]
+

+θ
(

p1(p1− k1)
)
d(k1− p1)b(p1)

}
⇒

[
c(p1),c†(q1)

]
= δ (p1−q1). (4.4)

Large part of the paper is devoted to the infrared regularization and to verification of basic proper-
ties (Poincar’e invariance, locality) of the regularized n-point correlation functions. They are based
on the normal ordered operator solution Ψ(x) = e(ig/π) j+(x)ψ(x)e(ig/π) j−(x). Hamiltonian was never
mentioned. It has the simplest form in terms of the operators c(k),c†(k):

Hint =
g
π

∫ +∞

−∞

dk|k|
[
c(k)c(−k)+ c†(k)c†(−k)

]
. (4.5)

Obviously |0〉 is not an eigenstate of H = H0 + Hint . If some unitary U(γ) diagonalizes H, then
U(γ)HU−1(γ)|0〉 = 0 and U−1(γ)|0〉 will be the physical vacuum state. In fact, a Bogoliubov
transformation similar to that used in [7] for the Luttinger model does diagonalize the Hamiltonian.
The main idea can be illustrated with two degrees of freedom c†

1,c
†
2. Choose new operators C†

1 ,C
†
2

C†
1 = uc†

1− vc2, C1 = u∗c1− v∗c†
2, C†

2 =−vc†
1 +uc2, C†

2 =−v∗c1 +u∗c†
2. (4.6)

Requiring that C1,C2 satisfy the original commutation relations, we find u = coshγ, v = sinhγ .

This transformation can be realized in terms of a unitary operator U(γ) = eγ

[
c†

1c†
2−c2c1

]
:

U(γ)c†
1U−1(γ) = c†

1 coshγ− c2 sinhγ, U(γ)c†
2U−1(γ) =−c†

1 sinhγ + c2 coshγ. (4.7)

Generalization to infinite number of degrees of freedom is simple: work with γ(p) and require that
the non-diagonal terms in transformed Hint vanish. Knowing U(γ(p)), the true vacuum is

|vac〉= U−1(γ(p))|0〉. (4.8)

One has to calculate the correlation functions using this ground state.
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5. Federbush model

The Lagrangian of the Federbush model [6]

L =
i
2

Ψγ
µ
↔
∂µ Ψ−mΨΨ+

i
2

Φγ
µ
↔
∂µ Φ−MΦΦ−gεµν jµJν , ε

µν =−ε
νµ , ε

01 = 1. (5.1)

describes two species of the fermion field interacting via specific current– current coupling, where
jµ = ΨγµΨ, Jµ = ΦγµΦ. Unlike the closely related massive Thirring model, Federbush model
is exactly soluble at the level of operator solutions of the field equations. Using the previous two-
component spinors in the chiral representation, the coupled field equations

2i∂+Ψ2(x) = mΨ1−gJ−Ψ2, 2i∂−Ψ1 = mΨ2 +gJ+
Ψ1,

2i∂+Φ2(x) = MΦ1 +g j−Φ2, 2i∂−Φ1 = MΦ2−g j+Φ1. (5.2)

are solved in terms of the corresponding free fields and the integrated currents:

Ψ(x) = e
ig√
π

Σ(x)
ψ(x), Φ(x) = e−

ig√
π

σ(x)
ϕ(x), (5.3)

σ(x) =
√

π

4

+∞∫
−∞

dz−ε(x−− z−) j+(x+,z−), Σ(x) =
√

π

4

+∞∫
−∞

dz−ε(x−− z−)J+(x+,z−). (5.4)

The field expansions and the quantization conditions at x+ = 0 read:

ψ2(x) =
∞∫

0

dp+

2
√

2π

[
b(p+)e−ip̂.x +d†(p+)eip̂.x], ϕ2(x) =

∞∫
0

dp+

2
√

2π

[
a(p+)e−ip̂.x + c†(p+)eip̂.x],

{
ψ2(0,x−),ψ†

2 (0,y−)
}

=
{

ϕ2(0,x−),ϕ†
2 (0,y−)

}
=

1
2

δ (x−− y−). (5.5)

In Fock representation, the operators (5.4) are expressed in terms of the currents (2.10) as

σ(x) = i2
√

π

∞∫
0

dp+

2
√

2π

∞∫
0

dq+

2
√

2π

[b†(p+)b(q+)
p+−q+ ei(p̂−q̂).x +

d†(q+)d(p+)
p+−q+ e−i(p̂−q̂).x +

+
b†(p+)d†(q+)

p+ +q+ ei(p̂+q̂).x +
b(q+)d(p+)

p+ +q+ e−i(p̂+q̂).x], (5.6)

and similarly for Σ(x). The LF and SL Hamiltonians of the model have a different structure:

P− =
+∞∫
−∞

dx
{

m
[
Ψ

†
1(x)Ψ2(x)+Ψ

†
2(x)Ψ1(x)

]
+M

[
Φ

†
1(x)Φ2(x)+Φ

†
2(x)Φ1(x)

]}
,

Hint =−g
+∞∫
−∞

dx
(

j0(x)J1(x)− j1(x)J0(x)
)
. (5.7)

Hint consists of sixteen four-fermion terms of the form F6(p,q,r)b†(p)d†(q)a†(r)c†(−p− q− r),
F6(p,q,r) = f2(p,q) f2(r,r− p−q)− f1(p,q) f1(r,r− p−q), e.g. Let us try to transform the Hamil-
tonian (5.7) to a bilinear form analogously to the Thirring model. For the operator B we get, writing

j0(x) =
∫ +∞

−∞

dk
2π

[
B(k, t)eikx +B†(k, t)e−ikx

]
, j1(x) =

∫ +∞

−∞

dk
2π

[
D(k, t)eikx +D†(k, t)e−ikx

]
J0(x) =

∫ +∞

−∞

dk
2π

[
A(k, t)eikx +A†(k, t)e−ikx

]
, J1(x) =

∫ +∞

−∞

dk
2π

[
C(k, t)eikx +C†(k, t)e−ikx

]
(5.8)

6
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B(k, t) =
∫ +∞

−∞

d p
{

θ
(
kp
)[

f1(p, p+ k)
(

b†(p)b(p+ k)−d†(p)d(p+ k)
)

ei(E(p)−E(p+k))t −

− f2(−p, p+ k)
(

b(−p)d(p+ k)+d(−p)b(p+ k)
)

e−i(E(p)+E(p+k))t
]
+

+θ
(

p(k− p)
)[

f2(p,k− p)d(p)b(k− p)e−i(E(p)+E(k−p))t +

+
1
2

f1(p, p− k)
(

b†(p− k)b(p)−d†(p− k)d(p)
)

ei(E(p−k)−E(p))t
]}

(5.9)

and similarly for the operators A,C,D. The Hamiltonian becomes bilinear:

Hint =− g
π

∫ +∞

−∞

dk
[
B†(k)C(k)+C†(k)B(k)+B†(k)C†(−k)+B(k)C(−k)

−A†(k)D(k)−D†(k)A(k)−A†(k)D†(−k)−A(k)D(−k)
]
. (5.10)

For its diagonalization by a Bogoliubov transformation, one has to know the commutators like
[B(k),B†(l)], e.g. Will the correlation functions simplify when calculated with the physical vacuum
obtained from the diagonalization? They were found to be surprisingly complicated [3]. Indeed,
the SL operator solutions ΨI(II)(x) =

.
: exp

[
∓2π1/2igσ I(II)(x)

] .
: ψ I(II)(x) yield for example

〈: ψ
II†
2 (x)ψ II

1 (x) :
.
: exp

[
−2π

1/2igσ
II(0)

] .
:〉0 =

=
2msinπg

π2 K2
g
(
m(−x2)1/2)− 2msinπg

π2

∞∫
0

cosh(2g−1)β
coshβ

K0
(
2m(−x2)1/2 coshβ

)
dβ .(5.11)

To summarize, soluble massive models in two dimensions represent a good testing ground for
a detailed comparison of the structure of the SL and LF field theory. To accomplish this goal, one
has to find the true ground state of the SL versions of the models. The next step will be to de-
rive commutators between the composite operators B,B†,C,C† . . ., to diagonalize the Hamiltonian
(5.10) and to calculate the correlation functions of the type (5.11) using the found nonperturbative
vacuum. A similar treatment can be applied to the derivative-coupling model of Schroer [8].
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