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QCD Thermodynamics Carleton DeTar

1. Introduction

At an early stage the universe was very likely a quark-gluon plasmaedwyhion colliders
we seek to recreate this state of matter and study its properties. Lattice gaogge ithideally
suited for the fully nonperturbative study of quantum chromodynamicemceohditions close to
thermal equilibrium. The insights gained from lattice simulations can be extragdlateugh
hydrodynamic modeling to the quasi-equilibrium expansion of the plasma. Imwthyslattice
calculations provide crucial assistance in the interpretation of experimestats [LL].

The baryon density was essentially zero in the early universe. At higitdes, even at low
temperature, popular tradition predicts that hadronic matter is also in a demdpiiasma state.
At still higher densities even more unusual phases, such as a colorteked phase have been
proposed[[2]. For technical reasons, such high densities are thélyemeach of lattice simulations
using standard methods. At least we can hope to simulate matter at the low ddoaitie in heavy
ion collisions.

In this talk | consider only progress in calculations at zero baryon numéesity. In the
companion talk Shinji Ejiri describes developments in nonzero density catmgd3].

Here are highlights of recent advances at zero baryon density, Wividlcover in this talk:

e HotQCD study. A high statistics study is being carried out on the IBM BlueGdrthe
Lawrence Livermore National Laboratory. This study compares resutttosely matched
simulations from two staggered fermion actions, namely asqtad and p4fat3; ianpro-
viding the first large-scale simulation Bf = 8 with domain wall fermions. (See talks by
M. Cheng [#], R. Gupta[]5], and W. Soeldnéf [6].)

e Chiral susceptibility. New insights into the behavior of the chiral susceptibililyolwvange
the determination of. using this quantity[[7].

e Equation of state. A new method has been propdded [8].
¢ Transport coefficients. There are new ideas and methods for complgimg[9].

e Spatial string tension. A new result agrees surprisingly well with 3D peation theory

().

I will not have time to cover interesting studies of QCD-like theories with a latgeber of flavors
[LT). And | regret that time and space did not permit covering all resenk in this field.

I will try to give a general and fairly critical overview, using selectedutessfrom the parallel
sessions as illustrations and leaving the details to the parallel sessions.aAdtif review of
lattice methodology | discuss potential cutoff problems with various actiondag on issues
and confusion in determinin@.. Turning to results, | highlight some new methods and results for
the equation of state, allude to recent progress in determining transgedfitiemts, and end with
mention of a little surprise concerning predictions of dimensional reductiothéospatial string
tension.
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2. Lattice Methodology

Lattice methods are especially well suited for simulating a quantum statisticahblese
thermal equilibrium at fixed temperatufe We set a finite imaginary time interval

aN; = 1/T (2.1)

for lattice spacing andN; sites in imaginary time, and we impose periodic (antiperiodic) boundary
conditions on the bosonic (fermionic) fields. Under these conditions the I&#&gaman path
integral generates the quantum partition function for the underlying hamittéhia

Z=Trexp(—H/T), (2.2)

in the continuum limit. Operator expectation values are thermal expectationsvialuhis en-
semble. Since simulations with standard methods are limited to equilibrium andqekisreum
processes, to apply lattice results to the nonequilibrium conditions of heawpllisions requires
phenomenological modeling.

The temperature is varied by changing eitNeror a. The latter strategy is more common. At
fixed N;, decreasing the gauge coupligigdecreases, soT grows. Itis common now to adjust the
bare lattice quark masses together with the lattice spacing so that zero temgerasion masses
remain fixed. In this way variations in observables can be attributed to ebamgemperature and
not also to changes in the Hamiltonian. Such trajectories through paramaterase called “lines
of constant physics.”

Of course, to connect with reality we need also to take the continuum limit. Withxed fi
N; strategy, the lattice is coarser at low temperatures and finer at high tenmpsrafor a given
temperature, obviously, we approach the continuum by repeating thdatelowat smalleia and
largerN;. Contemporary lattice simulations haMe as large as 12 for some quantiti¢g [12], but 6
and 8 are typical for expensive quantities such as the equation of sabie[fTshows the relation-
ship between lattice spacing aNdatT = 180 MeV, near the crossover temperature for QCD. We
see that by standards of contemporary zero temperature simulations, dyaamic simulations
atN; = 6 and 8 are rather coarse at this temperatureNard4 is extremely coarse. Thus we must
be alert to the possibility of distortions due to cutoff effects.

N; 4 6 [8 [10 [12
a(fm) | 0.27] 0.18] 0.14| 0.11] 0.09

Table 1: Lattice spacings. N atT = 180 MeV.

The continuum limit can be expensive. For the equation of state the compatatast grows
with decreasing lattice spacing ast®. This places a high premium on reducing undesirable cutoff
effects at a coarse lattice spacing. The degree of “improvement” of theslattton is a significant
factor.

The most extensive recent simulations use staggered fermions with val®grges of im-
provement. The asqtad staggered formalism is designed to eliminate cutetseits (a?), leav-
ing errors ato(asa®) (see references im [13]). The p4fat3 staggered action is also imprbued
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action | A/A | AJA | Ae/AY
standard staggered 248/147 635/147 3796/189
Naik 0 —1143/980| —365/77
p4 0 —1143/980| 73/2079
standard Wilson | 248/147 635/147 | 133518316
hypercube —0.242381| 0.114366 | —0.0436614
overlap/ 248/147 | 635/147 | 3796/189
domain wall

Table 2: Continuum limit scaling behavior of free massless quarksgainous lattice formulations, based
on an expansiormﬁ) of the pressure in powers 21from [E]. Shown are ratios of the expansion
coefficients to the ideal, leading Stefan-Boltzmann coeffic A small ratio indicates good scaling.

it does not eliminate all such effecfsJ14]. Both actions also improve thegueek dispersion re-
lation, which is desirable in a high temperature deconfined environment. OdepBst-Wuppertal
action with stout gauge links and unimproved staggered fermions does rmowvenbe dispersion
relation [15], but it does reduce taste-splitting effects.

Improvement is good, but one may carry it too far. Improvement tendgtenfaction oper-
ators, in which case localization could become an issue. It is plausible thextém to which a
lattice simulation approximates the quantum partition functjor (2.2) depends tcdiigy of the
lattice transfer matrix. ldeally the localization length of the acti@mould be much less thag T
or in lattice units, much less thaf.

For free fermions cutoff effects for various lattice formulations can bdistuanalytically.
Recently Hegdet al. [[LG] looked at deviations from the expected free-fermion Stefan-Bolizma
relation for the pressurgas a function of IN? (equivalentlya?) and chemical potential/T:

0 2k
T% _ kZOAZKPZK(u /7iT) (l\D 2.3)

The leading ternfyy is the Stefan-Boltzmann term. The ratios of higher coefficidatgAo mea-
sure the strength of the cutoff effects. These terms measure the abilityaxfttbe to approximate
the continuum free fermion dispersion relation. Tdfle 2 reproduces #mitts for a variety of
actions. We see that the hypercube actjoh [17] has pleasingly smalctetfii The Naik (asqtad)
and p4 (p4fat3) actions remove the second order term as designetielp# action is better at
sixth order. The standard (unimproved) staggered action (regaaflgasige-link smearing) does
as poorly as the standard (and clover-improved) Wilson actions. Thidapvand domain wall
actions constructed from the standard Wilson kernel inherit its poowimrha

In selecting a fermion action for thermodynamics, there should be no efmudeliberately
building in poor continuum scaling.

Another recent study confirms pronounced cutoff problems with frémldiermion actions
based on the standard Wilson kernel. Gavai and Sharma calculated thef tiakolattice energy
density to the expected Stefan-Boltzmann value for overlap and domainermlioins [IB]. Their



QCD Thermodynamics Carleton DeTar

1 g M=1.00 - 1.8
or M=1.45 ]
16} M=1.50 - 1.6 Lg=20
M=1.55 14 | 18 -
LA M=1.60 ------ 16
1.2+ M=1.65 o 1.2 + 14 e
w ® 12 -
0.8} 0s | 12 -
0.6} 06 6 -
0.4} 04l
O'é s 1 0.2 ‘ ‘ ‘ ‘
0 5 10 15 20 25 0 5 10 15 20 25
Nt Nt

Figure 1: Deviation of the lattice free quark energy density from thef&-Boltzman continuum energy
density as a function dofi; from ]. (¢ =Ns/N; =4). Left panel: overlap for various mass shifis Right
panel: domain wall fermions for variolig atM = 1.55.

-III| T T T IIIII| T T T IIIII| ]
0.25 fm
i 0.18 fm J ]
o $

1= 0.12 fm * —

- 3 ¢ .

N‘_— B & & ]

o - 0.09 fm 1

st o :
| b
Nn: L4

s 0.1 0,06 fm —

~ C o E gs .

C LY e 'n? N

L & + _

L Oy R

L X Mg 4

O Ty
0001 III| 1 1 1 IIIII| 1 1 1 IIIII|
0.1 1 10

a® a® (arb units)

Figure 2: Splitting of the pion taste multiplets. a2a? for a wide range of lattice spacings. Splitting is mea-
sured as the difference of the squared masses of the memb#reasoldstone member. The plot symbols

distinguish the members of the multiplet. The line is dravithwnit log-log slope to test proportionality to

2,2
aga“.

results, reproduced in Fif] 1, show slow continuum scaling and an oscillatiated to negative
eigenvalues of the transfer matrix.

Staggered fermions have the awkward problem of extra “taste” degféesdom. The stan-
dard “fourth root” trick gives an approximately correct counting of@esg, but hadrons in the
statistical ensemble still come in multiplets with a range of masses. This is especidilg s
the pion spectrum. The splitting of taste multiplets is predicted to decreaggés?) in terms of
lattice spacing and color fine structure constantFigure[2 confirms this trend for the pion taste
multiplet as a function of lattice spacing.
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In judging how closely a simulation comes to the physical point, devotees gfestadjfermions
may be tempted to focus on the lowest member of the pion multimethe Goldstone boson pion.
While this practice is correct when the Goldstone boson can be an isoldtzdabstate, as in a
zero temperature Green'’s function, in a thermal ensemble, all membersmiittiglet participate.
Thus it is more appropriate in thermodynamics simulations to compare an aveuitgedet mass,
e.g, the rms pion mass with the physical pion mass. The physical point is reanhgly reducing
the lattice spacing together with the light quark mass. It is incorrect to claimrentielynamics
calculation is done at a physical pion mass when the rms mass is still much higher.

Is taste-symmetry breaking really a problem for thermodynamics? It is believbe most
dramatic for the pion and less noticeable for more massive sfales [19].dDlieargue that close
to the crossover temperature away from the critical point, so many excited giticipate, as in
the resonating hadron gas model, that pions do not matter much. But ifaabytfee critical point
at fixed lattice spacing, taste splitting is likely to have a strong effect on theatiitehavior: we
may even get a chiral symmetry restoring transition in the wrong universédigg.cAnd certainly
at quite low temperatures where pions dominate the statistical ensemble, tastgyspiitkies a
difference.

3. Phase Diagram and Determination off

3.1 Current consensus

Is there a genuine phase transition separating a low temperature cortiiasel \pith spon-
taneously broken chiral symmetry from a high temperature deconfinesk phigh restored chi-
ral symmetry? The answer depends on the number of quark flavors eindnihsses. Figurg 3
sketches the current qualitative theoretical consensus for the c&sel dfavors of quarks with
massesn, = mq andms [PQ]. In the upper right corner the quark masses are so large they play
no role in the statistical ensemble, and we enter the well-studied regime of aréiest confin-
ing/deconfining transition in pure Yang-Mills theory. At low temperature ¢mradels predict a
first order transition for degenerate masses, shown in the lower lefiezpand a second order tran-
sition at largems whenm, = my = O (provided the chiral anomaly does not vanish at the transition)
[BT].  The low-mass first order region is bounded by a critical line above whiglrémsition is
only a crossover.

Figure[B is only qualitative. To say whether there is a phase transition sicahyuark masses
requires numerical simulation. The long-standing consensus has beénighanly a crossover.
Aoki et al. have made a strong case for this conclus[oh [24]. Locating the actuahttitie is
challenging, since it occurs at small quark masses and is quite sensitivtbetfects [25[2B].
DeForcrand and Philipsep [27] 28] have done an impressively hightisstisudy that maps out
the phase boundary, but only with unimproved staggered fermioNs at4. They have begun
work atN; = 6 [2§].

1in contradiction to this expectation, D’Elia, Di Giacomo, and Pica found athas of a first-order transition using
an unimproved staggered fermion action &d= 4 [@]. It is important to check this conclusion with a more refined
action. In support of this expectation, Kogut and Sinclair have founecarsl order phase transition, but in the O(2)
universality class, rather than O([23].
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Figure 3: Sketch from [2] of the phase diagram for QCD at zero baryarsitdigin 2+ 1 flavor QCD as a
function of the light quark masses showing regions wheregh témperature phase transition or crossover
is expected. For a second-order phase transition, the rsality class is shown. Whether the expected
tricritical strange quark massgic is higher or lower than the physical strange quark mr%’é’S is not yet
firmly established.

3.2 How precisely can we knowl?

So what is the crossover temperatilig@ One must ask, first, for what purpose do we need to
know it? If there is only a crossover, the determinatiorfofs unquestionably imprecise, as the
Budapest-Wuppertal group has emphasifefl [29]. For phenomenibisigguld be good enough
to determine the temperature range over which an interesting quantity, stlehesergy density
changes rapidly. Each observable may give a somewhat differemeans

For (presumably) unphysical quark masses for which a genuine pizesition occurs, the
transition temperaturé; is unambiguous and precision is achievable. The observables used to
locate it must, obviously, have a sensible continuum limit, and they should expescritical
behavior.

Finally, in determining the temperature there is a related question of setting the atiiee
On coarse lattices, the result depends strongly on the physical quamtityaiset the scale.

With these preliminaries in mind we examine a variety of observables that haveused to
determine the crossover temperature. First we consider “deconfinéypefitebservables.

3.3 Deconfinement observables
3.3.1 Strange quark number susceptibility and equation of state

The strange quark number susceptibility measures fluctuations in the styaarggenumber:
Xs=(N&)/(VT) (3.1)

The energy density and pressure are also good indicators of thepsagfrdeconfinement.
Recent results from the HotQCD collaboration are shown inFig. B 5, 30].
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Figure 4: Left panel: Strange quark number susceptibility dividedH®ysquare of the temperatwe tem-
perature in MeV units (bottom scale) angunits (top scale) foN; = 6 and 8. Right panel: equation of state
showing energy density and three times the pressure, battediby the fourth power of the temperatwse
temperature foN; = 8. Measurements are taken along a line of constant physibsnyy = 0.1ms. These
preliminary results are from a HotQCD study comparing Bl&aid asqtad staggered fermion formulations
[E, @]. The blue error bars on the pressure curve indicaesite of the error. The magenta bar shows
a systematic error from setting the lower limit of the preesategration. The vertical bands here and in
HotQCD figures below indicate a temperature range 185 - 198 a&f&l serve to facilitate comparison.

We note that the asqtad and p4fat3 results are in fair agreement. We shetbare dramatic
changes in both observables over the temperature range 180 - 200Tke¥cale has been set
through the Sommer parametgyr(or r1), which, in turn, is calibrated by the measured splitting
in bottomonium [3L]. The rough agreement betweenNhe- 6 and 8 gives some support for the
utility of this scale determination.

3.3.2 Universal critical behavior

To determine the crossover temperature more precisely, one may look fafléotion point
in the quark number susceptibility or a peak in specific heat. As we have kedjdhe result is
unambiguous only for a genuine phase transition. Both of these quantéieleavatives of the
free energyf = —TlogZ, which leads to a unified treatment of their critical behavjof [32]. At
a critical point, the free energy can be decomposed into singular andiarw@mgtributions. The
singular part scales according fo][$2] 33]

fs(T, ko) = b fs(tbM(270)) ~ 127 (3-2)

where from charge symmetry and analyticity, the scaling variable dependsngperature and
chemical potential through
2
+c<“q> . (3.3)

For O(4) the critical exponent isr ~ —0.25. This relation can be used to predict singularities in
quantities expressible as derivatives of the free energyAt 0 the light quark number suscepti-
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bility is
, 0% 1-a
Xe/ TS~ 0“2 t ) (3.4)

S
~

The singularity is weak and masked by analytic contributions. Its temperatureative has a
stronger singularity

0(X€/T2) —-a
The same leading singularity is found in the specific heat
’fs . 4
Cy ~ e ~t (3.6)

and in the quartic quark number susceptibitify= ((N7) — 3(NZ)):

0415
g

cq ~td (3.7)

3.3.3 Screening free energy of a static quark

The Polyakov loop measures the screening free energy of a static [[pdrkThus it is a
phenomenologically interesting deconfinement-type observable. It is @ditivative of the free
energy, so it might not reveal critical behavior. It is customary to nexadize it by removing a
temperature-independent self-eneigy [35], leaving

Fq(T) = —Tlog[Penorm(T)]- (3.8)

This quantity is shown in Fig] 5. The related susceptibility (essentially the \@iarthis quantity)
is sometimes used to locate the transition temperature, but in numerical simulaticakhia fhis
susceptibility weakens with increasinyg.

3.4 Chiral observables

Next, we consider observables usually associated with a chiral phaséitma.

3.4.1 Chiral condensate

The chiral condensate has an ultraviolet singularity for nonzero quasds and (at least for
Nt = 2) an infrared chiral singularity at zero quark masg:

C12(a,T) /Mg +Ccimyg/a2+analytic T < T
(@) (2, Mg, T) ~ ¢ cimug/a? + csmyy +analytic T=T (3.9)
c1Myq/a2 + analytic T>Te

The ultraviolet singularity appears in perturbation theory at the onekeaap level. It is temper-
ature independent. The infrared singularity occurs in the chirally brokeseT < T¢ [[]]. It is
seen in chiral perturbation theory at the one-pion-loop level. A squatds the thermal analog of
a chiral log. AtT; we have the expected critical behavior.

The ultraviolet singularity in this quantity poses a problem for the continuum limnceS
the condensates for all flavors have this singularity, taking an the ajg@finear combination of
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Figure 5: Renormalized screening free energy of a static quark (flemrénormalized Polyakov loopk.
temperature in MeV units (bottom scale) andunits (top scale) foN; = 6 and 8 from a HotQCD study
comparing p4fat3 and asqtad staggered fermion formuﬁ@@]. Measurements are taken along a line
of constant physics witm,q = 0.1m.
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Figure 6: Chiral condensate difference ratis.temperature in MeV units (bottom scale) ardunits (top
scale) forN; = 6 and 8 from a HotQCD study comparing p4fat3 and asqtad staddermion formulations
[E, ]. Measurements are taken along a line of constantiggysth myg = 0.1ms.

light and strange quark condensates removes it, and dividing by théeraperature value removes
the multiplicative renormalization factdr [32]:

Dy s(T) = (@) — %wws D o(T) =Dy o(T)/Dys(T = 0) (3.10)

The difference ratid\, s is shown in Fig[J6. We see a dramatic drop in this quantity over approxi-
mately the same temperature range over which we saw a rapid rise i Fig. 4.

10
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3.4.2 Chiral susceptibility

The chiral susceptibility measures fluctuations in the chiral condensabselyospeaking it is

where it is customary to distinguish the connected and disconnected ctintriin terms of the
Dirac matrixM:

Xdisc = \I/ [<(TI’M_1)2> — <TI‘M_1>2}

T
Xconn = V] <TI’|V|72> . (3.12)

Tradition holds that a peak ixyisc marks the crossover, but see the discussion of possible distortions
below.

Figure[T shows recent results for the disconnected susceptibility. Bhegoeurs in roughly
the same temperature range as the dramatic changes seen in the prevéousbids in Figd.]4 and
B. The peak height increases as expected as the light quark massiasdetr

The first exploratoryN; = 8 results for the domain wall actiop] [4] are shown in fig. 8. Because
domain wall calculations are vastly more expensive, the domain wall effaérisinly not as
advanced as other efforts. The= 96 study was undertaken to assure a small residual quark mass
over the range of couplings shown.

The derivative in Eq[(3.11) generates the correlator of the relevaral dondensates, inte-
grated over the space-time volume:

X =C(p=0,T) = /d“xC(x,T)
C(x,T) = (Yu(x)gy(0)) (3.13)

To be more precise, the derivative in the definition of the susceptitfility](dd)involve any of
the flavor condensates and any of the quark masses. For the light@prad&nsates, it is useful
to distinguish the isosinglet and isotriplet chiral condensates, accordithg isospin content of
the operators in the correlator. These quantities are linear combinations distonnected and
connected susceptibilities, namekging = Xdisc+ 2Xconn aNd Xtrip = 2Xconn

The ultraviolet and infrared singularities of the isosinglet chiral susdéptiban be easily
inferred from Eq [39)[]7]:

c1/a?+cyp(a,T)/(2y/m) +analytic T <Te
Xsing~ { C1/& +csm+/~1 + analytic T=Te (3.14)
c1/a® + analytic T>Te

We see that it also suffers from an ultraviolet divergence, which mikasreasingly noisy as

the lattice spacing is decreased. The infrared singularity at zero quaimthe chirally broken
phase T < T¢) arises from the vanishing of the pion mass in that limit. For this reason at small
quark mass we should expect not only a peak at the transition point, behowdd expect the
susceptibility to grow at lower temperatures as wgll [7].

11
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Figure 7: Left panel: Disconnected light quark susceptibility.temperature in MeV units (bottom scale).
Right panel: closeup of the peak region. Lines merely contiecpoints. Red symbols, asqgtad fermions.
Blue symbols, p4fat3. Filled squares and circles are aldimgaf constant physics withn,g = 0.1ms. Open
circles, withmyg = 0.2m, filled triangles withm,q = 0.05ms. All results are HotQCD preliminary[$} f,130].
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Figure 8: Chiral condensate (left scale) and disconnected chiraepitbility (right scale)vs.the gauge
coupling parameteB. Results are from a HotQCD study oft2l flavor domain wall thermodynamics at
N; = 8 for two choices of ¢ [ﬂ]. Measurements are taken with light and strange quarlsessfixed in lattice
units @my,q = 0.003 andam; = 0.37).
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Figure 9: Sketch of the expected behavior of the light screening syector ther, fo and 2tthresholdvs.
temperature in units of the crossover temperalyre

To remove the ultraviolet singularity the Budapest/Wuppertal group subttaezero temper-
ature value and multiplies by the square of the quark mass to cancel multiplicaiivenalization
factors:

Mg (X (Mg, T) — X (my, 0)]/T* (3.15)

Compared with the uncorrected susceptibility, along a line of constant sressiy from the chiral
limit, this definition tends to shift a peak to Iow@rbecausae‘n,g/T2 decreases with increasifig
If instead of a peak, there is a shoulder, it might induce a peak.

3.4.3 Screening masses as indicators of the transition

From Eq [3.18) we see that a spectral component of ig3s) and weightp(M,T) in the
correlator contributeg(M, T)/M(T)?, which is singular wheM(T) vanishes. Since the correlator
is integrated over imaginary time, we can analyze the spatial dependeneezsrtiMatsubara-
frequency correlator to determine its spectrum. The masses in that cadser@ening masses”
[BE]. Figure[ sketches a possible scenario for the temperature dapmndf the low spectral
components of the isosinglet chiral condensate. In the chiral limifgmeust be degenerate with
the pion forT > T, so for a continuous transition, it must drop to zero there. As the lightkkquar
mass is decreased, the two-pion threshold also vanishes, leading to @a affiral susceptibility
for T < T as well, as reflected in E (3]14). Close to the chiral limit, instead of a peakmgaHe
transition, one might expect a cliff.

At this conference on behalf of the RBC/Bielefeld collaboration Laermapanted new mea-
surements of screening masses in the scalar and vector isotriplet chlB#jelSome of their
results are shown in Fi§. [10. We see that thehows the behavior sketched in Hip. 9. Results for
the fp are not available, but the shows a steep dip at the crossover.

As we see, screening masses may prove to be a useful indicator of thkt@nsition, since
they do not suffer from ultraviolet or chiral divergences, and tieguire no renormalization.
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Figure 10: Screening masses for the pseudoscalar channel (uppe) padedcalar channel (lower panel)
vs.temperature in a dynamicaH21 flavor simulation with p4fat3 staggered fermio@ [38]. Ble@ments
were taken along lines of constant physics with~ 220 MeV,mx = 500 MeV andN; = 6 and 8 ].

3.5 Scale determination

To quote the transition temperatufgin physical units requires a scale determination. The Bu-
dapest/Wuppertal group favors setting the lattice scale fxitwwvhereas MILC and RBC/Bielefeld
use the Sommer parametgror the related;. At current typical lattice spacings and quark masses
in staggered fermion simulations tifie scale results in a 10 to 20% lower temperature in MeV than
therg scale. This discrepancy vanishes at the physical quark mass and entireuom. We should
choose the scale so that the crossover temperature scales well. Od, agives the ambiguities
in determining the crossover temperature, even in lattice units, that is an ingocecidition. The
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deconfinement-type variables are more useful to phenomenology. Fortties, scale seems to
give reasonably consistent results as the lattice spacing is decreasee can see from Figf 4
and[p and Aoket al. [29] (Fig. 4). Thus there appears to be no reason to abandag guale for
now.

In the past two years there have been some seemingly contradictory estifrtheefransition
temperature. Aoket al. reported that at physical quark masses in the contindyrs, 151(3)(3)
MeV from a peak in the chiral susceptibility affid = 1752)(4) from the inflection point in the
guark number susceptibility and the Polyakov loop variable. These are ¢orbpared with an
older result from the MILC collaboration 1692)(4) MeV based on the chiral susceptibilify [39]
and a more recent determination of 19g4) MeV by the Bielefeld/RBC group based on a com-
bination of chiral and deconfining observableg [40]. The last twomsased the, (or rq) scale.
The Budapest/Wuppertal group has carefully listed sources of theegauery, which include am-
biguities in locating the crossover, their preferred renormalization of thial@usceptibility, and
their preference for thdéx scale. This year we can add to the list the possibility that the chiral
susceptibility develops an asymmetric peak or shoulder, which would bemegen sensitive to
the renormalization procedure and should not be modeled by a parabotanBination of these
effects could certainly account for the discrepancy.

4. Equation of state

The equation of state is fundamental to hydrodynamic calculations of thexgigpaof hot
hadronic matter.

4.1 Standard integral method

The currently popular method for calculating the equation of state begins vethattice-
thermodynamic identity at fixel;, which expresses the trace of the energy momentum tensor or
“interaction measurel’ in terms of the derivative of the log of the partition functign

Tdinz
I:s—3p:—\7m. 4.1
The derivative with respect to lattice spacing is taken with fixed outputdmandrasses. Thus it
involves the derivative of the bare lattice parametees,the gauge coupling, quark masses, and
for some actions the tadpole coefficiagt with respect to the cutoff scale and the expectation
values of the action operators. All of these nonperturbative quantiteeseadily calculated in
lattice simulations.

We normalize the energy and pressure to zero at zero temperaturelifimses an ultravi-
olet divergence of order/a*. This is done by subtracting the zero temperature quantity, calculated
with the same bare parameters. Because we are subtracting two ultravigldasifuantities, we
must increase the simulation sample size dramatically as the lattice spacing isddciEae cal-
culational cost thus grows steeply as we approach the continuum limit. Ihfellavs we will
assume this subtraction has been done for all thermodynamic quantities.

A second identity becomes

p_ 2dinZ

T | (Inz)/v (4.2)

15



QCD Thermodynamics Carleton DeTar

0.32 0.36 0.40 0.44 0.48 0.45 0.50 0.55 0.60 0.65 0.70 08 10 12 14 16 18
T T T 9 T T T T T T T T

T T : T
7 | (e-3pyT ° é (e-3p)/T 0 40 N (€-3p)T 0
{, 8 {){) asqtad: N¢=6 —=—1 a5

6 HRG & % : p4: Ni=4
5 . 7 3.0 | 6 —e—

| % 25 ¢ 8 b
4t 6 ' asqtad: Ny=6 —a—

20t 8 —m—
31 5t 15 |
27 10}
4

1 1 05
0 L T \T [ME\/] L 3 L L L L L L O 0 T [Mey]
130 140 150 160 170 180 190 200 180 200 220 240 260 280 300 ' 300 400 500 600 700 800

Figure 11: Details of the dependence of the interaction measure ongatyre in MeV units (bottom scale)

andrg units (top scale) for three temperature ranges left to rilght, mid, and high, folN; = 6 and 8 from

a HotQCD study comparing p4fat3 and asqtad staggered farfoimulations [IS[HEO]. Measurements in
most cases are taken along a line of constant physicsmyjjh= 0.1ms. Results in the high temperature
range alN; = 4 are from ]. In the low temperature range the magentaecigrthe prediction of a hadron

resonance gas model. The other curves in that range are $jitirto the data. The curves in the high
temperature range are fits to a quadratic i1 4

in the thermodynamic limit for which [& O V. Finite-size deviations from this limit could produce
deviations from the Stefan-Boltzmann law][41] 42]. Such finite size effeetg be important at
ultrahighT, where we would like to compare with perturbation thedry [43].

Putting Egs [(4]1) and (4.2) together gives the the pressure as the irdégnal interaction
measure from coarse to fine lattice spacirgy, low to high temperature:

vp
-

vV Inay/
_?p = _ Ina0?(5’—3p/)dlna’. 4.3)
a ao

If the lower limit is sufficiently low in temperature, the pressure is zero. Witlsquee and interac-
tion measure in hand we immediately get the energy density and entropy.

Recent results for the interaction measureNpe= 6 and 8 are shown in Fifj.]11. The resulting
equation of state and pressure were shown in [fig. 4 and the entrogtydsrshiown in Fig[1R.
Whether there is a statistically significant disagreement between the asdtpdfatB results in the
central region remains to be determined after further data are accumulatiee high temperature
rangeT € [250,700 MeV, the results can be fit to

(e—3p)/T4=b/T24¢/T* (4.4)

There seems to be no need yet to include perturbatiegll terms in the fit coefficientd and
c. The plot in the low temperature range compares the lattice result with predicti@ahadron
resonance gas model. Since the lattice calculations include cutoff effegts)ld be premature to
draw conclusions based on a disagreement at this level.

4.2 NewT integral method

In the past year the WHOT collaboration introduced a new method in which tdxgrai over
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Figure 12: Entropy density divided by the third power of the temperats. temperature in MeV units
(bottom scale) anty units (top scale). foN; = 6 and 8 from a HotQCD study comparing p4fat3 and asqtad
staggered fermion formulationﬁ [ESO]. Measurements istnoases are taken along a line of constant
physics withmyg = 0.1ms.

lattice spacing at fixet\; is replaced by an approximate integral ograt fixed lattice spacing
(i.e, fixed bare lattice parameter§) [8] 44].

The method starts from an alternative form of Eq](4.1) with [Ed (4.2):

4_ d(p/T)
l/T% = T (4.5)

The pressure is then computed by integrating the interaction measure widttrésnT or
equivalently IffN;). SinceN; is an integer, to reduce discretization errors in the sampling of the
integrand, one must reduce the temporal lattice spagingn anisotropic lattice helps.

With this potentially computationally cheaper method the zero temperature subtigatam-
mon to allN;, and with bare lattice parameters fixed, one necessarily works along finessiant
physics. Figur¢ 13 shows the result of a test calculation done for () Sang-Mills theory.

5. Plasma Structure

In addition to the phase diagram and equation of state, lattice simulations pittfddaation
about the structure of hot hadronic matter. | mention two recent develdpmamew effort to
determine the shear and bulk viscosity over a range of temperatures andsaéualy of the spatial
string tension.

5.1 Transport Coefficients

Analysis of RHIC heavy ion collisions suggests that high temperature hadnmmatter is an
exceptionally good fluid. To confirm this hydrodynamical characterizatemuires computing
the transport coefficients, namely the shegr énd bulk ¢) viscosities. They are obtained from
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Figure 13: Equation of state (interaction measure, energy densitypegskure) for pure Yang-Mills theory,
obtained using thd@ integral method at fixed lattice spaciag = 0.097 fm and aspect ratia; /a; = 4

B B4l
correlators of the energy-momentum tensor at temperature

C(x0,%,T) = (Tuv (%0, X) Tpo(0).) (5.1)

We need its spectral functigm which we obtain from the Kubo formula

° coshw(xo—1/2T)
T)= T : 2
C(x0,9,T) /0 dwp(w,q,T) Sinh(w/2T) (5.2)
The transport coefficients are obtained from the low-frequencyvi@haf the spectral function
n(T) =rmlim P1212(®,0,T) (T) = Tim Pijj (@,0,T) (5.3)

w—0 w ~ 9w-0 )
This has been a well known challenging problem since it was first attempt&disch and Wyld
[FH]. The correlator is noisy, requiring high statistics. Going from a EedlidcorrelatoC(xo)
to p(w) is a very difficult inverse problem. Because of time-reflection symmetry, alaiion at
N; = 8 has only five, typically noisy, independent values.

Possible remedies include (1) assuming a functional fornpfand fitting its parameters, (2)
decreasing the time interva{, allowing a largeiN;, and (3) adding further constraints pnsuch
as maximum entropy.

Meyer [9,[46[4l7] has done a new high statistics calculation in pure Yailigtkeory and uses
a paramerization of the spectral function in terms of an optimized basis sétlthsain appropriate
perturbative behavior. For the ratio of shear viscosity to entropy dehsiindsn /s= 0.134(33)
at 165T; where perturbation theory gives 0.8, and for the ratio of bulk viscositytimpy density,
{/s< 0.15 at 165T. and{ /s < 0.015 at 32T.

5.2 Spatial string tension

Despite its popular characterization as deconfined, high temperatu@ni@adratter retains
vestiges of confinement. Space-like Wilson loops still exhibit the area-ldnaviier associated
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Figure 14: Temperature divided by the square root of the spatial stengiongs vs.temperature in units
of the crossover temperatuifg (lower scale) and img units (upper scale) for 2 1 flavors of p4fat3 quarks
on lattices withN; = 4, 6 and 8. The solid curve (with uncertainties indicatedt®y dashed lines) is the
prediction of the dimensionally reduced thedfry] [10]

with confinement. This is readily seen by considering dimensional reduatierhich for T > T
the short Euclidean time dimension is collapsed, leaving three spatial dimensiensf which is
reinterpreted as the Euclidean time coordinate of a 2+1 dimensional fielg/theor

The reduction of QCD has these characteristics:

e Quarks acquire a large 3D magq7tT )% + g

e The fourth component of the color vector potenfglbecomes a scalar field, and we get a
confining gauge-Higgs theory.

e The 3D and 4D gauge couplings are related throggh ga4/T.
e The spatial Wilson loop gives the 3D potential and 3D string tension.

In a recent calculation Cherag al compared the spatial string tension of the full 4D theory
with its predicted behavior in 3D perturbation theofy][10]. The comparisahdsvn in Fig[14.
The good agreement with perturbation theory at temperatures as ladTasslunexpected.

6. Conclusions

In a reasonably well-matched calculation, new high statistics results fromGaspow good
agreement between two different staggered fermion formulatioms p4fat3 and asqtad. Not
surprisingly, simulations with these inexpensive algorithms are more advdhaa those with
other fermion actions, as we have seen from the first exploratory donaiffermion simulations
at N; = 8 with a quite small residual quark mass. To make progress we need tcstamtkethe
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importance of cutoff effects and to come closer to the physical point. C#ltmgawith other
fermion actions can provide an important check, but those actions must bevedpat least to the
same level as the staggered fermion actions before they can play thisfeakivefy.

We are learning more about the phase structure of zero-baryoityd&@D as a function of
the light quark masses, but these results are especially sensitive toaffe¢ofé. More work is still
needed.

There has been recent progress in methodology. The WHOT collabotai® developed
a new method for determining the equation of state, and Meyer has propesethethods for
determining transport coefficients.

Finally, in measurements of the spatial string tension, we have seen integggtE@gnent with
predictions of dimensional reduction.
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