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1. Introduction

Monte Carlo methods have tremendously improved our understanding detyvat strongly
interacting quantum field theories. Beginning with the discovery of “clusgaraghms” for clas-
sical spin systems [1, 2], and the “loop algorithms” for quantum spin sysf8ke search for
efficient algorithms has been an important area of research over thewpadecades. Although
many algorithmic improvements have been achieved for QCD-like problemis iidls been espe-
cially difficult to find good algorithms for lattice field theory problems in the pnegeof a chemical
potential or when the microscopic theory contains strongly interacting magsiesions. How-
ever, recently the landscape has begun to change somewhat. Thesgroger the past decade,
especially in studies of quantum spin systems and strong coupling lattice teagies, suggests
the existence of a new approach to a class of lattice field theories. In thisuallkdutline the
ideas behind the new approach by discussing a few examples.

One essential feature of the new approach is to formulate lattice field théoriesresenta-
tions that are similar to the world-line representation. Such representatisasiaturally in the
Hamiltonian formulation but are not usually used in the Lagrangian formulafienwe will see
below, they also arise naturally in Euclidean lattice field theory when one thindst the strong
coupling (or high temperature) expansions. In certain cases theeepatsns are indeed the well-
known world-line representations, in others they look different butesh@any properties of the
world line representations. For this reason we will refer to the new apprganerically as the
“WL-approach”. As we will see below one of the advantages of the wamkl representations is
that there are no new sign problems because of adding a chemical paiafikalthe conventional
approach. On the other hand, the world-line representations ardavatlir for local Monte Carlo
methods due to the presence of constraints. The loop cluster algorithm evéissthsuccessful
algorithm that was able solve the constrained problem efficiently. Howe#hisralgorithm was
rather restrictive and it was difficult to maintain the efficiency in the presendifferent types of
couplings especially with a chemical potential. Recently, it was realized thdodipealgorithm
is just one example of a more general class of algorithms referred to am“algorithms” [5] or
“directed-loop algorithms” [6] or “directed-path algorithm” [7]. We will exfto these slightly dif-
ferent algorithms together as “worm-algorithms” based on the pioneeringafohe first authors
Prokofév and Svustinov. These algorithms introduce a defect in théraons and sample the de-
fect space until the defect naturally eliminates itself. The sampled defact spitself a measure
of the two point correlation function. When combined with the worm-algorithmy¥heapproach
to lattice field theories have been found to be as efficient as the origin&ichlgorithms for clas-
sical spin models [5, 8]. On the other hand the WL-approach seem to ewiaely applicable.
As we will discuss below, the worm-algorithm can in principle be appli€dRY~! models which
cannot be solved using the conventional cluster algorithms.

As with any Monte-Carlo method, the WL-approach can fail due to signi@neh Sign
problems can arise due to frustrating interactions or in the presencevobfes. In two dimensions
fermionic sign problems can sometimes be solved in the world line representaierfermions
resemble hard-core bosons [9, 10]. Thus, WL-approach shouipplecable to these problems.
Solutions to fermionic sign problems also emerge in strongly coupled lattice ghaegees with
staggered fermions. In this case configurations naturally resemble livglcepresentations where
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fermions are confined into bosons. When combined with the efficient dikgatn algorithm [7]
this provides a new and powerful WL-approach for some scalar fielwtitrgewhich include those
that are invariant under symmetries liBg (2) x U(1) andSJ(2) x SJ(2) x U(1) [27, 25, 24].
These theories, which are of interest in the context of understandiigi®€ theories, could not
be solved efficiently with conventional approaches.

In higher dimensions solving fermionic sign problems is difficult, however theapproach
suggests new solutions in many cases [11, 12, 13, 14]. If the sign preldean be solved in the
WL-approach, then one can combine worm-algorithms with other convenatg@ithms to solve
the problem. Below we will discuss one such algorithm for the massless lattimngimodel in
any dimension. In the WL-approach the partition function is rewritten sudhtthesembles the
well known bag-model of QCD where the bags are dynamically determinjedtebinside the bag
the fermions are free, while outside they are confined. For this reasaalvihis new fermion
algorithm the “dynamical-bag algorithm”.

The basic ideas of the WL-approach are also applicable to gauge thddéeiesone needs to
rewrite the problem in a representation of world-sheets giving us a neg~approach” where a
worm-type algorithm involves cutting and reconnecting world sheets. Althoagy little is known
about these surface-cluster algorithms, the ideas seem promising. Belaill show some results
which suggest that it may be possible to measure large Wilson loops with littheieftbe confined
phase in Abelian lattice gauge theory using a WS-approach.

2. World-Line Approach: XY Model with a Chemical Potential

In this section we will illustrate the WL-approach using the example of the XY inote
make things interesting we will introduce a chemical potential that couples td (thecharge of
the particles. We begin with the action of the lattice field theory, in the convehfimmaulation,
which is given by

- BZ{COS([@(@M]W(‘SM)} (2.1)

wherex s a point on al 4 1-dimensional hypercubic lattica,=t,1, 2..,d represents the direction,
B is the inverse coupling of the theory and éix@) is the non-lineald (1) bosonic field. Clearly,
whenu # 0 the action is complex and the path integral suffers from a sign problerarendannot
use the conventional Monte Carlo methods. In particular the Wolff-clusterithm [2] is no
longer applicable.

In order to construct the WL-approach we rewrite the partition functiamguhe strong cou-
pling (or high temperature) expansion to all orders. Using the identity

exp{B COQ(p)} = ki Ik(B>eik“’, (2.2)

on every bond and integrating over the original angle variables the paftiti@tion can be written
in terms of integer bond variablé&g, and one gets

z=5y ﬂ{eﬂf‘mkwl () (;kxa kxw)} (2.3)

keal X0
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Figure1: Anillustration of the world-line configuration for the XY-odlel.

Herelk(B) is the modified Bessel function of the first kind. The delta function in the eleapres-
sion shows that the bond variables satisfy a local constraint at each &técewhich is nothing
but the current conservation relation. Thus, the partition function of ¢imelinear sigma model
has been rewritten as a sum over configurations of current-loopseHgliustrates one such con-
figuration in two dimensions. Importantly, this representation does notrdtdfa a sign problem
even at non-zerg. The sign problem has been traded for a constraint condition which easdy
satisfied by a local change. However, developments over the pastedieaae shown that there are
efficient non-local updates for such constrained problems [5, &]7, 1

Is this approach general? In other words can the sign problem of otisentz lattice field
theories with a chemical potential, be solved in a world-line representation®iN&gue below
that the answer is “yes” in many cases. The sign proble@( ) models with a chemical potential
was solved using dual variables in [16]. For %€ model it reduces to the world-line representa-
tion discussed above. Later we will devise a new world-line approach t@N¢ models using
fermionic composites which is much simpler. In the next section we will arguettiea@PN-1
model can also be re-written in the world-line representation. This shouhdatlev us to solve
the sign problem in th€PN-1 models with a chemical potential.

3. World-line Approach: CPN-1 Model

In this section we will construct the world-line representation of@R& 1 model as a non-
trivial application of the WL-approach. One may recall that conventiohaster algorithms do not
work for these models even in the absence of a chemical pote®®}- 1 models were recently
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formulated as the low energy effective theory of @m(N)-symmetric quantum-spin system in
the Hamiltonian (D-theory) formulation [17]. The spin system was formulatddenworld-line
formulation, and solved using the loop-cluster algorithm. Thus, the firsesgéul efficient cluster
algorithm forCPN~1 models emerged in the WL-approach. Here we will argue that a world-line
representation can also be constructed for the conventional moddhdingEuclidean space.

TheCPN~1 model is conventionally written in terms &f component complex vectaf,a =
1,2,..,N at each lattice sitewith the constrainty ,|Z|?> = 1 [18, 19]. The action of the model is
given by

S=-B Y (2)(27%) (3.1)
<>

where< ij > denotes the bond connecting the nearest neighbori sitelj. The action is invariant
under globalJU (N) transformationsz — Uz andU (1) gauge transformationg — exp(i@)z.
Since the gauge field is not dynamical in the theory, the model is equivalstiotagly coupled
N-flavor scalar QED. Let us now derive the world-line representation.

Consider the partition function of the model,

z- [[idalexnp Y @#4)22) (32)
i <>

where[dz] is the integral over ®B-dimensional unit vectors. The partition function can be rewritten
as

Bniajb Ab\n —b_a\nd
Z= /ﬂ [dz] <”><ab>[;] = D)W (27 (3.3)

where each bonet ij > contains arlN x N matrix of non-negative integers; = n which deter-
mines the power ofZ*2’) and( z‘fz’f) Now one can integrate ov@dz] using the |dent|ty

5 \ki I > \kn In 2T[Nk1'k2'k3'kN|
/[dZ](Zl) (Zl) (ZN) (ZN) 75‘17'1@27|2"'5‘<N7|N (kl—l-kz—l-...—l-kN—i-N—l)!. (3.4)
If we definek = (ky, ko, ..., ky) as anN-vector and
(k) = 21Ky kol Ka! . k! (3.5)

(ki+ko+...+ky+N—-1)!"
the partition function can be written compactly as
B
I(q i o — (3.6)
%(” ) qp(ﬂ';'nab!)

where Z%{ } o — Z%{ . )i} (3.7)

Thus, the partition function has been written in terms of the constrained boind@sa;;. These
constrains encode the conserved currents of & model and hence we call this the world-line
representation. Using the ideas developed in [7] it should now be possilghelate the constrained
system. This has not yet been accomplished but is an interesting repeajett for the future.
Further adding a chemical potential will also be interesting.
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Figure 2. An illustration of a closed pack dimer configuration in twanginsion. Ind + 1-dimensions
statistical mechanics of such configurations naturallg keethe physics of thd-dimensional XY model.

4. Bosons as Fermionic Composites

Scalar field theories are naturally formulated using scalar fields. HowadVecalar particles
discovered in nature until now are bound fermionic composites. Intergstimg have discovered
recently that it is also computationally simpler to formulate certain scalar lattice fistdiés from
a microscopic model of fermions such that the bosons arise as fermioniosaagp Composite
fermion models of scalar field theories can be constructed easily as stamgiled lattice gauge
theories. They lead to a novel world-line approach where the fermioticaneestricts the number
of allowed scalar particles on a given lattice site. The underlying idea issimiar to the D-
theory formulations of field theories [20], however the formulations dsedi®elow occur directly
in Euclidean space and often it is easier to design worm-type algorithms in tinsaegh. Let us
illustrate this with two examples.

First consider theXY model. A simpleXY model of composite fermions ondat 1 dimen-
sional hypercubic lattice is given by

S=— z EUXLIJXWX—H Wnti — T ZWXL.UXWX-H Wxtt (41)
x,i=1.2...d X

whereyy, i, are two Grassmann valued lattice fields. This theory has an exact glgbpbym-

metry whereyy — €%, and @, — €%9@, whereoy is +1 on even sites and1 on odd sites.

Note that one of the dimensions (referred ta bere) has been singled out and acts like a fictitious

temperature. If we study this theory o %x L, lattice withL; fixed, then by tuning one obtains

the physics of the conventiondlY model ind dimensions through dimensional reduction.
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Itis possible to integrate out the Grassmann variables and write the partiticiioiu as a sum
over all possible closed packed dimer configurations. In particulay elierer in the temporal
direction carries a weighE. Thus, the statistical mechanics of closed packed dimers on a cubic
lattice ind + 1-dimensions leads naturally to the physics of ¥¥ model. A configuration of a
closed pack dimers is shown in Fig. 2. Clearly these configurations are nmiplesto represent
on a computer than the world-line configurations of the conventi¥ivainodel shown in Fig. 1.
Another advantage of this representation of Xhemodel is that it can be updated very efficiently
with a worm-type algorithm which is much simpler to code than the Wolff-clusteritgo [2].

It has been shown that this model and its variants do indeed reproduegpbetedKT physics
in d = 2 [21] andXY universal critical behavior i = 3 [22]. Interestingly, in 1 1 dimensions
with T =1 andL; = L, the model leads to a non-compact version ofXlvemodel and so contains
no vortices and evades a KT transition [23]. Thus, the fermionic reptaisen also allows us to
formulate naturally a non-compadt(1) field theory.

Second we focus on afJ(2) x SJ(2) x U(1) model of composite fermions. This is an
interesting toy model for pions of two flavor QCD. The action of the modehisrgby

S: — ; TI’[ZX ZX+i] - T ZTr[ZX zX+t] - CZ deEX (42)
x,i=12.,d X X

where _
U\ [ = UxUx  Uxdy
Sy= = _ 4.3
: (dx>(ux d ) (dxux dxdx>, (4.3)
is a 2x 2 matrix made up fermionic bilinears. Heug Ty, dy anddy are four independent Grass-

mann variables defined on each site. Witea 0, the action is symmetric under ti&J(2) x
VU S(2) x U(1) chiral transformations

¥y — LE,RTe? for x even (4.4)
5, — R, LTe1? for x odd

Whenc # 0, the symmetry under tHé (1) subgroup is broken explicitly. Hence the parameter
behaves like the anomaly.

Once the Grassmann integration is performed the partition function can berwattta sta-
tistical mechanics of two different types of closed oriented loops whiam fine world lines of
the four pions in the model. A non-zeoxcreates lattice sites which the pion loops cannot touch.
An example of a configuration of pions is given in Fig.3. We refer to sucks site“instantons”.
The model has been studied recently with a directed path algorithm andevehefreader to the
original work [24]. Cluster algorithms in the conventional formulation dowotk for scalar field
theory with an9J (2) x J (2) x U(1) field theory. For this reason until recently it was difficult to
study the effects of the anomaly on the two-flavor chiral transition. Usingvtiren-approach we
were able to study this question non-perturbatively and beyond mean feeld/tfor the first time
and found that a rather strong anomaly was necessary befo@(#)euniversality sets in [25].
Using this model we have also clearly shown thatdheesonance can have a significant impact on
the width of the region where chiral perturbation theory is valid [26]. Aarrof the above model
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Figure3: Anillustration of a world-line configuration for a®J (2) x U (2) x U (1) scalar field theory that
arises from a composite fermion model.

also allows one to study &J (2) x U (1) scalar field theory which naturally arises from two-color
QCD with staggered fermions [27]. Thus, we learn that the fermionic agproaturally leads to a
simple way to solvé®(N) x O(2) models folN = 2,3,4. An extension to higher values Nfseems
straight forward. Breaking th®(2) symmetry would then lead to a new approach to solxily)
models. Adding chemical potentials would not lead to any new sign problemsult be useful
to compare this approach to the approach suggested in [16].

Lattice QCD with staggered fermions at a finite baryon chemical potential intrihiegscou-
pling limit can also be formulated and studied in the WL-approach. This waasdgiione almost
two decades ago [28]. The theory however suffers from a sigrigmotvhich can only be solved
at zero chemical potential. In any case, in the previous study the probdsmsalved using a brute
force technique but using a local algorithm. Recently, the problem hasreesited but now us-
ing the worm algorithm. Clear advantages of the worm approach has bewndtrated. For more
details we refer to the work presented by Michael Fromm at this conferenc

5. World-line Approach: The Thirring Model

Let us now discuss how the WL-approach can be applied to a fermionictfietdy if the
fermion sign problem can be solved. Solution to the fermion sign problem ie threnore di-
mensions usually involves a re-summation over a class of configuratiorssimakes the problem
computationally more demanding than bosonic field theories since a signifieatibh of the
update-time goes into the re-summation effort. Clearly, the new approashndoalleviate this
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problem. On the other hand it offers new techniques to solve the sign pra@brd some of them
are better than the conventional methods. Conventionally, the solution to thprsiglem in the
presence of fermions comes from computing the determinant of a matrix veimesgrows with
system size. On the other hand in the WL-approach other interesting selwifdoh are compu-
tationally less demanding can emerge. One such approach called the rhesten-approach was
found about a decade ago [11]. In the following we will device a newrdetental solution to the
lattice thirring model. The main advantage of this solution is that the size of the madiyxasni-
cally determined by the parameters of the model and does not always gttosystem size. This
is particularly true deep in the strong coupling phase (confined phasel) ishthe phase where the
conventional algorithms become more demanding.

The action of the model we consider is constructed with massless staggeredrfs and is
given by

S=- Z Nu () Pyt — Y] —U P Wy Pcr - (5.1)
X

Here we assuneis a point on a9 hypercubic lattice with toroidal boundary conditions, the index
u =12, ..,d labels the direction, the fermion fields and@, are single component Grassmann
fields with anti-periodic boundary conditions. Since the interactions exisioods the model is
equivalent to the massless Thirring model in the weak coupling limit [29, 38.|attice model is
invariant under an exatt(1) chiral symmetry:

Uy — expliox@)ty; Py — exp(—iox) Ty (5.2)

wheredy is 1 on even sites and1 on odd sites. For small this chiral symmetry remains unbro-
ken and the system contains massless fermions, while for larte symmetry is spontaneously
broken and the system contains massless Goldstone bosons but mexssiges. Thus, there is an
interesting quantum phase transition in the thermodynamic limit at a critical colingvariant
of this phase transition may be of interest in graphene-like systems [31].

The conventional Monte-Carlo approach for fermionic systems is cruciaigndent on rewrit-
ing the fermion action as a bilinear in fermions [32, 33]. In the current abttie partition function

z— / d@dy]exp(—S) (5.3)

can be rewritten by introducing new auxiliary variabl& @ on the links connecting with x+
so that the four-fermion operator is converted to a fermion bilinear. Mattieaig one can show
thatZ can be rewritten as

2~ [ dolapdy] exp{ 5 BMi@)xyiy} (5.4)

Xy

whereM (@) is anL¥ x LY matrix given by
M[@] = nu(x) [5x+u,y(1+ \eri%(X)) — O py(1+ \er—i(p“(x))} : (5.5)

It is easy to verify that by integrating over the angles @, (x) < 21T one can recover the original
partition function given in eq.(5.3). But if we integrate over the Grassmanahles first we obtain

2~ | (dg] DetiM[g) (5.6)
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Figure4: Anillustration of a “dynamical-bag” configuration as dissed in the text.

where the determinant is non-negative and thus the sign problem is s@ed:an now use either
the determinantal Monte-Carlo algorithm or the Hybrid Molecular Dynamicgisitgo to generate
[¢] accordingly [29, 30]. In the latter approach it is common to introduce a fermmass in order
to regulate the condition number of the fermion matiXg]. However, this breaks the chiral
symmetry and it is difficult to extrapolate to the massless limit. The exactly masstdsdemprof
interest is known to be computationally very demanding especially for latgesvafU due to the
excessively large number of small eigenvalueMap| [31].

The above approach is the most commonly used method to deal with four-fecaniplings
and is known in the literature as a Hubbard-Stratanovich transformationslrew discuss a WL-
approach to the problem. Instead of introducing auxiliary variables, \ga bith the partition
function given by

Z= /[dl.,lldﬂf] exp ( z {'7;1 (X)Tpx[wx-&-ﬂ o L'UX_H] + UWXQUXWXHJ l¢U><-&-I.1 }) ’ (5-7)

X,H

and expand it in powers &f using

eXp(wa‘-lewaru QUx+u) = 1+UwaxwX+p LuUXJru- (58)
The Grassmann integration then gives
Z= U™ ) Det(W(n]) (5.9)
nX,,ZO,l ( >I<,_L|l )

whereny;, = 0,1. Theny, = 1 bonds are the same as the hard core dimers encountered in the
previous section in the fermionXY model. Note that in this approach the Grassmann integration

10
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Figure5: Plot of the number ofi,,, = 1 bonds on a 1®lattice atU = 1 in the dynamical-bag algorithm.

leads to a determinant of a different matvin|, which is just the free fermion matrix where the
sites connected o, ;, = 1 are dropped. Itis easy to argue that (Wéfn]) is also non-negative and
thus there is again no sign problem.

Interestingly, the configuratioim| divides the lattice into “bags” of sites connected with only
Ny, = 0 bonds. Inside a bag the fermions hop freely while outside they are edrtiinhop on
single bonds. The size and shape of the bags are dynamically determitrexhMajyue otJ. Figure
4 gives an illustration of one such configuration. For this reason we galhew algorithm the
“dynamical-bag” algorithm. Since a single world line configuration of fermiosgle the bag can
give negative weights due to the Pauli principle, one has to resum all sty fermion world
lines within the bag. This gives the D@{[n]), which in our case is non-negative. WHéris large,
the bags are small comprising of a few neighboring bonds and thus indieqtesf the system size.
Hence, the computation of the determinant must be easy. In fact, as we gui#é aelow, it is
not even necessary to compute the determinant, but just one matrix elentieairferse ofV[n|
at every local update step, which is quite easy for small matrices. Note ikgtriccisely when
U is large that conventional algorithms begin to fail. Wheéiis small the bags can percolate and
become as big as the system size. This naturally leads to massless fermiathel&L-approach
will be similar to the conventional approach in efficiency. The typical sizb@bags may provide
an interesting length scale for the problem.

Our algorithm consists of two steps: one step chamggsetween 0 and 1 on the bonds and
the other step moves the bonalg, bonds around. One can develop a combination of a regular
local heat-bath algorithm to accomplish the former and a worm-type algorithectorglish the
latter. An important point to note is that the probability to introduce or removena blepends
on the ratio of two determinants one with and one without the bond. This rati@lgxequal to
[[(W[N])~Yxx1u|? where the bond in consideration is between the sit@sdx+ 1 and the matrix
W/[n| does not contain the bond under consideration. The computation of thesenvan be a

11
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time consuming process. Further, if the main| contains exact zero modes, one has to know
about its existence so that such configurations are not generatesk e difficulties makes the
algorithm more time consuming as compared to bosonic algorithms. However, &higitse one
has to pay for doing fermionic physics and we do not know a way out bffieemoment. However,

at largelU when the “fermions” are mostly bound into bosons these difficulties becomerraiide
disappear completely at infinitd. Thus, the algorithm knows when to work hard to take into
account the dynamics of the fermions. In Fig. 5 we show the time evolution dafither of
Ny, = 1 bonds on the lattice &t = 1 starting from two different initial conditions on a3 Gttice
which was accomplished in a few hours on a laptop with just a local heat lggttitm.

Although the local heat bath algorithm may be sufficient at sthait will become inefficient
asU increases. At largdl the worm part of the algorithm is essential for efficiency. The worm al-
gorithm is also necessary to measure observables such as the chilethsate susceptibility which
can get contributions from fermionic correlations between two differagsb These correlations
are difficult to measure in the WL-approach using simple matrix inversiorthelworm algorithm
such correlations come from configurations which contain two defectsh@hd and the tail of
the worm) one of which is present in one bag and the other in the other bagaré\turrently
implementing this complete algorithm and the technical details will be discussechelisew

6. World-sheet Approach: Abelian Gauge Theory

The natural extension of world-lines to gauge theories must be in the fbmortd-sheets.
Thus, the WL-approach must be modified into a WS-approach when agptyigauge theories.
Here we illustrate the ideas using a pure compagt) lattice gauge theory in four dimensions.
In the conventional formulation the theory describes the dynamics of theamirgauge field &

@a (X) < 21,0 = 1,2, 3,4 which are angular variables associated to bamrds) that connect sites
x andx+ a. The model is described by the partition function

z— /[d(p] exp—S. 6.1)
where the action is taken for convenience to be the Wilson action
S=-pB z cos(rpw(x)> , (6.2)
POXGH,V)

where the sum is over all plaquette&, u, v) (defined by a lattice siteand two forward directions
p < v)and@u(X) = @u(X) + @ (x+afl) — gu(x+av) — @, (x). We definep_q(x) = —@u (X— @)
for convenience.

Motivated by the world-line approach we can rewrite the partition functionrmgenf world-
sheet variables. For this purpose we begin with

7= / o] B 0SB (), 6.3)
xuv

and use eq.(2.2) on every plaquette and then integrate over all aggbesas in theXY model.
We now get

Z - z |_| IkIJV rl 62 [kpv kuv X V)} 0 (64)
[k P(xu,v)

12
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wherel[k] represents a configuration of constrained integers on each pla&@ette v). For sim-
plicity we definek,, (Xx) = —ky,(X). The configurations must now satisfy the constraint that

> [Kuv () —kuy (x= V)] = 0 (6.5)

v
at every bondx, ) and are shown with delta functions in the above expression. It is possible to
argue that such a constrained set of integers arise from oriented dodaces or world sheets.
For example, an update @] requires the change & on a closed surface of plaquettes. Any
configuration[k] can be constructed by a series of local cubical updates and shesésipa two
dimensional planes.

An interesting observable is the Wilson loop. Consider a closed loopon plane of size

L x L. The Wilson loop associated with this loop is defined as

N
W = I!:Lexp(iq)ak(xk)) (6.6)

wherex, anday are the sites and directions along the loop. The average of this obses/ghien
by

W) =2 [idg] W exp( - BS) = < M )> 67)
pe p

where the final average is assumed to be performed in the world-speeteatation ang stands
for the set of plaquettes that cover the surface of the Wilson loop.

In order to explore the usefulness of the new representation, we halemeipted a worm-
like update for thek] configuration which involves picking av plane at random and introducing
a defect in the world-sheet configuration in the form of a1 Wilson-loop. We then increase or
decrease the size of the defect-loop but restricting it to be a square ithop thie plane. During this
process we allow for local cubical updates within a slice on either side afttbet, which allows
the surface being updated to fluctuate. The algorithm ends when the difses on itself or
propagates and updates a whole sheet.We have observed that slystsmitated in the Coulomb
phase and when the volumes are small. Figure 6 shows a comparison dfuhlie of the world-
sheet algorithm with the conventional algorithm for various sizes of arse@ped Wilson-loop.
The figures show that for small sizes both algorithms are comparable addaer the expected
physics, namely an area law in the confined phase and a perimeter law in tka®ophase.
Interestingly, the world-sheet algorithm is able to measure large Wilsorslqoje well in the
confined phase, while the conventional algorithm still appears superithreirtCoulomb phase.
Abelian lattice gauge theories have been studied in the world-sheetesfatsn in the confined
phase before [34]. It would be exciting to devise a WS-algorithm whiclifisient even in the
Coulomb phase.

7. Conclusions

We have tried to demonstrate in this talk that there is a new computational appocacariety
of lattice field theories. This approach is based on rewriting the partitiortitumim a world-line
representation. The constrained configurations in this representatitie cgpdated efficiently with
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Figure 6: Comparing the results for the square Wilson-loop as a fanatif its size obtained using the
world-sheet algorithm (filled circles) and the conventicadgorithm (open squares). The world-sheet algo-
rithm is better than the conventional method in the confineakp (left figure) while the opposite is true in
the Coulomb phase (right figure).

the newly discovered worm-algorithms. This approach gives an alteenawdthod for studying
many scalar field theories. They also lead to new solutions to the fermion sigleprs. One such
solution leads to an interesting fermion algorithm which we call the dynamicablggayithm.
Finally we argue that the ideas may also be applicable to gauge theories intheffworld-sheet
methods. Clearly the subject is still in its infancy and it would be exciting if sonikeoideas can
lead to important computational break-through.
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