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1. Introduction

The primordial state of matter called quark-gluon plasma (QGP) is expected to be realized in
extremely hot and dense mediums, and a lot of experimental efforts have been made to produce
such a state in heavy-ion collision experiments [1]. To understand QGP, theoretical studies by
the first principle calculations of QCD at high temperature and density are important. At present,
the lattice QCD simulation is the only systematic method to do so. Many important properties
of finite temperature QCD have been studied by the Monte-Carlo simulations [2]. The studies at
finite density had been known to be difficult until recently. However, recent technical developments
allow us to extract information on those in the low density region. In this report, we would like
to review recent progress in lattice QCD at finite density. One of the most interesting studies is
to investigate the phase structure of QCD at non-zero temperature and density. The QCD phase
transition has been found to be crossover at zero density by simulations with staggered type quark
actions [3]. We expect that the nature of the phase transition will change to be of first order in the
high density region, and it is very important to find the critical point terminating a first order phase
transition line, since the critical point is one of the most interesting features that may be discovered
in heavy-ion collision experiments. The study of the equation of state (EoS) is also important. The
numerical studies by lattice QCD simulations will be able toprovide basic input for hydrodynamic
calculations of the expansion of hot and dense matter generated in heavy-ion collisions.

However, lattice QCD at non-zero density is known to have a serious problem. In a Monte
Carlo simulation, we generate configurations of link variables fUµ(x)g with the probability in
proportion to the weight factor(detM)Nf e�Sg and the state density offUµ(x)g. Here,M is the quark
matrix andSg is the gauge action. The expectation value of an operatorO[Uµ ℄ is then evaluated by
taking an average ofO[Uµ ℄ over the generated configurationsfUµ(x)g.hOi(β) � 1

Nconf: ∑fUµ (x)gO[Uµ ℄: (1.1)

The quark matrix at zero density have theγ5 Hermiticity and the Hermiticity guarantees that the
quark determinant is real. However, the relation of theγ5 Hermiticity changes to

M†(µq) = γ5M(�µq)γ5: (1.2)

at finite quark chemical potential(µq). Then, the quark determinant becomes complex except for
µq = 0; (detM(µq))� = detM(�µq) 6= detM(µq). Because the Boltzmann weight must be real
and positive in the Monte-Carlo method, we cannot perform a simulation at finite density directly
A popular method to deal with QCD at finiteµq is the reweighting method. However, we will
encounter another problem called the “sign problem” in the calculation at largeµq. The key point
in the study of finite density QCD is to avoid this problem.

A lot of progresses have been obtained in this field. The equation of state in the low density
region was studied in [4, 5, 6, 7]. The sign problem is still one of the most important issues in the
study of finite density lattice QCD. The nature of the sign problem was discussed in the random
matrix model and the chiral perturbation theory [8, 9, 10]. Some trials to find the critical point
at finite density were examined [11, 12, 13, 14]. Moreover, a new algorithm based on stochastic
quantization was proposed in [15]. The phase structure in the high density region was studied in
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the strong coupling limit [16, 17]. The hadronic fluctuations in the high temperature phase was also
studied using an effective theory [18]. Moreover, the equation of state by chiral fermion actions
was discussed in the high temperature limit [19, 20]. The phase structure of two-color QCD, which
is free from the sign problem, has been studied. (See e.g. [21, 22, 23] for a review.) Among these
topics, we want to focus on the equation of state and the critical point in the(T;µq) plane in this
report. We discuss the equation of state and hadronic fluctuations in Sec. 2. Some attempts to find
the critical point are discussed in Sec. 3. A summary is givenin Sec. 4.

2. Equation of state at finite density

In order to extract unambiguous signals for the QCD phase transition from the heavy-ion col-
lisions, quantitative calculations from the first principles of QCD are indispensable. In particular,
studies of the equation of state (EoS) can provide basic input for the analysis of the experimental
data. Many studies have been done at finite temperature(T) and zero chemical potentials(µq) [2].
Also, recent developments of computational techniques enabled us to extend the study to smallµq.

Several years ago, systematic simulations for the study of the EoS at finite density have been
performed by the Bielefeld-Swansea Collaboration using p4-imploved staggered quark action with
rather heavy quark masses [24, 25, 26]. They found that the Taylor expansion method is useful for
the EoS study in the low density region which is important forheavy-ion collisions. Moreover, they
found large fluctuations in the quark number density at finitedensity. The temperature dependence
of the quark number susceptibilityχq, which corresponds to the fluctuation of the quark number,
changes qualitatively whenµq becomes non-zero. Forµq = 0 the susceptibilityχq=T2 changes
rapidly at the transition temperature but continues to increase monotonically. However, forµq 6= 0
the quark number susceptibility develops a pronounced peakat the transition temperature. Such a
behavior suggests the existence of a critical point in the(T;µq) phase diagram.

In this year, remarkable results were obtained by simulations near the physical quark mass
point with improved staggered quark actions [4, 5, 6]. The MILC Collaboration and the RBC-
Bielefeld Collaboration studied the isentropic equation of state, i.e. the EoS along trajectories of
constant entropy per baryon number. There are also progresses in the study of fluctuations at fi-
nite density. The RBC-Bielefeld Collaboration found that the enhancement of the quark number
susceptibility becomes larger as the quark mass decreased [6]. Moreover, the WHOT-QCD Collab-
oration performed simulations with a Wilson type quark action and studied the EoS at finite density
[7]. They calculated the quark number susceptibility and confirmed the large fluctuation atµq 6= 0.

2.1 Taylor expansion method

The main problem in the study of QCD at finite density is that the Boltzmann weight is com-
plex for µq 6= 0. Because the Boltzmann weight must be real and positive if we want to generate
configurations with the weight, the conventional Monte-Carlo method is not applicable atµq 6= 0.
One of the possible approaches to study the finite density QCDis performing a Taylor expansion
of physical quantities in terms ofµq aroundµq = 0 and calculating the expansion coefficients by
numerical simulations atµq = 0 [24, 25, 26, 27, 28]. Because the simulations atµq = 0 is free from
the complex weight problem, the expansion coefficients, i.e. derivatives of physical quantities with
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respect toµq=T, can be evaluated by a conventional Monte-Carlo simulation. The pressure(p) is
obtained from the partition function(Z ),

p
T4 = 1

VT3 lnZ �Ω; (2.1)

and the calculations of the derivatives the partition function are basic measurements in the QCD
thermodynamics, since most of thermodynamic quantities are given by the derivatives ofΩ.

We define the Taylor expansion coefficients as

p
T4 = ∞

∑
i; j;k=0

cu;d;s
i; j;k (T)�µu

T

�i �µd

T

� j �µs

T

�k ; cu;d;s
i; j;k = 1

i! j!k!
∂ i+ j+kΩ

∂ (µu=T)i∂ (µd=T) j∂ (µs=T)k

����
µu;d;s=0

:
(2.2)

Here,µu;d;s are the chemical potentials for the u,d,s quarks, andcu;d;s
0;0;0(T) is the pressure atµu =

µd = µs = 0. The coefficientcu;d;s
i; j;k (T) are computed by performing a simulation atµq = 0. The

explicit forms of the Taylor expansion coefficients are given in [4, 26]. We expect that QCD in the
high temperature limit is described as free gas of quark and gluon and theµq-dependence ofp=T4

is given only through terms ofµ2
q andµ4

q for the free gas. Therefore, the Taylor expansion may
converge well in the high temperature region.

For the calculation of pressure atµq = 0, the integral method is commonly used. Using the
thermodynamic relation Eq. (2.1), the pressure is computedas

p= T
V

Z β

β0

dβ
1Z ∂Z

∂β
=�T

V

Z β

β0

dβ
�

∂Slat

∂β

� : (2.3)

Here,Slat is the lattice action andh� � �i is the thermal average with zero temperature contribution
subtracted for the normalization ofp. In multi-parameter cases such as full QCD,β should be
generalized to the position vector in the coupling parameter space. The initial point of integration
β0 is chosen in the low temperature phase from the conditionp(β0) � 0. The derivatives ofSlat

with respect toβ and the quark mass are basically given by the Wilson loops andchiral condensate.
The energy density is obtained from the following equation,

ε�3p
T4 = 1

VT2

∂ lnZ
∂T

����
µq=T

= N3
t

N3
s

*
a

∂Slat

∂a

����
µq=T

+ ; �
a

∂Slat

∂a

�= a
∂β
∂a

�
∂Slat

∂β

� ; (2.4)

wherea is the lattice spacing, the lattice size isN3
s �Nt, andβ is the position vector in the coupling

parameter space for full QCD, again. The density effect of(ε �3p)=T4 can be estimated by a
Taylor expansion. The coefficients are given by the derivatives of Eq. (2.4) with respect toµq=T.
The quark number densitynu;d;s is calculated by

nu;d;s
T3 = 1

VT3

∂ lnZ
∂ (µu;d;s=T) = ∂ (p=T4)

∂ (µu;d;s=T) (2.5)

and Eq. (2.2). We define the light quark number density asnq = nu+nd. The susceptibilities of
light Quark number(χq) and strange quark number(χs) are given by

χq

T2 =�
∂

∂ (µu=T) + ∂
∂ (µd=T)� nu+nd

T3 ; χs

T2 = ∂ (ns=T3)
∂ (µs=T) : (2.6)
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Figure 1: Pressure (left) and energy density (right) vs. temperaturealong the lines of constant entropy per
baryon number obtained by 2+1 flavor simulations with asqtadstaggered fermion action [5].
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Figure 2: (left) The ratio of pressure and energy density as a functionof energy density on isentropic
trajectories obtained with p4fat3 staggered fermion action for Nt = 4 (filled) and 6 (open). (right) The ratio
of χB

4 andχB
2 vs. temperature formπ � 220MeV [6] andmπ � 770MeV [26].

These susceptibilities correspond to the fluctuations of the quark numbers. Moreover, the entropy
densitys is given by the thermodynamic relation,

s
T3 = ε + p�∑ f=u;d;s µ f nf

T4 : (2.7)

The chiral condensate is defined by the derivative of lnZ with respect to the quark mass.

2.2 Isentropic equation of state

One of the most interesting results which have been obtainedfrom heavy-ion collision exper-
iments is that the experimental data is well-explained by a perfect fluid model without viscosity.
This implies that a dense medium created in a heavy-ion collision expands without further gener-
ation of entropy after thermalization. Therefore, it is important to calculate the EoS with keeping
the entropy(S) per baryon number(NB) constant for the analysis of the experimental data [29].

The MILC Collaboration and the RBC-Bielefeld Collaboration studied the isentropic equation
of state by performing simulations near the physical quark mass point using improved staggered
fermion actions. The isentropic expansion lines for mattercreated at RHIC, SPS and AGS ener-
gies correspond toS=NB � 300,S=NB � 45, andS=NB � 30, respectively. These values have been
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obtained by comparing experimental results for yields of various hadron species with hadron abun-
dances in a resonance gas [30]. Measuring the Taylor expansion coefficients of the pressure, energy
density, baryon number and entropy by Monte-Carlo simulations, they found the isentropic trajec-
tories in the(T;µq;µs) parameter space with an additional constraintns = 0, whereµu = µd = µq.
They then calculated the energy density and pressure along the isentropic trajectory using the Tay-
lor expansion coefficients.

The results of energy density and pressure computed by the MILC Collaboration are shown in
Fig. 1 for eachS=NB [4, 5]. The pion mass is aboutmπ � 220MeV, which is close to the physical
pion mass. They used the asqtad quark action and successfully reduced the discretization error in
the EoS. The filled and open symbols in these figures are the results on lattices with a temporal
extentNt = 6 and 4, respectively. The difference between them is found to be small.

The RBC-Bielefeld Collaboration also studied the isentropic equation of state performing 2+1
flavor simulations withmπ � 220MeV using the p4fat3 action [6]. The results of the pressure and
energy density are consistent with the results by the MILC Collaboration. The right panel of Fig. 2
is the results ofp=ε plotted as a function ofε . The open symbols are the results fromNt = 6 and
the filled symbols are fromNt = 4. They found that the density dependence ofp=ε is small when
they plot as a function ofε . Also, the speed of sound in the dense medium,c2

s = dp=dε , can be
calculated by measuring the slope ofp=ε in this figure.

2.3 Radius of convergence and hadronic fluctuations

Next, let us discuss the convergence radius of the Taylor series, p=T4 = ∑cB
i (µB=T)i, with

cB
i = (1=3)(1=i!)(∑ f=u;d;s∂=∂ (µ f =T))iΩjµu;d;s=0. We expect that the crossover transition at low

density changes to a first order phase transition at a critical value of µB. If there is such a critical
point, the Taylor series does not converge at the critical point. The simplest way to estimate the
radius of convergence(ρ) is to calculate the ratio of the expansion coefficients. We define

ρ = lim
n!∞

ρn; ρn =qjcB
n=cB

n+2j: (2.8)

In the region ofµB=T < ρ , p=T4 is finite. For the case of free quark gas expected in the high
temperature limit,cB

n is zero forn� 6. A model described by resonances of hadron gas in the low
temperature phase predicts[p(µB)� p(0)℄=T4 ∝ cosh(µB=T) andρn =p(n+2)(n+1). There-
fore, both the convergence radiuses in the high temperatureand low temperature limits are infinity.
On the other hand, by using an appropriate scaling ansatz forthe free energy atµB = 0, one can
show thatc4 will develop a cusp in the 2 flavor chiral limit with rather heavy strange quark mass.
Hence,cB

4=cB
2 = ρ�2

2 should have a peak near the transition temperature and the radius of conver-
gence may be short nearTc when the u, d quark mass is sufficiently small. This implies that the
distance to the critical values ofµB=T may be estimated by measuringρn with rather smalln.

The convergence radiusρn have been studied in a 2 flavor simulation with a pion mass of
mπ � 770MeV [26]. The results ofχB

4 =χB
2 = 12cB

4=cB
2 are shown by green symbols in Fig.2, where

χB
n � n!cB

n . The result is consistent with the hadron resonance gas prediction at low temperature
and with the free gas value at high temperature. However, there is no peak aroundTc. SinceχB

2

also increases sharply just belowTc, χB
4 =χB

2 does not increase nearTc althoughχB
4 itself has a

pronounced peak. It is interesting to study the behavior ofρn with small u, d quark masses near

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
0
0
2

Recent progress in lattice QCD at finite density Shinji Ejiri

0.5 1 1.5 2
T/T

0

0

2

4

6

8

10

µ
q
/T=1.2

µ
q
/T=1.0

µ
q
/T=0.8

µ
q
/T=0.6

µ
q
/T=0.4

µ
q
/T=0.2

n
q
/T

3

0.5 1 1.5 2
T/T

0

0

5

10

15

20

µ
q
/T=1.2

µ
q
/T=1.0

µ
q
/T=0.8

µ
q
/T=0.6

µ
q
/T=0.4

µ
q
/T=0.2

µ
q
/T=0.0

χ
q
/T

2

Figure 3: Quark number density (left) and quark number susceptibility (right) as functions of temperature
andµq=T by a simulation with an improved Wilson quark action [7].T0 is Tc at µq = 0.

the physical point. The red symbols in Fig 2 are results ofχB
4 =χB

2 near the physical mass point in
2+1 flavor QCD obtained by the RBC-Bielefeld Collaboration [6]. They observed a peak nearTc

beyond the hadron resonance gas value forNt = 4, which may be related to the critical point.
Moreover, becauseχB

2 = χB=T2 andχB
4 = ∂ (χB=T2)=∂ (µB=T) at µB = 0, the figure ofχB

4 =χB
2

indicates that the baryon number susceptibility(χB=T2) increases more sharply near the transition
point as the density is increased when u, d quark masses are small.

2.4 Study by a Wilson type quark action

Most lattice QCD studies at finite temperature and density have been performed using stag-
gered type quark actions with the fourth-root trick of the quark determinant. The theoretical base
for the fourth-root trick is not confirmed. Moreover, the scaling properties universal to the three-
dimensional O(4) spin model, as expected from the effectivesigma model, has not been confirmed
in 2 flavor QCD. Therefore, it is important to carry out simulations adopting different lattice quark
actions to control and estimate systematic errors due to lattice discretization.

The WHOT-QCD Collaboration studied finite temperature and density QCD using the clover-
improved Wilson quark action and the RG-improved Iwasaki gauge action. In contrast to the case
of staggered quarks, the subtracted chiral condensate shows the scaling behavior with the critical
exponents and scaling function of the O(4) spin model for this action [31], and the EoS atµq = 0
have been studied [32]. They performed simulations on 163� 4 lattice along lines of constant
physics with the mass ratio of pion and rho mesonmπ=mρ = 0:65 and 0:80, and calculated the EoS
at finite density [7, 33]. Because the study by a Wilson quark action is more difficult than that by
staggered quarks in general, some improvements are required. They used a hybrid method of the
Taylor expansion and the reweighting. Evaluating the quarkdeterminant by the Taylor expansion
up toO(µ4

q), Z (µq)=Z (0) was computed. They then obtained the quark number density and the
susceptibility by numerical differentiations with respect to µq. The results of the quark number
density and the susceptibility are plotted in Fig. 3 as functions ofT for eachµq=T. These are quite
similar to the results obtained by the previous staggered quark simulations. The quark number
density increases sharply nearTc and the slope becomes larger asµq=T increases. Also, they found
that a peak inχq=T2 appears nearTc for largeµq=T, suggesting the existence of the critical point.

7
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Figure 4: Phase diagram in the(T;µq) plane (left) and quark mass dependence of the order of phase transi-
tions, Columbia plot (right).
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3. Critical point at finite density

In this section, we discuss the critical point terminating the first order phase transition line in
the(T;µq) phase diagram sketched in Fig. 4 (left). The critical point is one of the most interesting
features that may be discovered in heavy-ion collision experiments. We summarize the current
discussion on the existence of the critical point in the QCD phase diagram.

3.1 Quark mass dependence of the critical point

The order of the phase transition depends on the quark mass for 2+1 flavor QCD. By changing
the quark mass, the critical point at finite density can be shifted to the low density regime, where we
can study it by a simulation. The expected nature of the phasetransition atµq = 0 is summarized
in the right panel of Fig. 4. The horizontal axismud is the u and d quark masses and the vertical
axisms is the strange quark mass. We expect that the phase transition of 2 flavor QCD in the chiral
limit, (mud;ms) = (0;∞), is of second order and that of 3 flavor QCD,(mud;ms) = (0;0), is of first
order [34]. The quenched limit,(mud;ms) = (∞;∞), is also of first order [35, 36]. The transition

8
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for 2 flavor QCD(ms = ∞) with finite mud is crossover, and 2+1 flavor QCD has a second order
critical line separating the first order region at small massand the crossover region at large mass,
which is shown by the bold red line in Fig. 4 (right).

We can also discuss the nature of the phase transition at finite density. The left panel of Fig. 5
is a prediction of the critical surface in the(mud;ms;µq) parameter space from the Nambu-Jona-
Lasinio model with the Polyakov loop (PNJL model) [37]. The red lines indicate the critical surface
which separates the first order and crossover regions. We expect that the first order region becomes
wider asµq increases and the crossover transition at low density changes to be of first order at high
density for the physical quark masses.

Mean field argument near the tricritical point

Let us start with a mean field analysis in the standard sigma model. We discuss the tricritical
point on themud = 0 axis in Fig. 4 (right), at which the second order critical line separates from the
axis. In the vicinity of the tricritical point atµq = 0, the effective potential in terms of the chiral
order parameterσ is modeled by the following equation,

Veff(σ) = 1
2

aσ2+ 1
4

bσ4+ 1
6

cσ6�hσ ; (3.1)

where we assumec> 0 so thatVeff is bounded from below for largejσ j. The coefficients,a;b and
h may be parameterized as

a= att +aµ µ2
q ; b= bss+bµ µ2

q ; h= mud; t = T�Tc

Tc
; s= mE�ms

mE
; (3.2)

wheremE is ms at the tricritical point. The coefficientb controls the order of phase transition.
Assuming a symmetry underµq to�µq, the leading contribution tob must beµ2

q at low density.
Since the effective potential isO(σ4) on the second order critical surface,

∂ nVeff

∂σn = 0; (n= 1;2;3): (3.3)

Solving these equation, we obtain�h= 8c
3

� a
5c

�5=4 ; �h= 8c
3

��3b
10c

�5=2 ; (a� 0;b� 0): (3.4)

The critical surface in the(mud;ms;µq) space is described by

cudm2=5
ud +cs(mE�ms)+µ2

q = 0: (3.5)

with appropriate constantscud andcs. The strange quark mass dependence and theµq dependence
of the critical light quark massmc

ud around the tricritical point are

mc
ud � (mE�ms)5=2; mc

ud � µ5
q : (3.6)

The first equation describes the critical line on theµq = 0 plane sketched in Fig. 4 (right). We
expect from the first equation that the criticalmud increases very slowly asms decreases. Similarly,
the second equation suggests that the chemical potential dependence of the critical surfacemc

ud(µq)
is also small in the low density region, since theµq dependence starts from a term ofµ5

q atmud = 0.
The information of the critical surface is important to knowthe order of phase transition for the real
world, and the critical surface can be measured near the critical line atµq = 0 because the study by
Monte-Carlo simulations is possible in the low density region.

9
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Numerical study of the critical surface

To investigate the critical surface, some groups performedsimulations near the critical quark
mass atµq = 0 in QCD with 3 flavors having degenerate quark masses,mud = ms, and studied the
µq dependence of the critical quark massmc(µq). For extrapolatingmc(µq), an approach on the
basis of the Taylor expansion in terms ofµq=T [38] and that of the imaginary chemical potential
[39] have been developed. Moreover, a study of phase-quenched finite density QCD, in which the
effect from the complex phase of the quark determinant is neglected, has been discussed in [40]. As
we expect form the mean field argument, theµq dependence of the critical mass have been found
to be small in the low density region.

Recently, an interesting result was obtained by de Forcrandand Philipsen [41]. They studied
theµq-dependence of the critical quark mass for QCD with 3 flavors of standard staggered quarks
very precisely and found that the critical line moves towards lighter quark masses as a function
of µ2

q . They performed simulations with an imaginary chemical potential, µ = µqa = iµia, on an
Ns�Nt = 83�4 and 123�4 lattices. Because(detM(µ))� = detM(�µ�) for a complexµ , the
quark determinant is real ifµ is purely imaginary, hence the simulations are possible. Inorder
to identify mc(µi), they computed the fourth order Binder cumulant constructed from the chiral
condensate,B4 = h(δψ̄ψ)4i=h(δψ̄ψ)2i2. It has been verified that the critical point belongs to the
Ising universality class and the value ofB4 atTc for mc is the same with that of 3-dimensional Ising
model,B4 = 1:604; [42]. In the low density region, the analytic continuation from imaginaryµ to
realµ is performed assuming

B4 = 1:604+b10(m�m0
c)+b01µ2+b02µ4+ � � � : (3.7)

Sinceb10(m�m0
c) +b01µ2 = 0 along the critical line in the leading order, one can estimate the

curvature of the critical quark mass atµ = 0 by ∂mc=∂ (µ2) � �b01=b10. Moreover, becauseB4

increases when the first order phase transition changes to crossover,b10 is positive. Hence, the
curvature is positive (negative) ifb01 is negative (positive). The results of∂B4=∂ ((µia)2) is plotted
as a function ofµ2

i in Fig. 5 (right). b01 is given byb01 = � limµ2
i !0 ∂B4=∂ ((µia)2). From this

figure,∂mc=∂ (µ2) is found to be negative. This result contradicts to the naiveexpectation.
In this situation, a simple extrapolation of the critical surface to the physical quark mass point

is difficult because the first order region in the(mud;ms) plane becomes smaller asµq increases if
we do not consider higher order terms ofµq in the Taylor expansion ofmc(µq). To understand the
critical surface in the(mud;ms;µq) space, studies in a wide range of the chemical potential may be
necessary. The analytic continuation in the imaginary chemical potential approach is usually based
on the Taylor expansion ofB4 andmc(µq), e.g. Eq. (3.7). One of the possible improvements to
study in the wide range is to use another assumption which is based on a phenomenological model.
The analytic continuation with various assumptions has been discussed in [43, 44].

3.2 Reweighting method and Sign problem

Because the Boltzmann weight is complex atµq 6= 0, the Monte-Carlo method is not applicable
directly. A popular approach to avoid this problem is the reweighting method [45, 46]. We perform
simulations atµq = 0, and incorporate the remaining part of the correct Boltzmann weight for finite
µq in the calculation of expectation values. Expectation valueshOi at (β ;µq) are thus computed

10
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Figure 6: Histograms of the complex phaseθ [12]. Dashed lines are the fit results by Gaussian functions.

by a simulation at(β ;0) using the following identity:hOi(β ;µq) = DO (detM(µq)=detM(0))Nf

E(β ;0)D(detM(µq)=detM(0))Nf

E(β ;0) : (3.8)

This is the basic formula of the reweighting method. However, because detM(µq) is complex,
the calculations of the numerator and denominator in Eq. (3.8) becomes in practice increasingly
more difficult for largerµq. If the typical value of the complex phase of the quark determinant
θ becomes larger thanπ=2, the real part ofeiθ (= cosθ) changes its sign frequently. Eventually
both the numerator and denominator of Eq. (3.8) become smaller than their statistical errors and
Eq. (3.8) can no longer be evaluated. We call it the “sign problem”.

We define the phase of the quark determinantθ by the imaginary part ofNf lndetM(µq) in the
framework of the Taylor expansion. In this framework, lndetM(µq) can be separated into real and
imaginary parts easily because the even derivatives of lndetM(µq) are real and the odd derivatives
are purely imaginary [24]. The complex phasesθ are thus given by

θ = NfIm [ln(detM)℄ = Nf

∞

∑
n=0

1(2n+1)! Im
∂ 2n+1(lndetM)
∂ (µq=T)2n+1

�µq

T

�2n+1 ; (3.9)

where one must replaceNf in these equations toNf=4 when one uses a staggered type quark action.
In Fig. 6, we plot histograms ofθ calculated at the pseudo-critical temperature(β = 3:65) for
µq=T = 1:0 and 2:0 using the data of the Taylor expansion coefficients up toO(µ5

q) obtained with
2 flavors of p4-improved staggered quarks in [26]. The application range of the reweighting method
can be estimated from the histogram. When the width of the distribution is larger thanO(π), the
phase factor changes its sign frequently. Then, the sign problem happens and the reweighting
method does not work. Here, it is worth noticing thatθ corresponds to the complex phase of the
quark determinant however this quantity is not restricted to the range from�π to π because there is
no reason that the imaginary part of lndetM in Eq. (3.9) must be in the finite range. An interesting
point which is found from this figure is that these histogramsseem to be almost Gaussian functions.
We fit these data by Gaussian functions,� exp(�xθ2), with a fit parameterx. The dashed lines in
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Fig. 6 are the fit results. We find that the histogram ofθ is well-represented by a Gaussian function.
Such a Gaussian distribution is expected when the system size is sufficiently large in comparison
to the correlation length due to the central limit theorem. Moreover, the Gaussian distribution ofθ
has been discussed in chiral perturbation theory [9].

Once we assume a Gaussian distribution forθ , the problem of complex weights can be avoided
[12]. We calculate the expectation value of



Feiθ�(T;µq=0), whereF = jdetM(µq)=detM(0)jNf

andOjdetM(µq)=detM(0)jNf for the denominator and numerator of Eq. (3.8), respectively. If
the operatorO is real, the complex phase is given by Eq. (3.9). We introducethe probability
distributionw̄ as a function ofF andθ :

w̄(F 0;θ 0)� Z DUδ (F 0�F)δ (θ 0�θ)(detM(0))Nf e�Sg; (3.10)

whereδ (x) is the delta function. The distribution function itself is defined as an expectation value
at µq = 0, howeverF andθ are functions ofµq=T obtained by a simulation atµq = 0.

Since the partition function is real even at non-zero density, the distribution function has the
symmetry under the change fromθ to�θ . Therefore, the distribution function is a function ofθ2,
e.g.,w̄(θ)� exp[�(a2θ2+a4θ4+a6θ6+ � � �)℄: If the fluctuations of the phase is small at smallµq,
theθ2 term gives a dominant contribution. Moreover, as we discussed, the distribution function is
well-approximated by a Gaussian function:

w̄(F;θ) �r
a2(F)

π
w̄0(F)exp

��a2(F)θ2� : (3.11)

We assume this distribution function in terms ofθ whenF is fixed. The coefficienta2(F) is given
by 1=(2a2(F 0)) = 


θ2δ (F 0�F)�(T;µq=0) =hδ (F 0�F)i(T;µq=0) � 

θ2
�

F 0 .
Then, the integration overθ can be carried out easily,D

F(µq)eiθ
E(T;µq=0) � 1Z Z

dF w̄0(F)e�1=(4a2)F = D
F(µq) e�hθ 2iF

=2
E(T;µq=0) : (3.12)

Sinceθ is roughly proportional to the size of the quark matrixM, the value of


θ2
�

F becomes
larger as the volume increases as well as increasingµq. Therefore, the phase factor in



F(µq)eiθ�

decreases exponentially as a function of the volume andµq. However, the operator in Eq. (3.12)
is always real and positive for each configuration, hence theexpectation value of



F(µq)eiθ� is

always larger than its statistical error in this method. Therefore, the sign problem is completely
avoided if we can assume the Gaussian distribution ofθ .

3.3 Plaquette effective potential

One of the most primitive approaches to identify the order ofthe phase transition is to inves-
tigate the histogram of a typical quantity such as plaquette, Polyakov loop or chiral condensate
by Monte-Caro simulations. For the case of the plaquette(P), the distribution function, i.e. the
histogram, is defined by

w(P0) = Z DU δ (P0�P) (detM)Nf e6βNsiteP: (3.13)
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For later discussions, we define the average plaquetteP asP��Sg=(6βNsite), whereNsite� N3
s �

Nt . This is a linear combination of Wilson loops for an improvedaction. If there is a first order
phase transition point, where two different states coexistat the transition point, the histogram must
have two peak at two different values ofP corresponding to the hot and cold phases. Such studies
have been done to confirm that the phase transition of SU(3) pure gauge theory is of first order, and
the double peaked distribution have been obtained at the transition point [35, 36]. This method is
equivalent to other methods to identify the order of phase transitions by the Binder cumulant and
by the Lee-Yang zero [47].

The argument of the distribution was extended to the case of finite density QCD by [12]. Here
and hereafter, we restrict ourselves to discuss only the case when the quark matrix does not depend
on β explicitly for simplicity. The partition function can be rewritten asZ (β ;µq) = Z

R(P;µq)w(P;β ) dP; (3.14)

wherew(P;β ) is defined in Eq. (3.13) atµq = 0 andR(P;µq) is the reweighting factor for finiteµq

defined by

R(P0;µq)� R DU δ (P0�P)(detM(µq))NfR DU δ (P0�P)(detM(0))Nf
= D

δ (P0�P)(detM(µq)=detM(0))Nf

E(β ;0)hδ (P0�P)i(β ;0) :(3.15)

ThisR(P;µq) is independent ofβ and can be measured at anyβ . Here,h� � �i(β ;0) means the expecta-
tion value atµq = 0. In this method, all simulations are performed atµq = 0 and the effect of finite
µq is introduced though the operator detM(µq)=detM(0) measured on the configurations generated
by the simulations atµq = 0. The distribution function for non-zeroµq is R(P;µq)w(P;β ), and thus
the effective potential is defined by

Veff(P;β ;µq)�� ln[R(P;µq)w(P;β )℄ =� lnR(P;µq)+Veff(P;β ;0): (3.16)

The shape of the effective potential can then be investigated atµq 6= 0 onceR(P;µq) is obtained. A
schematic illustration ofVeff(P) is shown in Fig. 7 (left).

First, the peak position of the distribution function movesasµq changes, which is determined
by solving

∂Veff

∂P
(P;β ;µq) = ∂Veff

∂P
(P;β ;0)� ∂ (lnR)

∂P
(P;µq) = 0: (3.17)

Then, the effect fromµq to the peak position is the same as that whenβ (temperature) is changed.
From the definition atµq = 0, the weightw(P;β ) and the effective potential becomes

w(P;βeff) = e6(βeff�β)NsitePw(P;β ); Veff(P;βeff;0) =Veff(P;β ;0)�6(βeff�β )NsiteP; (3.18)

under a change fromβ to βeff. Hence, the change fromβ to

βeff(µq)� β +(6Nsite)�1∂ (lnR)=∂P (3.19)

corresponds(β ;0) to (β ;µq) for the determination of the minimum ofVeff(P). As we will see,
the slope of lnR is positive. This explains why the phase transition happenswhen the density is
increased as well as with increasing temperature(β ).
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Figure 7: (left) Schematic illustration of the effective potential and the reweighting factor. (right) Plaquette
histogram and the effective potential atµq = 0 [12].
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Figure 8: Reweigiting factor (left) and its curvature (right) as functions ofP [12].

Moreover, we find from Eq. (3.18) that the curvature ofVeff(P) does not change under the
change ofβ . This means that the curvature ofVeff(P) is independent ofβ . The critical value ofµq

can be estimated by measuring the curvature of the effectivepotential,

∂ 2Veff

∂P2 (P;µq) =�∂ 2(lnR)
∂P2 (P;µq)+ ∂ 2Veff

∂P2 (P;0) = 0: (3.20)

Because the curvature ofVeff(P;β ;0) at µq = 0 is positive and the curvature ofVeff(P;β ;µq) at a
second order phase transition point is zero, the parameter range where� lnR(P;µq) has negative
curvature is required for the existence of the critical point.

The probability distribution function at non-zeroµq has been calculated in [12] using the data
obtained in [26] with the 2 flavor p4-improved staggered quark action on a 163�4 lattice. The pion
mass ismπ � 770MeV, which is heavier than the physical mass. The distribution functionw(P) at
µq = 0, i.e. the histogram ofP, and the effective potentialVeff(P) are given in Fig. 7 (right) for each
β . The values ofβ andT=Tc are shown above these figures. The potentialVeff(P) is normalized by
the minimum value for eachβ . Because the phase transition is a crossover transition for2 flavor
QCD with finite quark mass, the distribution function is always of Gaussian type, i.e. the effective
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potential is always a quadratic function. The value of the plaquette at the potential minimum
increases asβ increases in accordance with the argument of the potential minimum.

The reweighting factorR(P;µq) is plotted in Fig. 8 (left). The quark determinant detM(µq) is
estimated using the data of the Taylor expansion coefficients in [26]. Higher order terms thanµ6

q

order are neglected. The application range was selected by checking the truncation error. Because
the sign problem is serious for the calculation ofR(P;µq), the method discussed in Sec. 3.2 was
used to avoid the sign problem. The dashed lines in Fig. 8 (left) are the results that we obtained
when the effect of the complex phaseeiθ is omitted. Because the contribution from the complex
phase is not very large, the error from the approximation to avoid the sign problem may be small.

To study the existence of a second order phase transition, wediscuss the curvature of the
potential. The result of the curvature,d2(lnR)=dP2(P;µq), is plotted as solid line in Fig. 8 (right).
The magnitude of the curvature of lnRbecomes larger asµq=T increases. The dashed line in Fig. 8
(right) is the result of�d2(lnw)=dP2(P) atµq = 0. This figure indicates that the maximum value of
d2(lnR)=dP2(P;µq) at P= 0:80 becomes larger than�d2(lnw)=dP2 for µq=T >� 2:5. This means
that the curvature of the effective potentiald2Veff=dP2 vanishes atµq=T � 2:5 and a region ofP
where the curvature is negative appears for largeµq=T, corresponding to a double-well potential.

Further studies are, of course, necessary for the precise determination of the critical point in
the(T;µq) plane, increasing the number of terms in the Taylor expansion of lndetM and decreasing
the quark mass in the simulation. In particular, the critical value ofµq is sensitive to the quark mass
as discussed in Sec. 3.1. However, the argument given above suggests the appearance of a first
order phase transition line at largeµq=T.

3.4 Canonical approach

Another interesting approach is to construct the canonicalpartition functionZC(T;N) by fix-
ing the total quark number(N) or quark number density(ρ). Using the canonical partition function,
we can also discuss the effective potential as a function of the quark number. In this section, we
denote the grand partition function asZGC(T;µq) to distinguish it from the canonical partition
functionZC(T;N) explicitly. The relation betweenZGC(T;µq) andZC(T;N) is given byZGC(T;µq) = Z DU (detM(µq=T))Nf e�Sg = ∑

N

ZC(T;N)eNµq=T : (3.21)

Because this equation is a Laplace transformation fromZC toZGC essentially, the canonical parti-
tion function is obtained fromZGC(T;µq) by an inverse Laplace transformation.

In order to investigate the net quark number giving the largest contribution toZGC(T;µq), it is
worth introducing an effective potentialVeff as a function ofN,

Veff(N;T;µq)�� lnZC(T;N)�N
µq

T
= f (T;N)

T
�N

µq

T
; ZGC(T;µq) = ∑

N
e�Veff; (3.22)

where f is the Helmholtz free energy. Using the effective potentialfor the quark number, the
argument of the nature of phase transition is possible as well as the effective potential for the
plaquette, and the physical meaning of this effective potential is clearer than that of the plaquette.
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Figure 9: Phase structure in the(T;ρ) plane and the behavior ofµ�
q=T as a function ofρ .

If there is a first order phase transition region, we expect that this effective potential has minima
at more than one value ofN. At the minima, the derivative ofVeff satisfies

∂Veff

∂N
(N;T;µq) =�∂ (lnZC)

∂N
(T;N)� µq

T
= 0: (3.23)

Hence, in the first order transition region ofT, we expect∂ (lnZC)=∂N(T;N)��µ�
q=T takes the

same value at differentN. Here,µ�
q(T;N) is the chemical potential which gives a minimum of the

effective potential at(T;N) and becomesµq in the thermodynamic limit because the potential is
minimized in the large volume limit.

The phase structure in the(T;ρ) plane and the expected behavior ofµ�
q=T are sketched in

the left and right panels of Fig. 9, respectively. The thick lines in the left figure are the phase
transition line. We expect that the transition is crossoverat low density and becomes of first order
at high density. Since two states coexist on the first order transition line, the phase transition line
splits into two lines in the high density region, and the two states are mixed in the region between
two lines. The expected behavior ofµ�

q along the lines A and B are shown in the right figure.
When the temperature is higher than the temperature at the critical point Tpc (line A), µ�

q increases
monotonically as the density increases. However, for the case belowTcp (line B), this line crosses
the mixed state. Because the two states ofρ1 andρ2 are realized at the same time,µ�

q does not
increase in this region betweenρ1 andρ2.

Glasgow method [45, 48] has been a well-known method to compute the canonical parti-
tion function. A few years ago, such a behavior at a first orderphase transition was observed by
Kratochvila and de Forcrand in 4 flavor QCD with staggered fermions [11] calculating the quark
determinant by the Glasgow algorithm on a small lattice. Also, Alexandru et al. [49] proposed
a method to perform simulations with canonical ensemble directly, and recently the method was
tested for 2 and 4 flavor QCD [14]. Moreover, a method based on asaddle point approximation
was proposed by [13]. By this approximation, the computational cost is drastically reduced and the
first order like behavior was observed for 2 flavor QCD. We explain these recent developments.

Inverse Laplace transformation

From Eq. (3.21), the canonical partition function can be obtained by an inverse Laplace trans-

16



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
0
0
2

Recent progress in lattice QCD at finite density Shinji Ejiri

è

è

è

è
è

è

è

è

è
è

ì

ì
ì

ì

ì
ì

ì

ì

ì

ò

ò

ò

ò
ò

ò

ò

ò

ò

0 2 4 6 8 10

1

2

3

4

Baryon number

Μ
B
�T

N f =4, Wilson gauge and fermion action, 63
´4

0.90 Tcè

0.92 Tcì

0.94 Tcò

è

è
è

è
è

è
è

è

ì

ì
ì ì ì

ì

ì

ì

0 2 4 6 8

1

2

3

4

5

6

7

Baryon number

Μ
B
�T

N f =2, Wilson gauge and fermion action, 63
´4

0.86 Tcì

0.83 Tcè

Figure 10: Baryon chemical potential as a function of baryon number forNf = 4 (left) Nf = 2 (right)
obtained by simulations with canonical ensemble [14].

formation [50, 51],ZC(T;N) = 3
2π

Z π=3�π=3
e�N(µ0=T+iµi=T)ZGC(T;µ0+ iµi) d

�µi

T

� ; (3.24)

whereµ0 is an appropriate real constant andµi is a real variable. Note thatZGC(T;µq+2π iT=3) =ZGC(T;µq) [52]. The grand canonical partition function can be evaluated by the calculation of the
following expectation value atµq = 0.ZGC(T;µq)ZGC(T;0) = 1ZGC

Z DU

�
detM(µq=T)

detM(0) �Nf

detM(0)Nf e�Sg =*�
detM(µq=T)

detM(0) �Nf
+(T;µq=0) :

(3.25)

If one adoptsµ0 = 0, the chemical potential in Eq. (3.25) is purely imaginary and the quark
determinant is real. Therefore, the calculation of the quark determinant atiµi is easier than the
calculation at realµq. Performing a simulation atµq = 0, the standard staggered quark determinant
can be computed for any chemical potential at the cost of diagonalizing a matrix modified from the
staggered fermion matrix by using the Glasgow algorithm [48]. Because Eq. (3.24) is actually a
Fourier transformation, if one calculates the Fourier coefficients of detM(iµi=T) for each configu-
ration, the canonical partition functionZC(T;N)=ZGC(T;0) can be computed by averaging them
over the configurations.

Kratochvila and de Forcrand calculated�∂ (lnZC)=∂N(T;N) as a function of the baryon num-
berNB�N=3 with a fixed temperature(β ) performing a simulation of 4 flavor QCD with staggered
quarks on a 63�4 lattice [11]. The phase transition is of first order even atµq = 0 for their simu-
lation of 4 flavor QCD. Their result of�∂ (lnZC)=∂N(T;N) shows an S-shape in the temperature
range belowTc, as we discussed above for a first order phase transition.

Simulations with canonical ensemble

By replacing the order of the integrals of the inverse Laplace transformation Eq. (3.24) and the
path integral inZGC, the canonical partition function is written byZC(T;N) = Z DUe�SgdetNMNf ; (3.26)

17



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
0
0
2

Recent progress in lattice QCD at finite density Shinji Ejiri

0 2 4 6 8 10 12

ρ/T
3

0

1

2

3

4

T/T
c
=0.76

T/T
c
=0.80

T/T
c
=0.83

T/T
c
=0.87

T/T
c
=0.90

T/T
c
=0.94

T/T
c
=0.98

T/T
c
=1.02

T/T
c
=1.07

T/T
c
=1.11

T/T
c
=1.16

µ
q
/T

free gas limit

*

Figure 11: Chemical potential vs. quark number density forNf = 2 with a saddle point approximation [13].

where detN MNf is defined by

detNMNf = 1
2π

Z 2π

0
e�iNµi=T detM(iµi=T)Nf d

�µi

T

� : (3.27)

The method to perform Monte-Carlo simulations with this partition function has been proposed
by [49, 53]. Although detNMNf is complex, we obtain detNMNf = �

det�NMNf
��

andZC(T;N) =ZC(T;�N) from a symmetry under the replacement fromµq to �µq. Using these properties, we
can rewrite the partition function asZC(T;N) = Z DUe�SgRe

�
detNMNf

� : (3.28)

Then, the Boltzmann weight is real and the Monte-Carlo method is applicable. One can generate
configurations according to the weight exp(�Sg)Re(detN MNf ), and detN MNf is computed numeri-
cally with an approximation,

detNMNf � 1
Ndis

Ndis�1

∑
j=0

e�2π i jN=Ndis detM(2π i j=Ndis)Nf : (3.29)

This approximation is applicable forNdis� N.
TheχQCD collaboration (Kentucky group) performed simulationswith the canonical ensem-

ble on a 63� 4 lattice for 2 and 4 flavor QCD with Wilson quarks using this method and the
preliminary results are presented in this conference [14].The results of the chemical potential
µ�

B=T ��∂ (lnZC)=∂ (N=3) are shown in Fig. 10 for 4 flavor QCD (left) and 2 flavor QCD (right).
Their result of 4 flavor QCD shows an S-shape in the temperature range belowTc, suggesting a first
order phase transition. This result is consistent with the previous result [11]. On the other hand, the
chemical potential increases monotonically for 2 flavor QCD. This result suggests that the phase
transition is crossover at the temperature they investigated.

Saddle point approximation

However, the studies by above-mentioned two methods need much computational cost and are
difficult except on a small lattice with present day computerresources. To reduce the computational

18



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
0
0
2

Recent progress in lattice QCD at finite density Shinji Ejiri

cost, a method based on a saddle point approximation has beenproposed in [13]. If one selects a
saddle point asµ0 in Eq. (3.24). The information which is needed for the integral is only around
the saddle point when the volume is sufficiently large. Moreover, if we restrict ourselves to study
the low density region, the value of detM(µq=T) near the saddle point can be estimated by the
Taylor expansion aroundµq = 0. The calculations by the Taylor expansion are much cheaperthan
the exact calculations and the studies using large latticesare possible. Also, the truncation error
can be systematically controlled by increasing the number of the expansion coefficients.

We perform the integral in Eq. (3.24) by a saddle point approximation. We denote the quark
number density in a lattice unit and physical unit asρ̄ = N=N3

s and ρ=T3 = ρ̄N3
t , respectively.

We assume that a saddle pointz0 exists in the complexµq=T plane for each configuration, which
satisfiesD0(z0)� ρ̄ = 0, where(detM(z)=detM(0))Nf = exp[N3

sD(z)℄ andD0(z) = dD(z)=dz. We
then perform a Taylor expansion around the saddle point and obtain the canonical partition function,ZC(T; ρ̄V) = 3

2π
ZGC(T;0)�Z π=3�π=3

exp

�
V

�
D(z0)� ρ̄z0� 1

2
D00(z0)x2+ � � ���dx

�(T;µq=0)� 3p
2π
ZGC(T;0)*exp[V (D(z0)� ρ̄z0)℄e�iα=2

s
1

VjD00(z0)j+(T;µq=0) : (3.30)

Here,D00(z) = d2D(z)=dz2; V � N3
s andD00(z) = jD00(z)jeiα . We chose a path which passes the

saddle point. Higher order terms in the expansion ofD(z) become negligible when the volumeV
is sufficiently large.

We calculate the derivative of the effective potential withrespect toN or ρ . Within the frame-
work of the saddle point approximation, this quantity can beevaluated by

µ�
q

T
=� 1

V
∂ lnZC(T; ρ̄V)

∂ ρ̄
� D

z0 exp[V (D(z0)� ρ̄z0)℄e�iα=2
q

1
VjD00(z0)jE(T;µq=0)D

exp[V (D(z0)� ρ̄z0)℄e�iα=2
q

1
VjD00(z0)jE(T;µq=0) : (3.31)

This equation is similar to the formula of the reweighting method for finiteµq. The operator in the
denominator corresponds to a reweighting factor, andµ�

q=T is an expectation value of the saddle
point calculated with this modification factor.

The derivative of lnZC was computed in [13] using the data obtained in [26] with the 2flavor
p4-improved staggered quark action,mπ � 770MeV. Because the modification factor is a com-
plex number, this calculation suffers from the sign problem. To eliminate the sign problem, the
approximation discussed in Sec. 3.2 was used. If one assumesthat the distribution of the complex
phase is well-approximated by a Gaussian function, the complex phase factoreiθ can be replaced
by exp[�hθ2i=2℄. Moreover, the quark determinant was estimated by the Taylor expansion up
to O(µ6

q). Because the calculation of Eq. (3.31) is similar to the calculation by the reweighting
method, the configurations which give important contribution are changed by the modification fac-
tor. To avoid this problem, the multi-β reweighting method [54] was used. By this method, the
important configurations are automatically selected amongall configurations generated at many
simulation points ofβ .

The result ofµ�
q=T is shown in Fig. 11 as a function ofρ=T3 for each temperatureT=Tc(β ).

The dot-dashed line is the value of the free quark-gluon gas in the continuum theory,ρ=T3 =
19



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
0
0
2

Recent progress in lattice QCD at finite density Shinji Ejiri

Nf [(µq=T)+(1=π2)(µq=T)3℄. From this figure, we find that a qualitative feature ofµ�
q=T changes

aroundT=Tc � 0:8, i.e. µ�
q=T increases monotonically asρ increases above 0.8, whereas it shows

an S-shape below 0.8. This means that there is more than one value of ρ=T3 for one value of
µ�

q=T below T=Tc � 0:8. This is a signature of a first order phase transition. Although some
approximations are used, the critical value ofµ�

q=T is about 2:4, which is roughly consistent with
the critical point estimated in Sec. 3.3 by calculating the effective potential of the plaquette using
the same configurations,(T=Tc;µq=T)� (0:76;2:5). The difference between these two results may
be a systematic error. Further studies are necessary to predict the critical point quantitatively, but
we find that the canonical approach is useful to study the phase structure at finite density.

4. Summary

We reviewed recent studies of lattice QCD at finite density. Remarkable progress in the study
of the equation of state was obtained. The MILC Collaboration and the RBC-Bielefeld Collabo-
ration performed simulations with quark masses near the physical point using improved staggered
quark actions and calculated thermodynamic quantities along lines of constant entropy per baryon
number in the low density region using the Taylor expansion method. Because experimental re-
sults obtained in heavy-ion collisions can be well-explained by a perfect fluid model, the isentropic
equation of state is needed for the analysis of the experimental data. Moreover, fluctuations of
hadron numbers at finite density are important, which can be measured in the experiments. If there
is a critical point, the fluctuation of baryon should be largearound that point. Recent simulations
show that the baryon number fluctuation makes a peak nearTc at finite µq and the fluctuation be-
comes larger when the quark masses are decreased to the physical point. Confirmations by other
quark actions are also important. Simulations with a Wilsontype quark action were performed by
the WHOT-QCD Collaboration and the large fluctuation at finite µq was discussed.

The chemical potential dependence of the critical line in 2+1 flavor QCD with quark masses(mud;ms) was studied at low density to understand the grovel structure of the critical surface in the(mud;ms;µq) parameter space. Theµq dependence of the critical quark mass is found to be small in
the low density regime and the current result of∂mc=∂ (µ2

q) is slightly negative atmud=ms. Further
studies in a wide range of the parameter space are important to understand the phase structure.

Some methods to investigate finite density QCD beyond the lowdensity region were also
discussed. A method based on the investigation of an effective potential as a function of the average
plaquette was proposed introducing an approximation to avoid the sign problem, and the existence
of the critical point at finite density was suggested by a simulation with improved staggered quarks.
Moreover, it was found that interesting information about the order of phase transitions at finite
density is obtained by constructing the canonical partition function for each quark number.
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