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Weakly interacting massive particles (WIMPs) can be captured by heavenly objects, like the Sun.

Under the process of being captured by the Sun, they will build up a population of WIMPs around

it, that will eventually sink to the core of the Sun. It has been argued with simpler estimates

before that this halo of WIMPs around the Sun could be a strongenough gamma ray source to be

a detectable signature for WIMP dark matter. We here revisitthe problem using detailed Monte

Carlo simulations and detailed composition and structure information about the Sun to estimate

the size of the gamma ray flux. Compared to earlier estimates,we find that the gamma ray flux

from WIMP annihilations in the Sun halo would be negligible and no current or planned detectors

would even be able to detect this flux.
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The WIMP halo around the Sun Sofia Sivertsson

1. Introduction

1.1 Previous work

Earlier estimates of this signal made by Strausz in 1998 showed that this gamma ray signal
would be detectable or, if no such signal is seen, constrain parameters in the WIMP model [1].
Hooper revisited the problem in 2001 and found the gamma ray signal to be many orders of magni-
tude lower, too low to be detectable with realistic telescope areas [2]. In 2003 Fleysher performed
a slightly more detailed calculation and found even higher rates than Strausz [3]. Also, the Milagro
detector has made a search for this gamma ray signal in 2004 without any success [4].

The aim of this work is to make a much more detailed analysis ofthe WIMP density around
the Sun in order to achieve a more accurate estimate of the gamma ray signal at earth.

1.2 The WIMP capture process

For the Milky Way having a smooth WIMP halo, some fraction of the WIMPs passing through
the Sun will scatter off nuclei in the Sun. If enough energy islost in the scatter the WIMP becomes
unable to escape the Sun’s gravitational well and ends up in some orbit around the centre of the
Sun. These bound WIMPs will eventually scatter again and as this energy loss continues the WIMP
will eventually end up in an orbit which is completely hiddeninside the Sun.

The WIMPs are typically much heavier than the nuclei they scatter off, giving small energy
losses in each scatter, and hence often require a large number of scatters before the WIMP is
completely hidden inside the Sun. Also, the smallness of thescatter cross section typically makes
a bound WIMP survive many passages in the sun before it scatters again. Due to this the capture
process typically takes quite long time and all these intermediate bound WIMPs orbiting the Sun
will give rise to an overdensity of dark matter, i.e. a WIMP halo around the Sun.

WIMP annihilations within this halo give rise to high energygamma rays benefiting from a
very low background since the Sun does not emit photons with such high energies. Also, the Sun
is opaque to gamma rays and hence shields against the diffusegamma ray background.

2. Calculation of the density of the Sun’s WIMP halo.

The WIMP density around the Sun is calculated using a Monte Carlo simulating the capture
process of a large number of WIMPs, in combination with analytic calculations. The Monte Carlo
takes the full properties of the WIMP orbits into account andis constructed as described in the
following text.

2.1 The WIMPs’ first scatter in the Sun

In the relevant work by Gould [5] the total number of WIMPs scattering at a given radius in
the Sun per unit time and velocity is determined. The WIMPs inthe Milky Way halo are assumed
to have Maxwell-Boltzmann distributed velocities with thevelocity dispersion ¯v = 270 km/s. For
a smooth halo the WIMP density in our region of the Milky Way is0.3 GeV cm−3.

Using the work by Gould and the kinematic laws of elastic scatter, taking into account cross
section dependence on energy loss in the scatter, one can derive the energy distribution of the
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scattered WIMPs after their first scatter in the Sun, given asa function of where in the Sun the
scatter took place. Energy here refers to the WIMPs total energy (kinetic plus potential) and the
scattered WIMP is hence captured if scattered to an energy less than zero. Integrating this energy
distribution after the WIMPs’ first scatter over energies less than zero yields the total capture rate
of WIMPs in the Sun. The total capture rate has also been calculated in DarkSUSY [6] for various
parameter settings and is in excellent agreement with our result.

2.1.1 The captured WIMPs after their first scatter

To continue the calculation from this point it is required tostart looking at individual WIMPs,
e.g. to write a Monte Carlo. In the Monte Carlo the starting point is to pick an energy and a scatter
radius according to the distribution discussed above. Due to the spherical symmetry of the Sun the
velocities of the scattered WIMPs are assumed to be isotropic in directions, also the smallness of
the scatter probability makes it effectively equally probable for a WIMP to scatter on its way out
as on its way in through the Sun. Randomly picking the direction which the WIMP scatters to then
gives, together with the energy and place of scatter, the angular momentum of the WIMP’s new
orbit.

The energy and angular momentum, together with the gravitational potential, fully specifies
the orbit of the bound WIMP. Outside the Sun the orbits are truly elliptical and the density contribu-
tion from one lap in the given orbit is then determined by how much time a particle in an elliptical
orbit spends at different distances from one of the foci.

To determine the WIMP’s total contribution to the dark matter density before it scatters again
the scatter probability as the WIMP traverses the Sun is required. In calculating the scatter proba-
bility for a solar passage we take into account that the orbits are not truly elliptical inside the Sun.
The true orbit are slightly more stable since they do not comeas close to the centre of the Sun as
a perfect ellipse would. Also, it is taken into account that for scatter off heavier nuclei the scatter
cross section depends on the energy loss in the scatter, which depends on the WIMP velocity and
hence the radius of the scatter.

2.2 Subsequent scatters

The radius of scatter of the bound WIMP is picked according tothe distribution required
for the total scatter probability and after this the type of element which the WIMP scatters off is
determined. The WIMP’s energy loss in the scatter is then determined and the new orbit is specified.
The density contribution from this new orbit is added to the total WIMP density and the whole
process is repeated as the WIMP is scattered again and again until complete solar entrapment.
The capture process is simulated for a large number of WIMPs and then normalized with the total
capture rate.

3. Results

The Monte Carlo simulations of around one million captured WIMPs yields the WIMP number
density around the Sun as shown in Figure 1. Which elements inthe Sun the WIMPs scatter off
depends on the cross section configuration, here both the cases of spin dependent,σSD, and spin
independent,σSI, cross sections being dominant have been studied.
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Figure 1: The line number density of WIMPs around the Sun with spin dependent cross section being
dominant (only scatters off hydrogen) and the spin independent cross section being dominant, respectively.
In the left graphσSD = 10−3 pb andσSI = 0 pb, andσSD= 0 pb andσSI = 10−5 pb for the right. The dashed
curves are the fits described by Eq (3.1).

As shown in the graphs in Figure 1 the WIMP number density can be well approximated by

nSD
= 1025.21−1.015x

(

r
r⊙

)−0.48

m−1

nSI
= 1023.71−0.2332x−0.1056x2

(

r
r⊙

)−0.40

m−1 (3.1)

with x = log10

(mWIMP

1 GeV

)

.

For the simple choice of WIMP annihilation cross section ofσv = 10−32 m3s−1 and number
of gamma rays produced per WIMP annihilation to beNγ = 20, independent of WIMP mass. The
gamma ray flux at Earth is then, for some WIMP masses, given in Table 1.

mWIMP = 100 GeV mWIMP = 1 TeV mWIMP = 10 TeV

σSD = 10−3 pb,σSI = 0 4.0·10−19 3.7·10−21 3.5·10−23

σSD = 0, σSI = 10−5 pb 8.4·10−20 2.5·10−21 2.9·10−23

Table 1: The total flux (photons per m2 per second) at Earth of gamma rays from the Sun’s WIMP halo.

The WIMP annihilation rate is much lower than the capture rate and hence has no significant
impact on the WIMP density. As one might have noticed the density of the WIMP halo is inde-
pendent of the magnitude of the scatter cross section. A lower scatter cross section makes the Sun
less capable of capturing WIMPs but on the other hand the capture process takes longer since it
makes the WIMP orbits more stable. These two effects exactlycancel except for very small scatter
cross sections where the finite age of the Sun starts to becomeimportant. For example looking at
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100 GeV WIMPs withσSD = 10−3 pb andσSI = 0, a reduction of the scatter cross section by five
orders of magnitude lowers the WIMP density in the region close to the Sun by roughly 20% due
to the finite age of the Sun.

4. Discussion

Part of the reduction of the gamma ray signal for the heavy WIMPs in Table 1 is an artifact of
the assumption ofNγ being independent of the WIMP mass. Heavy WIMPs are more difficult for
the Sun to capture but they also require more scatters to be trapped inside the Sun. Heavy WIMPs
with low scatter cross sections are hence potentially more sensitive to the finite age of the Sun.

In this calculation the effects of the planets of our solar system have not been taken into
account. The planets can accelerate and throw orbiting WIMPs out of the solar system. WIMPs
orbiting the Sun can also be disturbed in such a way that theirorbits no longer intersect the Sun,
making them more stable but eventually also thrown out. Boththese effects will, if they are of
any significance, reduce the number of WIMPs reaching the lowenergy orbits. The gamma ray
production is dominated by the region close to the Sun, wherethe low energy orbits are the most
important, since orbits of higher energies spend very little time close to the Sun.

The gamma ray signal, as seen in Table 1, is truly very low. Thecalculated flux corresponds
to, at best, less than one gamma photon per 100 km2 per century, which is hardly ever detectable.
For the heavy WIMP scenario the high energy gamma rays could in theory benefit from the large
area of air Cherenkow telescopes, however these cannot looktowards the Sun since the light from
the Sun would spoil the Cherenkow light signal. Other telescopes, such as Fermi and Milagro,
have way to small surface areas. The unfortunate conclusionis hence that this signal will not be
observable now nor in the foreseeable future.

The low signal in this work contradicts the result by Strausz[1]. The analysis by Strauss is
not as detailed as the work here, he assumes one-dimensionalorbits and treats the WIMP orbit
properties in an average sense. However, those simplifyingassumptions should not in themselves
cause such a large disagreement and the origin of this disagreement is not clear. Our conclusion
agrees with the more estimative calculation by Hooper [2] even though our concluded gamma ray
flux is slightly lower than his.
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