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1. Introduction

The primordial state of matter called quark-gluon plasm&RQis expected to be realized in
extremely hot and dense mediums, and a lot of experimerfatehave been made to produce
such a state in heavy-ion collision experiments [1]. To usi@d&d QGP, theoretical studies by
the first principle calculations of QCD at high temperatune density are important. At present,
the lattice QCD simulation is the only systematic method @aosd. Many important properties
of finite temperature QCD have been studied by the MonteeGanhulations [2]. The studies at
finite density had been known to be difficult until recenthowver, recent technical developments
allow us to extract information on those in the low densitgioa. In this report, we would like
to review recent progress in lattice QCD at finite density.e@hthe most interesting studies is
to investigate the phase structure of QCD at non-zero teaitymer and density. The QCD phase
transition has been found to be crossover at zero densitiyrhylations with staggered type quark
actions [3]. We expect that the nature of the phase transititl change to be of first order in the
high density region, and it is very important to find the catipoint terminating a first order phase
transition line, since the critical point is one of the modéeresting features that may be discovered
in heavy-ion collision experiments. The study of the equratif state (E0S) is also important. The
numerical studies by lattice QCD simulations will be abl@tovide basic input for hydrodynamic
calculations of the expansion of hot and dense matter gekiraheavy-ion collisions.

However, lattice QCD at non-zero density is known to haverasg problem. In a Monte
Carlo simulation, we generate configurations of link vagalU,(x)} with the probability in
proportion to the weight factdidetM)Ne~% and the state density §U),(x)}. Here,M is the quark
matrix andS; is the gauge action. The expectation value of an operajdy,| is then evaluated by
taking an average af[U,] over the generated configuratiofid, (x)}.

1
Neont. (2503

(O)p) ~ 01U (1.1)
The quark matrix at zero density have theHermiticity and the Hermiticity guarantees that the
quark determinant is real. However, the relation of ghelermiticity changes to

M (kg) = Y5M(—Hg) ¥t (1.2)

at finite quark chemical potentigliy). Then, the quark determinant becomes complex except for
Hg = O; (detM(Lq))* = detM(—pq) # detM(ug). Because the Boltzmann weight must be real
and positive in the Monte-Carlo method, we cannot perforimalsition at finite density directly

A popular method to deal with QCD at finifg, is the reweighting method. However, we will
encounter another problem called the “sign problem” in thlewdation at larggug. The key point

in the study of finite density QCD is to avoid this problem.

A lot of progresses have been obtained in this field. The émuaf state in the low density
region was studied in [4, 5, 6, 7]. The sign problem is stik af the most important issues in the
study of finite density lattice QCD. The nature of the signiglea was discussed in the random
matrix model and the chiral perturbation theory [8, 9, 10bnt trials to find the critical point
at finite density were examined [11, 12, 13, 14]. Moreoverew algorithm based on stochastic
guantization was proposed in [15]. The phase structuredrhihh density region was studied in
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the strong coupling limit [16, 17]. The hadronic fluctuatdn the high temperature phase was also
studied using an effective theory [18]. Moreover, the elgmatf state by chiral fermion actions
was discussed in the high temperature limit [19, 20]. Thesplsdructure of two-color QCD, which
is free from the sign problem, has been studied. (See e.g2R 23] for a review.) Among these
topics, we want to focus on the equation of state and thearigioint in the(T, ug) plane in this
report. We discuss the equation of state and hadronic fltiohsain Sec. 2. Some attempts to find
the critical point are discussed in Sec. 3. A summary is ginedec. 4.

2. Equation of state at finite density

In order to extract unambiguous signals for the QCD phasesitian from the heavy-ion col-
lisions, quantitative calculations from the first pringglof QCD are indispensable. In particular,
studies of the equation of state (EoS) can provide basid iigpuhe analysis of the experimental
data. Many studies have been done at finite temper&iurand zero chemical potentialgly) [2].
Also, recent developments of computational techniquebledaus to extend the study to smg.

Several years ago, systematic simulations for the studigeoEDS at finite density have been
performed by the Bielefeld-Swansea Collaboration usininggloved staggered quark action with
rather heavy quark masses [24, 25, 26]. They found that thleTexpansion method is useful for
the EoS study in the low density region which is importantifeavy-ion collisions. Moreover, they
found large fluctuations in the quark number density at fiddtesity. The temperature dependence
of the quark number susceptibility,, which corresponds to the fluctuation of the quark number,
changes qualitatively whepy becomes non-zero. Faig = 0 the susceptibility)(q/T2 changes
rapidly at the transition temperature but continues togase monotonically. However, fpg # 0
the quark number susceptibility develops a pronounced petie transition temperature. Such a
behavior suggests the existence of a critical point in(theuq) phase diagram.

In this year, remarkable results were obtained by simuiatioear the physical quark mass
point with improved staggered quark actions [4, 5, 6]. Thd.®lICollaboration and the RBC-
Bielefeld Collaboration studied the isentropic equatidrstate, i.e. the E0S along trajectories of
constant entropy per baryon number. There are also prag@sthe study of fluctuations at fi-
nite density. The RBC-Bielefeld Collaboration found tha¢ €nhancement of the quark number
susceptibility becomes larger as the quark mass decre@kdddreover, the WHOT-QCD Collab-
oration performed simulations with a Wilson type quark@ttind studied the EoS at finite density
[7]. They calculated the quark number susceptibility andficoned the large fluctuation ag # 0.

2.1 Taylor expansion method

The main problem in the study of QCD at finite density is that Boltzmann weight is com-
plex for g # 0. Because the Boltzmann weight must be real and positive iivant to generate
configurations with the weight, the conventional MonteiGanethod is not applicable ak; # 0.
One of the possible approaches to study the finite density @@erforming a Taylor expansion
of physical quantities in terms @f; aroundpy = 0 and calculating the expansion coefficients by
numerical simulations gty = 0 [24, 25, 26, 27, 28]. Because the simulationg@t 0 is free from
the complex weight problem, the expansion coefficientsdiegivatives of physical quantities with
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respect tqug/T, can be evaluated by a conventional Monte-Carlo simulafidre pressurép) is
obtained from the partition functiof'),

P _

T4 VT3
and the calculations of the derivatives the partition fimctare basic measurements in the QCD
thermodynamics, since most of thermodynamic quantitiegaen by the derivatives @.

We define the Taylor expansion coefficients as

p o uds Hu\' /Hd\J /Hs\¥  uds 1 itk

—_- — C'7'7 T — —— _ 3 C-7.7 :_ T - - .

T i,,-;:o i )<T) (T> <T) VNI O (/T 10 (ke /)10 (ps/ T, —o
(2.2)

Here, L, qs are the chemical potentials for the u,d,s quarks, @%(T) is the pressure at, =

Ug = s = 0. The coeff|C|ent:JJdks(T) are computed by performing a simulationigt= 0. The

explicit forms of the Taylor expansion coefficients are giue [4, 26]. We expect that QCD in the
high temperature limit is described as free gas of quark &nmhgand theu,-dependence ab/T*
is given only through terms qﬂg and ua‘ for the free gas. Therefore, the Taylor expansion may
converge well in the high temperature region.

For the calculation of pressure g§ = 0, the integral method is commonly used. Using the
thermodynamic relation Eq. (2.1), the pressure is compased

107 0Sat
/ B,@?dﬁ V dB<dB ' (2:3)
Here, S is the lattice action and - -) is the thermal average with zero temperature contribution
subtracted for the normalization @f In multi-parameter cases such as full QQPshould be
generalized to the position vector in the coupling paramgtace. The initial point of integration
Bo is chosen in the low temperature phase from the condipigBy) ~ 0. The derivatives 084

with respect tg3 and the quark mass are basically given by the Wilson loopghindl condensate.
The energy density is obtained from the following equation,

N/ 0Sa 0Sat\ 0B /9Sa
<a Hq/T>, <a Ia >_a£< B >, (2.4)

M/T NS oa
whereaiis the lattice spacing, the lattice sizeNg x N, andf3 is the position vector in the coupling
parameter space for full QCD, again. The density effecteof 3p)/T* can be estimated by a
Taylor expansion. The coefficients are given by the dexieatof Eq. (2.4) with respect t,/T.
The quark number density, 4 s is calculated by

InZ =Q, 2.1)

e-3p 1 dnZ
T4 VT2 09T

nuas 1 dnZ  9(p/T4
T3~ VT30(uuas/T)  9(Huas/T)

and Eqg. (2.2). We define the light quark number densitpas n, + ng. The susceptibilities of
light Quark numbes xq) and strange quark numbegys) are given by

Xq _ J J Ny + Ng Xs _ 9(ns/T3)
T_g‘(a(uu/Tﬁa(ud/T)) T T2 3(ugT) 9)

(2.5)

4
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Figure 1: Pressure (left) and energy density (right) vs. temperailmeg the lines of constant entropy per
baryon number obtained by 2+1 flavor simulations with asgtaggered fermion action [5].
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Figure 2: (left) The ratio of pressure and energy density as a funatioenergy density on isentropic
trajectories obtained with p4fat3 staggered fermion adtio N, = 4 (filled) and 6 (open). (right) The ratio
of x andxB vs. temperature fan; ~ 220MeV [6] andm,; ~ 770MeV [26].

These susceptibilities correspond to the fluctuations efjillark numbers. Moreover, the entropy
densitysis given by the thermodynamic relation,

S  E+P—ti=udsHiNf
T T4 ‘
The chiral condensate is defined by the derivative &¥lwith respect to the quark mass.

2.7)

2.2 Isentropic equation of state

One of the most interesting results which have been obtdmoed heavy-ion collision exper-
iments is that the experimental data is well-explained byidiept fluid model without viscosity.
This implies that a dense medium created in a heavy-ionsamiliexpands without further gener-
ation of entropy after thermalization. Therefore, it is mnjant to calculate the EoS with keeping
the entropy(S) per baryon numbefNg) constant for the analysis of the experimental data [29].

The MILC Collaboration and the RBC-Bielefeld Collaboratistudied the isentropic equation
of state by performing simulations near the physical quaassrpoint using improved staggered
fermion actions. The isentropic expansion lines for matteated at RHIC, SPS and AGS ener-
gies correspond t8/Ng ~ 300, S/Ng =~ 45, andS/Ng =~ 30, respectively. These values have been
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obtained by comparing experimental results for yields ofoes hadron species with hadron abun-
dances in a resonance gas [30]. Measuring the Taylor expaosefficients of the pressure, energy
density, baryon number and entropy by Monte-Carlo simuteti they found the isentropic trajec-
tories in the(T, L, Us) parameter space with an additional constrai 0, wherepy = tg = Hg.
They then calculated the energy density and pressure aherigegntropic trajectory using the Tay-
lor expansion coefficients.

The results of energy density and pressure computed by th€ Ii@bllaboration are shown in
Fig. 1 for eachS/Ng [4, 5]. The pion mass is about,; ~ 220MeV, which is close to the physical
pion mass. They used the asqtad quark action and succggsfilliced the discretization error in
the EoS. The filled and open symbols in these figures are thitgem lattices with a temporal
extentN; = 6 and 4, respectively. The difference between them is foarmktsmall.

The RBC-Bielefeld Collaboration also studied the iserit@guation of state performing 2+1
flavor simulations wittm; =~ 220MeV using the p4fat3 action [6]. The results of the pressund
energy density are consistent with the results by the MIL@aBoration. The right panel of Fig. 2
is the results op/¢ plotted as a function of. The open symbols are the results frdfn= 6 and
the filled symbols are from\; = 4. They found that the density dependencef is small when
they plot as a function of. Also, the speed of sound in the dense mediggn= dp/de, can be
calculated by measuring the slopemfe in this figure.

2.3 Radius of convergence and hadronic fluctuations

Next, let us discuss the convergence radius of the Tayliesey/T* = 5 cB(ug/T)', with
k= (1/3)(1/i!)(zf:u7d7sd/d(uf/T))‘Q\uu_d_szo. We expect that the crossover transition at low
density changes to a first order phase transition at a dritidae of ug. If there is such a critical
point, the Taylor series does not converge at the criticaltpd’he simplest way to estimate the
radius of convergencgp) is to calculate the ratio of the expansion coefficients. Wende

p=lmpn  pn=1/IR/al (2.8)

In the region ofug/T < p, p/T# is finite. For the case of free quark gas expected in the high
temperature limitcB is zero forn > 6. A model described by resonances of hadron gas in the low
temperature phase predids(us) — p(0)]/T4 0 cosiug/T) andpn = 1/(n+2)(n+1). There-
fore, both the convergence radiuses in the high temperahdéow temperature limits are infinity.
On the other hand, by using an appropriate scaling ansathddiree energy atis = 0, one can
show thatc, will develop a cusp in the 2 flavor chiral limit with rather Iwyastrange quark mass.
Hence,cff/cg5 = pz‘2 should have a peak near the transition temperature anddhes raf conver-
gence may be short ned when the u, d quark mass is sufficiently small. This impliest the
distance to the critical values p/T may be estimated by measuripgwith rather smalh.

The convergence radiys, have been studied in a 2 flavor simulation with a pion mass of
My~ 770MeV [26]. The results ot/ x2 = 12c¢8 /B are shown by green symbols in Fig.2, where
X2 = nlcB. The result is consistent with the hadron resonance gascicedat low temperature
and with the free gas value at high temperature. Howevere tiseno peak around,. Sincex?
also increases sharply just beldw, x2/x5 does not increase ne@ although x2 itself has a
pronounced peak. It is interesting to study the behavigo,aofvith small u, d quark masses near
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Figure 3: Quark number density (left) and quark number susceptiitight) as functions of temperature
andpg/T by a simulation with an improved Wilson quark action [T.is T¢ at tiq = 0.

the physical point. The red symbols in Fig 2 are resultg®fx2 near the physical mass point in
2+1 flavor QCD obtained by the RBC-Bielefeld Collaboratiéh [They observed a peak nekr
beyond the hadron resonance gas valué\fot 4, which may be related to the critical point.

Moreover, becausg? = xg/T2? andx? = d(xs/T?)/d(us/T) atug = 0, the figure ofx?/ x5
indicates that the baryon number susceptibilixg/T?) increases more sharply near the transition
point as the density is increased when u, d quark masses ate sm

2.4 Study by a Wilson type quark action

Most lattice QCD studies at finite temperature and densite Heeen performed using stag-
gered type quark actions with the fourth-root trick of thewdudeterminant. The theoretical base
for the fourth-root trick is not confirmed. Moreover, the lgtg properties universal to the three-
dimensional O(4) spin model, as expected from the effesiiyma model, has not been confirmed
in 2 flavor QCD. Therefore, it is important to carry out sintidas adopting different lattice quark
actions to control and estimate systematic errors duetiodatiscretization.

The WHOT-QCD Collaboration studied finite temperature a@nsity QCD using the clover-
improved Wilson quark action and the RG-improved Iwasakiggaaction. In contrast to the case
of staggered quarks, the subtracted chiral condensatesshewscaling behavior with the critical
exponents and scaling function of the O(4) spin model fa #ution [31], and the EoS at; =0
have been studied [32]. They performed simulations chx18 lattice along lines of constant
physics with the mass ratio of pion and rho mesgy'm, = 0.65 and 080, and calculated the EoS
at finite density [7, 33]. Because the study by a Wilson quatlora is more difficult than that by
staggered quarks in general, some improvements are rdquifey used a hybrid method of the
Taylor expansion and the reweighting. Evaluating the quatierminant by the Taylor expansion
up toO(ua‘), Z (Hg)/ Z (0) was computed. They then obtained the quark number densityhan
susceptibility by numerical differentiations with respée 4. The results of the quark number
density and the susceptibility are plotted in Fig. 3 as fiomst of T for eachpiy/T. These are quite
similar to the results obtained by the previous staggeredkgsimulations. The quark number
density increases sharply néarand the slope becomes largenagT increases. Also, they found
that a peak ir)(q/T2 appears nedl for large /T, suggesting the existence of the critical point.
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Figure 4: Phase diagram in th@, L) plane (left) and quark mass dependence of the order of praarss-t
tions, Columbia plot (right).
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Figure 5: (left) Critical surface in thgmyq,ms, lig) parameter space predicted by the PNJL model [37].
(right) dBs/d((5@)?) vs. (wa)? obtained by a simulation with an imaginary chemical potaii#1]. L is
the spatial extentls.

3. Critical point at finite density

In this section, we discuss the critical point terminatihg first order phase transition line in
the (T, iq) phase diagram sketched in Fig. 4 (left). The critical parbe of the most interesting
features that may be discovered in heavy-ion collision erpnts. We summarize the current
discussion on the existence of the critical point in the Q®RAge diagram.

3.1 Quark mass dependence of the critical point

The order of the phase transition depends on the quark ma2sIdlavor QCD. By changing
the quark mass, the critical point at finite density can bfteshto the low density regime, where we
can study it by a simulation. The expected nature of the ptrassition atuy = 0 is summarized
in the right panel of Fig. 4. The horizontal axigq is the u and d quark masses and the vertical
axismg is the strange quark mass. We expect that the phase trangitibflavor QCD in the chiral
limit, (myq, ms) = (0,), is of second order and that of 3 flavor QQg, ms) = (0,0), is of first
order [34]. The quenched limifm,q, ms) = (0, ), is also of first order [35, 36]. The transition
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for 2 flavor QCD(ms = o) with finite myq is crossover, and 2+1 flavor QCD has a second order
critical line separating the first order region at small masd the crossover region at large mass,
which is shown by the bold red line in Fig. 4 (right).

We can also discuss the nature of the phase transition & ieitsity. The left panel of Fig. 5
is a prediction of the critical surface in then,qg, ms, Lg) parameter space from the Nambu-Jona-
Lasinio model with the Polyakov loop (PNJL model) [37]. Tl tines indicate the critical surface
which separates the first order and crossover regions. Wttt the first order region becomes
wider astig increases and the crossover transition at low density esatagoe of first order at high
density for the physical quark masses.

Mean field argument near the tricritical point

Let us start with a mean field analysis in the standard sigmdemaVe discuss the tricritical
point on them,q = 0 axis in Fig. 4 (right), at which the second order criticakliseparates from the
axis. In the vicinity of the tricritical point atiy = O, the effective potential in terms of the chiral
order parameteo is modeled by the following equation,

Vert(0) = }a02+}b04+}cae—ha, (3.1)
2 4 6

where we assume> 0 so thalVes is bounded from below for larger|. The coefficientsa, b and
h may be parameterized as

a=at+auui, b=bs+byps, h=my, t= T TCTC’ s= mEmEms, (3.2)
wheremg is m at the tricritical point. The coefficiertt controls the order of phase transition.
Assuming a symmetry undei, to — g, the leading contribution tb must beug at low density.

Since the effective potential ®(c*) on the second order critical surface,

anVeff
Solving these equation, we obtain
8c s a\54 8c [ —3b\ 2
=_—(— = — | — > <0). 4
th= (5(:) L Eh=3 (10c> . (a>0,b<0) (3.4)

The critical surface in thémyg, ms, Llg) space is described by

Cudmﬁé5+ Cs(Me —Ms) + g = 0. (3.5)

with appropriate constantsg andcs. The strange quark mass dependence angilteependence
of the critical light quark masst’, around the tricritical point are

miq ~ (me —mg)¥2, g ~ 1. (3.6)
The first equation describes the critical line on fise= 0 plane sketched in Fig. 4 (right). We
expect from the first equation that the criticalq increases very slowly ass decreases. Similarly,
the second equation suggests that the chemical potentiahdence of the critical surfaoe ,;(1q)
is also small in the low density region, since fligdependence starts from a termujfatmud =0.
The information of the critical surface is important to knthe order of phase transition for the real
world, and the critical surface can be measured near theattdine atpy = 0 because the study by
Monte-Carlo simulations is possible in the low density oegi
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Numerical study of the critical surface

To investigate the critical surface, some groups perforsigulilations near the critical quark
mass afig = 0 in QCD with 3 flavors having degenerate quark massgg= ms, and studied the
Hg dependence of the critical quark mamsg(Lg). For extrapolatingm(pg), an approach on the
basis of the Taylor expansion in termsaf/T [38] and that of the imaginary chemical potential
[39] have been developed. Moreover, a study of phase-qedrfafite density QCD, in which the
effect from the complex phase of the quark determinant isacegd, has been discussed in [40]. As
we expect form the mean field argument, thedependence of the critical mass have been found
to be small in the low density region.

Recently, an interesting result was obtained by de ForcaamddPhilipsen [41]. They studied
the pg-dependence of the critical quark mass for QCD with 3 flavéistandard staggered quarks
very precisely and found that the critical line moves towgalighter quark masses as a function
of ug. They performed simulations with an imaginary chemicakptal, 4 = pga = igja, on an
Ns x Ny = 8% x 4 and 13 x 4 lattices. Becaus@detM(u))* = detM(—pu*) for a complexy, the
quark determinant is real ift is purely imaginary, hence the simulations are possibleortter
to identify me(1i), they computed the fourth order Binder cumulant constcuétem the chiral
condensateB, = ((6@W)*)/((dPw)?)?. It has been verified that the critical point belongs to the
Ising universality class and the valueR¥ at T; for m. is the same with that of 3-dimensional Ising
model,B; = 1.604 [42]. In the low density region, the analytic continuatioarfi imaginaryu to
real u is performed assuming

B4 = 1.604+ byo(m— Q) + boyu? 4 b + -+ -. (3.7)

Sincebp(m— n18) + bo14? = 0 along the critical line in the leading order, one can estniae
curvature of the critical quark mass jat= 0 by dmc/d(uz) ~ —bp1/b10. Moreover, becausB,
increases when the first order phase transition change®s$sasrer,big is positive. Hence, the
curvature is positive (negative)lif; is negative (positive). The results @B4/d((u;a)?) is plotted
as a function ofu? in Fig. 5 (right). boy is given bybg; = — Iimuiz_>odB4/d((uia)2). From this
figure,dms/d(u?) is found to be negative. This result contradicts to the neikgectation.

In this situation, a simple extrapolation of the criticatfage to the physical quark mass point
is difficult because the first order region in tfra,q, ms) plane becomes smaller gg increases if
we do not consider higher order termsygfin the Taylor expansion af(pg). To understand the
critical surface in thémyq, ms, Lig) Space, studies in a wide range of the chemical potential raay b
necessary. The analytic continuation in the imaginary d¢bainpotential approach is usually based
on the Taylor expansion d@4 andmc(Lyg), €.9. Eq. (3.7). One of the possible improvements to
study in the wide range is to use another assumption whicasisdon a phenomenological model.
The analytic continuation with various assumptions has likscussed in [43, 44].

3.2 Reweighting method and Sign problem

Because the Boltzmann weight is complexigt? 0, the Monte-Carlo method is not applicable
directly. A popular approach to avoid this problem is theemghiting method [45, 46]. We perform
simulations agiq = 0, and incorporate the remaining part of the correct Boltamaeight for finite
Hq in the calculation of expectation values. Expectation eslw) at (B, Liq) are thus computed

10
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Figure 6: Histograms of the complex phaf8dq12]. Dashed lines are the fit results by Gaussian functions.

by a simulation atf3,0) using the following identity:

<ﬁ (detM (1iq)/ detM (0))Nf>
_ (8
(O) B = <

0 (3.8)

(detM(pg)/ detM(O)")

This is the basic formula of the reweighting method. Howgebecause dél(ug) is complex,
the calculations of the numerator and denominator in E®) (8ecomes in practice increasingly
more difficult for largerpy. If the typical value of the complex phase of the quark debeamt

6 becomes larger thari/2, the real part o€® (= cos8) changes its sign frequently. Eventually
both the numerator and denominator of Eq. (3.8) become snthkn their statistical errors and
Eqg. (3.8) can no longer be evaluated. We call it the “sign |enob.

We define the phase of the quark determirfabl the imaginary part df IndetM (L) in the
framework of the Taylor expansion. In this framework, InM€tiy;) can be separated into real and
imaginary parts easily because the even derivatives ot M@e,) are real and the odd derivatives
are purely imaginary [24]. The complex phagkare thus given by

1 021(IndetM) ( &>2n+1

" o \ 1) o 69

0 = N¢Im[In(detM)] = an; &n
where one must repladé in these equations sk /4 when one uses a staggered type quark action.
In Fig. 6, we plot histograms of calculated at the pseudo-critical temperat(e= 3.65) for
Hg/T = 1.0 and 20 using the data of the Taylor expansion coefficients L@(tpg) obtained with
2 flavors of p4-improved staggered quarks in [26]. The apfibn range of the reweighting method
can be estimated from the histogram. When the width of thigilalision is larger tharO(m), the
phase factor changes its sign frequently. Then, the sighlgmo happens and the reweighting
method does not work. Here, it is worth noticing ttfatorresponds to the complex phase of the
guark determinant however this quantity is not restrictethé range from-rrto rbecause there is
no reason that the imaginary part of Int#ein Eq. (3.9) must be in the finite range. An interesting
point which is found from this figure is that these histogra®sm to be almost Gaussian functions.
We fit these data by Gaussian functionsexp(—xez), with a fit parametex. The dashed lines in
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Fig. 6 are the fit results. We find that the histogran® & well-represented by a Gaussian function.
Such a Gaussian distribution is expected when the systarissgufficiently large in comparison
to the correlation length due to the central limit theoremarébver, the Gaussian distribution @&f
has been discussed in chiral perturbation theory [9].

Once we assume a Gaussian distributior&fahe problem of complex weights can be avoided
[12]. We calculate the expectation value <d?ei9>(T7uq:0), whereF = |detM(Lq)/ detM(0) M
and &|detM(1q)/ detM (0)|™M for the denominator and numerator of Eq. (3.8), respegtivéf
the operatorZ is real, the complex phase is given by Eq. (3.9). We introdiheeprobability
distributionw as a function of and®:

W(F', ) = /@u S(F'—F)3(6' — 6)(detM(0))NeS, (3.10)

whered(x) is the delta function. The distribution function itself isfthed as an expectation value
at g = 0, however and6 are functions ofiy/T obtained by a simulation aiy = 0.

Since the patrtition function is real even at non-zero dgnsie distribution function has the
symmetry under the change frofrto —6. Therefore, the distribution function is a function @,
e.g.,W(0) ~ exp— (2262 +a,0* +as6° + - --)]. If the fluctuations of the phase is small at sma)
the 62 term gives a dominant contribution. Moreover, as we disedisthe distribution function is
well-approximated by a Gaussian function:

w(F.0) ~ ,/@W(F)exp[—az(mez] . (3.11)

We assume this distribution function in termsébihenF is fixed. The coefficienséz(F) is given

by 1/(282(F")) = (628(F' = F)) 1 . o)/ {O(F' = F)) 1 y-0) = (6%
Then, the integration oveé? can be carried out easily,

L -1/ (dar)  _ - (62),/2
. g/dF W (F)e F_<F(uq) e >(T7“q:0). (3.12)

i0
<F(uq)e' >(T7uq:
Since 6 is roughly proportional to the size of the quark matki the value of<62>F becomes
larger as the volume increases as well as incregsind herefore, the phase factor{ﬁ(uq)ew}
decreases exponentially as a function of the volumegndHowever, the operator in Eq. (3.12)
is always real and positive for each configuration, henceeftpectation value o(F(uq)ei9> is
always larger than its statistical error in this method. r€fare, the sign problem is completely
avoided if we can assume the Gaussian distributiofl. of

3.3 Plaquette effective potential

One of the most primitive approaches to identify the ordethefphase transition is to inves-
tigate the histogram of a typical quantity such as plaqué@&tdyakov loop or chiral condensate
by Monte-Caro simulations. For the case of the plagu@®e the distribution function, i.e. the
histogram, is defined by

w(P') = / U (P —P) (detM)™NeBPNsieP (3.13)
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For later discussions, we define the average plaqiedieP = —S;/(68Nsite), WhereNsie = NS x
N:;. This is a linear combination of Wilson loops for an improwetion. If there is a first order
phase transition point, where two different states coeatitie transition point, the histogram must
have two peak at two different values®fcorresponding to the hot and cold phases. Such studies
have been done to confirm that the phase transition of SU(@)gauge theory is of first order, and
the double peaked distribution have been obtained at theiti@n point [35, 36]. This method is
equivalent to other methods to identify the order of phaaesitions by the Binder cumulant and
by the Lee-Yang zero [47].

The argument of the distribution was extended to the caseitd filensity QCD by [12]. Here
and hereafter, we restrict ourselves to discuss only theewhen the quark matrix does not depend
on 3 explicitly for simplicity. The partition function can beweitten as

Z(B.ta) = [ ROP.a)W(P,B) dP (3.1

wherew(P, ) is defined in Eq. (3.13) gty = 0 andR(P, L) is the reweighting factor for finitg
defined by

_ [ 92U 5(P — P)(detM () (3(P'— P) (detM(1q), detM(0))")

, (89)
RIP-Ha) = 50 5 (P = P) (detM(0)) %~ (3P —P)) 50, (3.15)

ThisR(P, g) is independent g8 and can be measured at ghiyHere, (- - '>(B,0) means the expecta-
tion value atug = 0. In this method, all simulations are performedugt= 0 and the effect of finite

Hq is introduced though the operator dtLy) / detM (0) measured on the configurations generated
by the simulations gty = 0. The distribution function for non-zena, is R(P, tg)w(P, 8), and thus
the effective potential is defined by

Vet (P. B, Hg) = — IN[R(P, tg)W(P, B)] = — INR(P, lg) 4 Vert (P, B,0). (3.16)

The shape of the effective potential can then be investigaitg, # 0 onceR(P, i) is obtained. A
schematic illustration o¥es(P) is shown in Fig. 7 (left).
First, the peak position of the distribution function moesgi, changes, which is determined
by solving
a5 (PB. o) = 55 (P.B.0) = —55= (P 41g) = 0. (3.17)
Then, the effect fromyq to the peak position is the same as that wgtemperature) is changed.
From the definition atiy = 0, the weighw(P, 3) and the effective potential becomes

W(P, Be) = eXPe=BINsiePyy(P B) - Veis(P. Berr, 0) = Verr (P, B, 0) — 6(Best — B)NsiteP.  (3.18)
under a change fror to Be. Hence, the change frofito
Beit(Ug) = B + (6Nsite) 20 (INR) /9P (3.19)

correspondgf3,0) to (B, lg) for the determination of the minimum &#(P). As we will see,
the slope of IR is positive. This explains why the phase transition happemsn the density is
increased as well as with increasing temperatfe
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Figure 7: (left) Schematic illustration of the effective potentiaidcathe reweighting factor. (right) Plaquette
histogram and the effective potentialgf= 0 [12].
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Figure 8: Reweigiting factor (left) and its curvature (right) as ftinas ofP [12].

Moreover, we find from Eg. (3.18) that the curvatureVef(P) does not change under the
change of3. This means that the curvature\g§ (P) is independent of. The critical value ofuq
can be estimated by measuring the curvature of the effegtitential,

W(P’ Hg) = _W(Pa Hq) + W(Pao) =0. (3.20)

Because the curvature W (P, 3,0) at g = 0 is positive and the curvature WEq(P, 3, Lig) at a
second order phase transition point is zero, the parameatgerwhere-InR(P, g) has negative
curvature is required for the existence of the critical poin

The probability distribution function at non-zerg has been calculated in [12] using the data
obtained in [26] with the 2 flavor p4-improved staggered guaation on a 18x 4 lattice. The pion
mass isn; ~ 770MeV, which is heavier than the physical mass. The digiob functionw(P) at
Ug = 0, i.e. the histogram d?, and the effective potentigks(P) are given in Fig. 7 (right) for each
B. The values of3 andT /T are shown above these figures. The poteMig(P) is normalized by
the minimum value for eacfi. Because the phase transition is a crossover transitio2 fiaror
QCD with finite quark mass, the distribution function is ajwaf Gaussian type, i.e. the effective
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potential is always a quadratic function. The value of thegpktte at the potential minimum
increases aB increases in accordance with the argument of the potentraimam.

The reweighting factoR(P, i) is plotted in Fig. 8 (left). The quark determinant Nfy) is
estimated using the data of the Taylor expansion coeffiienf26]. Higher order terms thang’
order are neglected. The application range was selectetdmking the truncation error. Because
the sign problem is serious for the calculationR§P, Li), the method discussed in Sec. 3.2 was
used to avoid the sign problem. The dashed lines in Fig. 8 @eé the results that we obtained
when the effect of the complex phagé is omitted. Because the contribution from the complex
phase is not very large, the error from the approximationvticethe sign problem may be small.

To study the existence of a second order phase transitiorgiseeiss the curvature of the
potential. The result of the curvaturd?(InR)/dP?(P, Hq), is plotted as solid line in Fig. 8 (right).
The magnitude of the curvature offfbecomes larger g,/ T increases. The dashed line in Fig. 8
(right) is the result of-d?(Inw) /dP?(P) at tiq = 0. This figure indicates that the maximum value of
d?(InR)/dP?(P, ig) atP = 0.80 becomes larger thand?(Inw)/dP? for g/T 2 2.5. This means
that the curvature of the effective potenté#Verr/dP? vanishes atiy/T ~ 2.5 and a region oP
where the curvature is negative appears for laug€l, corresponding to a double-well potential.

Further studies are, of course, necessary for the precieentieation of the critical point in
the (T, 1g) plane, increasing the number of terms in the Taylor expansiitn detM and decreasing
the quark mass in the simulation. In particular, the critiedue of L is sensitive to the quark mass
as discussed in Sec. 3.1. However, the argument given abggests the appearance of a first
order phase transition line at largg/T.

3.4 Canonical approach

Another interesting approach is to construct the canomiaetition functionZ¢(T,N) by fix-
ing the total quark numbé&N) or quark number densityp). Using the canonical partition function,
we can also discuss the effective potential as a functiomesfjuark number. In this section, we
denote the grand partition function &gc(T, lg) to distinguish it from the canonical partition
function Z¢(T,N) explicitly. The relation betweet#sc(T, L) and Z¢(T,N) is given by

Zoc(T, tg) = / U (deM (/TN e S = 5 Ze(T.N)ST. (3.21)

Because this equation is a Laplace transformation ft&ao Zcc essentially, the canonical parti-
tion function is obtained fron¥c(T, Hg) by an inverse Laplace transformation.
In order to investigate the net quark number giving the Ilsirgentribution taZsc(T, Lg), it is
worth introducing an effective potentislk; as a function oiN,
IJq f (Ta N) &

Vert (N, T, lg) = —InZc(T,N) - N—= = ———= —N

— —Vert
T T T gGC(TaHQ) - % € ) (322)

where f is the Helmholtz free energy. Using the effective potenfiiall the quark number, the
argument of the nature of phase transition is possible akagethe effective potential for the
plaquette, and the physical meaning of this effective f@kis clearer than that of the plaquette.
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Figure 9: Phase structure in thd, p) plane and the behavior ¢f, /T as a function op.

If there is a first order phase transition region, we expetitiis effective potential has minima
at more than one value df. At the minima, the derivative dfe¢ satisfies
aVeff

W(NaTaHQ) = -

(?(|I’l ffc)

It
o (TN - ?“ =0. (3.23)

Hence, in the first order transition regionf we expec?d(In Z¢c)/dN(T,N) = —p;/T takes the
same value at differei. Here, 5 (T,N) is the chemical potential which gives a minimum of the
effective potential afT,N) and becomegi, in the thermodynamic limit because the potential is
minimized in the large volume limit.

The phase structure in th@,p) plane and the expected behavior gf/T are sketched in
the left and right panels of Fig. 9, respectively. The thicie$ in the left figure are the phase
transition line. We expect that the transition is crossatdow density and becomes of first order
at high density. Since two states coexist on the first or@ersition line, the phase transition line
splits into two lines in the high density region, and the tiates are mixed in the region between
two lines. The expected behavior pgff along the lines A and B are shown in the right figure.
When the temperature is higher than the temperature atitieatpoint Ty (line A), L increases
monotonically as the density increases. However, for tise b@lowTc, (line B), this line crosses
the mixed state. Because the two statep0éind p, are realized at the same tirwﬂ-i:'{k does not
increase in this region betwegn andps.

Glasgow method [45, 48] has been a well-known method to céenfhe canonical parti-
tion function. A few years ago, such a behavior at a first opferse transition was observed by
Kratochvila and de Forcrand in 4 flavor QCD with staggerednfens [11] calculating the quark
determinant by the Glasgow algorithm on a small lattice. oAlalexandru et al. [49] proposed
a method to perform simulations with canonical ensemblectly, and recently the method was
tested for 2 and 4 flavor QCD [14]. Moreover, a method based saddle point approximation
was proposed by [13]. By this approximation, the computeticost is drastically reduced and the
first order like behavior was observed for 2 flavor QCD. We axpthese recent developments.

Inverse Laplace transformation

From Eg. (3.21), the canonical partition function can beairtetd by an inverse Laplace trans-
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Figure 10: Baryon chemical potential as a function of baryon numberNpr= 4 (left) Ny = 2 (right)
obtained by simulations with canonical ensemble [14].

formation [50, 51],

Fo(T,N) = 3/

/3 .
= e Hi
21 ) -my/3

N/ T/T) Zoe (T, po+im) d (7). (3.24)
wherel is an appropriate real constant gmds a real variable. Note thatc(T, tg+ 27T /3) =
Z6c(T, 1g) [52]. The grand canonical partition function can be evalddiy the calculation of the

following expectation value gig = 0.

Zoc(T ) _ 1 detM (pg/T)\ ™ N _Sg:< detM (1ig/T) Nf>
- / 78, (7> detM(0)Me <7> ey

Z6c(T,0) detM(0) detM(0)
(3.25)

If one adoptsuy = 0, the chemical potential in Eq. (3.25) is purely imaginang éhe quark
determinant is real. Therefore, the calculation of the kjubaterminant aty; is easier than the
calculation at really. Performing a simulation gty = 0, the standard staggered quark determinant
can be computed for any chemical potential at the cost obdializing a matrix modified from the
staggered fermion matrix by using the Glasgow algorithn].[4B=cause Eg. (3.24) is actually a
Fourier transformation, if one calculates the Fourier fioehts of deM (ip;/T) for each configu-
ration, the canonical partition functiofc(T,N)/Zsc(T,0) can be computed by averaging them
over the configurations.

Kratochvila and de Forcrand calculated (In 2¢)/dN(T,N) as a function of the baryon num-
berNg = N/3 with a fixed temperaturg3) performing a simulation of 4 flavor QCD with staggered
quarks on a $x 4 lattice [11]. The phase transition is of first order eveppt= 0 for their simu-
lation of 4 flavor QCD. Their result ofd(In Z¢)/dN(T,N) shows an S-shape in the temperature
range belowT,, as we discussed above for a first order phase transition.

Simulations with canonical ensemble

By replacing the order of the integrals of the inverse Lapkaansformation Eq. (3.24) and the
path integral inZsc, the canonical partition function is written by

Ze(T,N) = /@U e SdeyyM™, (3.26)
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Figure 11: Chemical potential vs. quark number densityfpr= 2 with a saddle point approximation [13].

where dgt M is defined by

detMN — i/zne—iNM/T det(ipi /) d (&) (3.27)
21 .Jo T
The method to perform Monte-Carlo simulations with thistgian function has been proposed
by [49, 53]. Although de¢M™ is complex, we obtain deM™ = (det y\MN)" and Z¢(T,N) =
Z¢c(T.—N) from a symmetry under the replacement frpgito —ig. Using these properties, we
can rewrite the partition function as

Fo(TN) = /@u e SRe(deiM™). (3.28)

Then, the Boltzmann weight is real and the Monte-Carlo metie@pplicable. One can generate
configurations according to the weight éx{%,)Re(dety M), and degy MM is computed numeri-
cally with an approximation,
1 MNais—1 -
deyMM ~ — zo e 271IN/Nais detM (271 j /Ngis) V. (3.29)
dis =
This approximation is applicable fdigis > N.

The xQCD collaboration (Kentucky group) performed simulatievith the canonical ensem-
ble on a 6 x 4 lattice for 2 and 4 flavor QCD with Wilson quarks using thisthwal and the
preliminary results are presented in this conference [T#je results of the chemical potential
Hg/T = —0(InZc)/d(N/3) are shown in Fig. 10 for 4 flavor QCD (left) and 2 flavor QCD (tigh
Their result of 4 flavor QCD shows an S-shape in the temperatunge below, suggesting a first
order phase transition. This result is consistent with tlegipus result [11]. On the other hand, the
chemical potential increases monotonically for 2 flavor QCBis result suggests that the phase
transition is crossover at the temperature they investitjat

Saddle point approximation

However, the studies by above-mentioned two methods neetl oumputational cost and are
difficult except on a small lattice with present day compuésiources. To reduce the computational
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cost, a method based on a saddle point approximation hasppeposed in [13]. If one selects a
saddle point aglp in EQ. (3.24). The information which is needed for the in&gs only around
the saddle point when the volume is sufficiently large. Maegpif we restrict ourselves to study
the low density region, the value of dé{py/T) near the saddle point can be estimated by the
Taylor expansion aroundg = 0. The calculations by the Taylor expansion are much chetaper
the exact calculations and the studies using large latticegossible. Also, the truncation error
can be systematically controlled by increasing the numb#reoexpansion coefficients.

We perform the integral in Eq. (3.24) by a saddle point apipnaxion. We denote the quark
number density in a lattice unit and physical unit@s- N/NS and p/T3 = pN?, respectively.
We assume that a saddle poigtexists in the complexiy/T plane for each configuration, which
satisfiesD’(z0) — p = 0, where(detM(2) / detM (0))™ = expN3D(z)] andD'(z) = dD(z)/dz We
then perform a Taylor expansion around the saddle point bradrothe canonical partition function,

Fe(T.BV) = — 2e(T,0) < /_ " exp [v (D(ZO) — P2 - %DII(ZO)XZ—F - )] dX> -

2n /3
~ —2 90T, 0) { explV (D(z0) — o) e 19/2, |- . (330)
van ol D@/

Here,D"(z) = d?D(2)/dZ, V = N$ andD"(z) = |D"(2)|€”. We chose a path which passes the
saddle point. Higher order terms in the expansio® ) become negligible when the volurive
is sufficiently large.

We calculate the derivative of the effective potential wekpect ta\ or p. Within the frame-
work of the saddle point approximation, this quantity caretauated by

— D —ia/2 /1
B 10In2(T.pV) ( el (@) - pz)le “ fymigy ) - (3.31)

T =7V ap <exp[V(D(zo)—520)]6“"/2 V‘D,%(ZO)Q(TW@
Hq—

This equation is similar to the formula of the reweightingthoel for finite y. The operator in the
denominator corresponds to a reweighting factor, ghdr is an expectation value of the saddle
point calculated with this modification factor.

The derivative of InZ: was computed in [13] using the data obtained in [26] with thiezor
p4-improved staggered quark action; ~ 770MeV. Because the modification factor is a com-
plex number, this calculation suffers from the sign prohlefo eliminate the sign problem, the
approximation discussed in Sec. 3.2 was used. If one asdimatethe distribution of the complex
phase is well-approximated by a Gaussian function, the tmnghase factoe® can be replaced
by exd—(62%)/2]. Moreover, the quark determinant was estimated by the Tafpansion up
to O(ug’). Because the calculation of Eg. (3.31) is similar to the Wation by the reweighting
method, the configurations which give important contributare changed by the modification fac-
tor. To avoid this problem, the mulf-reweighting method [54] was used. By this method, the
important configurations are automatically selected amalhgonfigurations generated at many
simulation points of3.

The result ofyg /T is shown in Fig. 11 as a function of/ T3 for each temperatur€/T¢(B).
The dot-dashed line is the value of the free quark-gluon gabe continuum theoryp /T3 =
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N [(Uq/T) + (1/72)(Ug/T)3]. From this figure, we find that a qualitative featurelgf/ T changes
aroundT /Tc ~ 0.8, i.e. li; /T increases monotonically gsincreases above 0.8, whereas it shows
an S-shape below 0.8. This means that there is more than due ofgp /T3 for one value of
Hg/T below T/T. ~ 0.8. This is a signature of a first order phase transition. Algiosome
approximations are used, the critical valugugf/ T is about 24, which is roughly consistent with
the critical point estimated in Sec. 3.3 by calculating tfieative potential of the plaquette using
the same configuration§] /T, g/ T) =~ (0.76,2.5). The difference between these two results may
be a systematic error. Further studies are necessary twiptieel critical point quantitatively, but
we find that the canonical approach is useful to study thegbtscture at finite density.

4. Summary

We reviewed recent studies of lattice QCD at finite densigmBrkable progress in the study
of the equation of state was obtained. The MILC Collaboratiad the RBC-Bielefeld Collabo-
ration performed simulations with quark masses near thsipalypoint using improved staggered
quark actions and calculated thermodynamic quantitiesgdioes of constant entropy per baryon
number in the low density region using the Taylor expansi@thod. Because experimental re-
sults obtained in heavy-ion collisions can be well-exdity a perfect fluid model, the isentropic
equation of state is needed for the analysis of the expetahdata. Moreover, fluctuations of
hadron numbers at finite density are important, which can é&asored in the experiments. If there
is a critical point, the fluctuation of baryon should be lasgeund that point. Recent simulations
show that the baryon number fluctuation makes a peak Tyearfinite ug and the fluctuation be-
comes larger when the quark masses are decreased to thegblpgnt. Confirmations by other
guark actions are also important. Simulations with a Wilgge quark action were performed by
the WHOT-QCD Collaboration and the large fluctuation at&ipig was discussed.

The chemical potential dependence of the critical line id 8avor QCD with quark masses
(myq, ms) was studied at low density to understand the grovel streasfithe critical surface in the
(mud, Ms, Hg) parameter space. Thg dependence of the critical quark mass is found to be small in
the low density regime and the current resulﬁmc/d(ug) is slightly negative atn,q = ms. Further
studies in a wide range of the parameter space are impoatamiderstand the phase structure.

Some methods to investigate finite density QCD beyond thedemsity region were also
discussed. A method based on the investigation of an eféeptitential as a function of the average
plaquette was proposed introducing an approximation tadabhe sign problem, and the existence
of the critical point at finite density was suggested by a &itinn with improved staggered quarks.
Moreover, it was found that interesting information abchw brder of phase transitions at finite
density is obtained by constructing the canonical partifimction for each quark number.
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