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1. Introduction

Much of our knowledge about hadronic structure in terms of quark and gluon degrees of free-
dom has been obtained from high energy scattering experiments. However, as discussed in the talk
of Vanderhaeghen [1], there are still many unresolved issues in hadronic physics that need to be
addressed, from both an experimental and theoretical perspective. This is one of the main moti-
vations of the 12 GeV Jefferson Lab upgrade which aims to [2]: search for exotic mesons; study
the role of hidden flavours in the nucleon; map out the spin and flavour dependence of the valence
parton distribution functions; explore nuclear medium effecs; and measure the generalised parton
distribution functions of the nucleon. It is imperative that these and other exciting experimental
efforts, such as those at COMPASS/CERN and FAIR/GSI, are matched bymodern lattice simu-
lations which, thanks to recent innovative computer and algorithmic improvements [3], are now
capable of reaching light quark masses (mπ < 300 MeV) and large volumes (>3 fm) [4].

In this talk I will report on progress made in the past year (for reviews ofresults reported in the
previous two conferences, see earlier reviews by Orginos [5] and Hägler [6]) in lattice calculations
of many different aspects of hadronic physics such as the electromagnetic form factors ofN, π, ρ, ∆
and transitions in Sec. 2, moments of structure functions in Sec. 3, axial coupling constants of
baryons in Sec. 4, moments of generalised parton distributions (Sec. 5) and distribution amplitudes
(Sec. 6), disconnected contributions in Sec. 7, polarisabilities in Sec. 8, and finally in Sec. 9 I
summarise the current status of these topics and point out unresolved issues and directions for the
future.

2. Electromagnetic Form Factors

The study of the electromagnetic properties of hadrons provides importantinsights into the
non-perturbative structure of QCD. The EM form factors reveal important information on the in-
ternal structure of hadrons including their size, charge distribution and magnetisation.

A lattice calculation of theq2-dependence of hadronic electromagnetic form factors can not
only allow for a comparison with experiment, but also help in the understandingof the asymptotic
behaviour of these form factors, which is predicted from perturbativeQCD. Such a lattice calcula-
tion would also allow for the extraction of other phenomenologically interesting quantities such as
charge radii and magnetic moments. For a recent review see [7].

2.1 Nucleon Form Factors

Phenomenological interest in the electromagnetic form factors of the protonhas been revived
by recent Jefferson Lab polarisation experiments [8] measuring the ratioof the proton electric to
magnetic,µ(p)G(p)

e (q2)/G(p)
m (q2), and Pauli to Dirac,F2(q2)/F1(q2), form factors. Based on per-

turbative QCD [9], the asymptotic scaling behaviour of these ratios should be independent ofq2

(for Ge/Gm) or scale as 1/q2 (for F2/F1), however these experiments showed thatGe/Gm decreases
almost linearly with increasingq2, while F2/F1 scales as 1/

√

q2. Additionally, fits of proton and
neutron data using phenomenologically motivated ansäze provide for the possibility of a zero cross-
ing in the isovector electric form factor,Gv

e, aroundQ2 ∼ 4.5 (GeV/c)2 [10].
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The electromagnetic form factors of the neutron are also receiving plentyof interest at the
moment since we know that it has charge zero, but how is its internal charge distributed and does
it have a positivly or negativly charged core [11]? Lattice calculations can provide insights into
this distribution since lattice simulations of three-point functions are performedat the quark level,
and hence they have an advantage over experiment in that they can directly measure the individual
quark contributions to the nucleon form factors.

On the lattice, we determine the form factorsF1(q2) andF2(q2) by calculating the following
matrix element of the electromagnetic current

〈p′, s′| jµ(~q)|p, s〉 = ū(p′, s′)

[

γµF1(q
2)+ iσ µν qν

2mN
F2(q

2)

]

u(p, s) , (2.1)

whereu(p, s) is a Dirac spinor with momentum,p, and spin polarisation,s, q = p′ − p is the
momentum transfer,mN is the nucleon mass andjµ is the electromagnetic current. The Dirac(F1)

and Pauli(F2) form factors of the proton are obtained by usingj(p)
µ = 2

3ūγµu− 1
3d̄γµd, while for

isovector form factorsjv
µ = ūγµu− d̄γµd. It is common to rewrite the form factorsF1 andF2 in

terms of the electric and magnetic Sachs form factors,Ge = F1 +q2/(2mN)2 F2 andGm = F1 +F2.
If one is using a conserved current, then (e.g. for the proton)F(p)

1 (0) = G(p)
e (0) = 1 gives the

electric charge, whileG(p)
m (0) = µ(p) = 1+κ(p) gives the magnetic moment, whereF(p)

2 (0) = κ(p)

is the anomalous magnetic moment. From Eq. (2.1) with see thatF2 always appears with a factor
of q, so it is not possible to extract a value forF2 at q2 = 0 directly from our lattice simulations.
Hence we are required to extrapolate the results we obtain at finiteq2 to q2 = 0. Form factor radii,

ri =
√

〈r2
i 〉, are defined as the slope of the form factor atq2 = 0.

In Fig. 1 we see results for the isovector Dirac radius from several different fermion actions.
RBC/UKQCD presented an update from theN f = 2+ 1 domain wall fermion run on 243 × 64
lattices witha−1 = 1.729 GeV [12] (red circles), while LHPC updated their mixed action (DWF
valence, asqtad sea) results at their lightest pion masses [13] (green right triangles). Additionally,
LHPC have started running on the 323×64 DWF configurations witha−1 ≈ 2.4 GeV generated by
the RBC/UKQCD collaborations, and preliminary results from these runs areshown by the black
upside-down triangles [13].

These latest results are compared with earlier quenched andN f = 2 Wilson [14, 15] and DWF
[16, 17] results. We observe agreement between the different lattice formulations, while any dis-
crepancies are an indication for systematic uncertainties, such as finite volume effects, discretisa-
tion errors, etc. The overall pattern is typical of lattice results forr1, i.e. the lattice results lie below
experiment with little variation as a function ofm2

π . Investigations using chiral perturbation theory
predict that these radii should increase dramatically close to the chiral limit [14, 18]. Current results
indicate that in order to see such curvature, one needs to perform simulations atmπ < 300 MeV.

During the conference, we also saw a preliminary analysis from the European Twisted Mass
Collaboration usingN f = 2 twisted mass fermions with pion masses down tomπ ≃ 313 MeV at a
single lattice spacing,a = 0.089(1) fm [19], and results are forthcoming.

Finally, QCDSF have been studing theq2-dependence of the individual quark contributions to
the nucleon form factors. In Fig. 2 we see some results for the ratio of thed- to u-quark contribu-
tions to the proton’s Dirac radius. Here we clearly see thatrd

1 > ru
1 for all simulated quark masses

(the same behaviour is seen forr2), indicating that thed (u)-quarks are more broadly distributed
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Figure 1: Comparison of results for the isovector
Dirac radius,r1. Figure 2: Ratio of Dirac radii foru andd-quarks

from QCDSF. Dashed line indicates physicalmπ .

thanu(d)-quarks in the proton (neutron). Note that disconnected contributions were not considered
in this study.

2.2 Accessing small Q2: Partially twisted boundary conditions

On a lattice of spatial size,L, momenta are discretised in units of 2π/L. Modifying the bound-
ary conditions of the valence quarks [20]ψ(xk + L) = eiθk ψ(xk), (k = 1,2,3) allows one to tune
the momenta continuously~p +~θ/L. Momentum transfer in a matrix element between states with
initial and final momenta,~pi +~θi/L and~p f +~θ f /L, respectively, then readsq2 = (p f − pi)

2 =
{

[E f (~p f ,~θ f )−Ei(~pi,~θi)]
2−

[

(~p f +~θ f /L)−(~pi +~θi/L)
]2

}

, whereE(~p,~θ) =

√

m2 +(~p+~θ/L)2.

F2 is particularly interesting since it cannot be measured directly atq2 = 0 to obtain magnetic
moments. Hence it needs to be extrapolatd from finiteq2 which can not only increase the error, but
can also introduce a model dependence into the result. As can be seen in Fig. 3 from the QCDSF
collaboration [24], results obtained by using partially twisted bc’s (open blue symbols) help to
constrain the extrapolation toq2 = 0.

Twisted boundary conditions, however, introduce additional finite volume (FV) effects∼
e−mπ L, which were shown to be small for the pion form factor in the Breit frame [21], but can
be substantial for isovector nucleon form factors [22]. In [23] it wasshown that when tbcs are ap-
plied only to the active quarks attached to the current, the FV corrections depend on an unphysical
and unknown parameter. They also found that the FV corrections are largest for the magnetic form
factor with small twists. Indeed, the partially twisted bc results at smallq2 in Fig. 3 appear to be
suppressed compared to the overall fit, which is the expectation from [22,23].

2.3 Large Q2

Lattice calculations suffer from noise at largeQ2. This typically restricts the range of available
momentum transfers toQ2 < 4GeV2. Earlier attempts by the LHP Collaboration to access the
electromagnetic form factors out toQ2 ∼ 6 GeV2 in the Breit frame,(~p ′ = −~p = 2π~n/L) [25]
revealed that the relative error inFv

1 (Q2), at fixed pion mass increases asn4. They found that in
order to achieve a point atQ2 ≈ 6 GeV2 with a relative error of 30%, they would have to increase

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
0
0
7

Investigations of hadron structure on the lattice James M. Zanotti

àà

àà

à

à
à

à

à à

à à
à

á
á
áá

á

á

áá
á

á
á
á

ááá
á
áá

á
á
á

á

á
á

á
áá
á
á
ááá
áááá
áá

á
á
áááá
á

á

áá
á

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

-t @GeV
2D

F
2u

-
d
HtL

Figure 3: Pauli form factor,F2(q2) together with an
extrapolation toq2 = 0. Open blue symbols indicate
results using partially twisted bc’s.
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Figure 4: F1(Q2) from [26] obtained using a vari-
ational analysis formπ ≃ 480 (pink), 720 (purple),
1100 (grey) MeV. Dashed curve indicates a fit to ex-
perimental data.

the statistical accuracy by at least a factor of 50. Furthermore, to compound the difficulty, it was
observed that the relative error in the isovector Dirac form factor increased with∼ 1/m4

π .
This has led the JLab group to attempt a study of these form factors using variational methods

[26]. Their initial quenched study is performed on a 163×64 anisotropic lattice (ξ = 3) using the
Wilson gauge action and clover fermion action with 3 quark masses corresponding to pion masses
of 1100, 720 and 480 MeV.

To extract (2.1) from a lattice 3-point function, accurate knowledge on the overlap factors and
masses is required. Usually these are cancelled by constructing a ratio of 3pt and 2pt functions,
however the drawback here is that often one needs to use a 2pt functionwith large momentum at
large Euclidean times, which introduces additional statistical noise. An additional problem could
arise if a smeared source is used that has been tuned at~p = 0, but may not be ideal at large~p. To
circumvent these issues, the JLab group use three different choices of gaussian smearing and then
solve a generalised eigenvalue problem to obtain the overlap factors and masses from the two point
functions. These are then used in the 3pt correlator to solve for the formfactors.

Their preliminary result forF1(Q2) using this method is shown in Fig. 4. Encouragingly,
we see that they are able to find a clean signal up toQ2 ≈ 5 GeV2. Simulations with dynamical
fermions and lighter quark masses are now starting.

2.4 Nucleon-P11 (Roper) Form Factors

Using the methods outline in the previous section, the JLab group have performed a quenched
study of the transition form factors of the ground-state nucleon to itsP11 excited state [27]

〈N2| jµ(~q)|N1〉 = ūN2(p′)

[

F1(q
2)

(

γµ −
qµ

q2 q6

)

+σµνqν
F2(q2)

MN1 +MN2

]

uN1(p) , (2.2)

which are extracted from the correlators using a variational analysis.
Results for〈P11|Vµ |p〉 from this quenched initial study are shown in Fig. 5, where we clearly

see that it is possible to obtain a signal in such channels. While the behaviourof the results is dif-
ferent to that of the experimental data, this is probably a result of the heavy quark masses currently
being used. Investigations are now under way with dynamical fermions andlighter quark masses.

5
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Figure 5: Proton-P11 factors from a quenched
study [27]. Masses as in Fig. 4.

2.5 Pion Form Factor

The pion form factor,Fπ(Q2), has recently
received a surge of interest from several lattice
groups. This is partly due to the fact that the
pion is the easiest hadron to study on the lattice,
making it the perfect candidate for testing new
techniques (e.g. twisted boundary conditions, all-
to-all propagators). In addition to this,Fπ(Q2)

is an interesting quantity to study phenomeno-
logically since its asymptotic (Q2 → ∞) normal-
isation is known fromπ → µ + ν decay, and
hence it allows us to study the transistion from
the soft to hard regimes. At lowQ2 the Fπ(Q2)

is measured directly by scattering high energy pi-
ons from atomic elections [28], however measure-
ments at highQ2 require quasi-elastic scattering off virtual pions [29] which leads to a model de-
pendence in the extraction of the form factor from experimental data; a source of systematic error
not present in a lattice calculation.

Recently, RBC/UKQCD have used stochastic propagators with a single spin/colour source
calculated using the so-called “one-end-trick” [30], together with twisted boundary conditions [20]
to calculate theFπ(Q2) at small values of the momentum transfer [31]. The results from this study
are presented in Fig. 6. Here the smallest momentum transfer available on this lattice using periodic
bc’s is denoted by the vertical dashed line and the results forFπ(Q2) for these by filled circles. The
results obtained using twisted boundary conditions are given by the triangles, and we clearly see
that they smoothly fill the gap between the first fourier momentum andQ2 = 0.

Using their results at the smallest 3 values ofQ2, the authors computed the pion charge radius
and, using the NLO expression from ChPT [32]

〈r2
π〉SU(2),NLO = −

12lr
6

f 2 −
1

8π2 f 2

(

log
m2

π
µ2 +1

)

, (2.3)

and the value of the pion decay constant in the chiral limit [33], are able to determine the LEC,
lr
6(mρ)=−0.0093(10). Evaluting the expression using the physicalmπ gives〈r2

π〉= 0.418(28) fm2,
compared with〈r2

π〉exp = 0.452(11) fm2.
The ETM Collaboration are also using the combination of stochastic propagators and twisted

bc’s to determine the pion form factor (and subsequently,〈r2
π〉) on theirN f = 2 twisted mass config-

urations [34]. They have calculated〈r2
π〉 at a number of pion masses and extrapolated their values

to the physical pion mass using 2-loop ChPT [35], obtaining〈r2
π〉 = 0.396(10) fm2.

We also saw an updated analysis from the JLQCD collaboration with doubled statistics [36].
They are using all-to-all propagators to calculateFπ(Q2) with N f = 2 overlap fermions on a 163×

32 lattice with light quark masses down to a sixth of the strange quark mass. By comparing NLO
and NNLO ChPt, they find the two-loop contribution to〈r2

π〉 to be significant in the simulated

6
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Figure 6: Fπ(Q2) determined using stochastic prop-
agators (one-end trick) with partially twisted bc’s
using DWF withmπ ≈ 330 MeV.
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Figure 7: Comparison of latest lattice results of
〈r2

π〉 with the experimental value [38] (dashed lines).

region. Hence they performed a joint two-loop fit to〈r2
π〉 and〈r2

π,S〉 (pion scalar form factor, see
Sec. 7.2.1), from which they obtain〈r2

π〉 = 0.404(22)(22) fm2.
In Fig. 7, we present the current status of lattice determinations of〈r2

π〉 by comparing the latest
results with earlier determinations [37] and the experimental value [38]. Whilethere is a slight
scatter, the general trend of the lattice results, even after attempts at includingchiral logs, is to lie
low compared to the experimental value. Whether this can be explained by finitevolume effects,
discretisation errors, or even the application of ChPT at such large quark masses, will require
further investigation.

2.6 ∆ Electromagnetic Form Factors

The matrix element of the electromagnetic current between spin-3/2 states hasthe form (c.f.
Eq. (2.1) for spin-1/2 states)

〈∆(~p ′,s′)| jµ |∆(~p,s)〉 =

√

m2
B

EB(~p ′)EB(~p)
ūσ (~p ′,s′)Oσ µτuτ(~p,s) , (2.4)

whereuσ (p,s) is a Rarita-Schwinger spin-vector,MB is the mass of the decuplet baryon and

Oσ µτ = −gστ
[

a1(q
2)γµ +

a2(q2)

2mB
(p′µ + pµ)

]

−
qσ qτ

4m2
B

[

c1(q
2)γµ +

c2(q2)

2mB
(p′µ + pµ)

]

. (2.5)

The parametersa1, a2, c1 andc2 are independent covariant vertex function coefficients. For de-
cuplet baryons, there are four multipole form factors,GE0, GE2, GM1, GM3, which are defined
in terms ofa1, a2, c1, c2, and are referred to as charge(E0), electric-quadrupole(E2), magnetic-
dipole(M1) and magnetic-octupole(M3) form factors, respectively.

While theE0 andM1 form factors give access to charge radii and magnetic moments in the
same way as for spin-1/2 baryons, theE2 andM3 moments accessible in spin-3/2 systems provide
insights into the shape of decuplet baryons and have the potential to discriminate between various
model descriptions of hadronic phenomena.

The Adelaide group are in the process of finalising their analysis of the multipole form factors
of the full baryon decuplet [39] in the quenched approximation. Their findings for the magnetic

7
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Figure 8: Quenched Adelaide results for magnetic
moments of the proton and∆+.
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Figure 9: GE2 form factors from the Cyprus group
[43] with exponential fits.

moment of the∆+ is shown in Fig. 8 and the results are compared with earler proton results [40].
A simple quark model predicts that they should be equal, however, due to differing pion-loop
contributions, the proton and∆+ magnetic moments are expected to differ at the physical pion
mass [41]. In fact, quenched ChPT predicts that the pion-loop contributions for the∆+ come with
an opposite sign to that of full QCD [42], and the results in Fig. 8 confirm thisprediction.

To confirm that this is a quenched artifact, it is important to perform simulationsin full QCD
at light enough quark masses. The Cyprus group have started to perform such simulations [43] and
they are currently simulating at pion masses down to∼ 350 MeV and so are now starting to enter
the region where the quenched results “bend down”.

Both groups find thatGE2 is negative as shown in Fig. 9 from the Cyprus group, indicating that
∆ is oblate. The Adelaide group find thatGM3 deviates from zero only at small quark masses, while
the Cyprus group only have a result at a single quark mass where they find thatGM3 consistent with
zero, so it will be interesting to see if their results will deviate from zero as their results at smaller
quark masses start becoming available.

2.7 ρ Electromagnetic Form Factors

The QCDSF collaboration has recently started an investigation into the electromagnetic form
factors of theρ meson [44]. The matrix element of the electromagnetic current between spin-
1 states is decomposed in terms of three form factors,GE(Q2), GM(Q2), GQ(Q2). Of particular
interest is the value of the quadrupole form factor at zero momentum transfer,GQ(Q2 = 0), which
gives the quadrupole moment; a non-zero value would indicate spatial deformation of theρ meson.

Fig. 10 shows the Sachs form factors for the smallest pion mass analysed(mπ ≈ 400MeV).
The electric form factor is fitted with a monopole ansatz and from the slope of the form factor at
Q2 = 0, the charge radius is computed. After an extrapolation linear inm2

π to the physical pion
mass, they find the preliminary result〈r2

ρ〉 = 0.49(5) fm2, although it is reasonable to expect some
chiral curvature to enhance this value.

For the magnetic form factor, it is not possible to calculate directly atQ2 = 0, which is needed
for the determination of the magnetic moment (g-factor). Hence, the results atQ2 6= 0 are extrap-
olated toQ2 = 0 with a dipole ansatz. As discussed in Sec. 2.2, twisted bc’s have the potential to
help here.

8
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Figure 10: ρ form factors from a 243×48 lattice
with mπ = 406 MeV,β = 5.29, κ = 0.13620

Extrapolating linearly inm2
π to the physical

pion mass givesgρ = 1.6(1), smaller than the
quenched result from the Adelaide group [45] and
a study using the background field method [46].

Similar to the magnetic form factor, the
quadrupole form factor needs to be extrapolated
from Q2 6= 0 to Q2 = 0 to obtain the quadrupole
moment. The form factor is fitted linearly inQ2,
although again twisted bc’s will help to determine
if this is a valid assumption, and the resulting mo-
ments linearly inm2

π . The authors find a small
negative resultµq =−0.017(2) fm2, in agreement
with [45]. The negative result is interpreted as the
ρ meson having an oblate shape, an interpretation enhanced by recent results using density-density
correlators [47].

2.8 N → ∆ Transition Form Factors

We have seen in Sec. 2.6 that there is emerging evidence that the quadrupole moment of the∆ is
non-zero, indicating that the∆ is not spherically symmetric. The nucleon, on the other hand, being
a spin-1/2 particle, doesn’t have a measurable quadrupole moment, however it still may possess
an intrinsic quadrupole moment and thus also be spatially deformed. A possibleway to search for
such non-zero amplitudes is through the study of spin-1/2 to spin-3/2 (γN → ∆) transitions, which
are also accessible in lattice simulations [48, 49, 50].

The matrix element for the vectorN → ∆ transition is defined in terms of three form fac-
tors GM1, GE2, GC2 which are known as the magnetic dipole, electric quadrupole and Coulomb
quadrupole form factors, respectively. While the magnetic dipole is dominant, it is possible to
search for non-zero quadrupole form factors by considering the following ratios measured in the
lab frame of the∆

REM(EMR) = −
GE2(Q2)

GM1(Q2)
, RSM(CMR) = −

|~q|
2m∆

GC2(Q2)

GM1(Q2)
(2.6)

Precise experimental data exists for these ratios and strongly suggest deformation ofN and∆. This
has recently been confirmed in a full QCD simulation by the Cyprus group [50], as we can clearly
see in Fig. 11. WhileREM = 0 cannot be ruled out with the current precision on the hybrid run,
RSM is clearly negative, in agreement with experiment.

3. Moments of Structure Functions

3.1 Nucleon Momentum Fraction, 〈x〉

Much of our knowledge about QCD and the structure of the nucleon has been derived from
deep inelastic scattering experiments where cross sections are determined by its structure functions.
Through the operator product expansion, the first moment of these structure functions are directly
related to the momentum fractions carried by the quarks and gluons in the nucleon, 〈x〉q,g, whose
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Figure 11: REM andRSM from [50].

sum must be∑q〈x〉q + 〈x〉g = 1. The scale and scheme dependence of〈x〉q and〈x〉g cancels out in
the sum.

Hence the quark momentum fractions are interesting phenomenologically and have been stud-
ied on the lattice for some time. In fact, lattice studies of〈x〉q are notorious in that all lattice results
to date at heavy quark masses exhibit an almost constant behaviour in quark mass towards the
chiral limit and are almost a factor of two larger than phenomenologically accepted results, e.g.
〈x〉MRST

u−d = 0.157(9), leading many a lattice practitioner to scratch their head and wonder “Will this
thing ever bend down?”, as predicted in [51].

To date, only connected contributions have been simulated to high precision,hence results
are usually quoted for isovector quantities where disconnected contributions cancel. For the latest
progress on disconnected calculations, see Sec. 7.

0 0.1 0.2 0.3 0.4 0.5
mπ

2
[GeV

2
]
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N
f
=2+1 DWF [RBC/UKQCD] (2.7fm)

N
f
=0 DWF [RBC] (2.4fm)

N
f
=2+1 Mix [LHPC] (2.5fm)

N
f
=2 Clover [QCDSF] (1.9-2.4 fm)

N
f
=0 Clover [QCDSF] (1.6 fm)

MRST

〈x〉
u-d

Figure 12: 〈x〉u−d from RBC/UKQCD (DWF),
QCDSF (Clover) and LHPC (Mixed)

Dynamical configurations are now becom-
ing available at quark masses light enough to en-
able calculations in the area where such bend-
ing is predicted to set in. During the conference,
RBC/UKQCD presented their findings from their
N f = 2+1 DWF configurations with pion masses
as low asmπ ≈ 330 MeV [12]. Results in theMS
scheme at 2 GeV are shown in Fig. 12 and are
compared with the latest results from the QCDSF
[52] and LHP [53] collaborations. In this fig-
ure we see excellent agreement between the older
quenched [54, 55] andN f = 2+1 DWF runs and
the N f = 2 clover results, with the possible ex-
ception of the lightest clover mass. This dis-
crepancy may be attributed to a finite size effect
(mπL = 2.78), since these effects are expected to enhance〈x〉 at light quark masses [56].

While we see agreement between the DWF and Clover results, we observe agap between these
results and those coming from the mixed action approach. Since the overall pion mass dependence
is similar, this suggests that it is a renormalisation effect; a suggestion furtherenhanced when we
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consider that the results from the mixed approach use (non-perturbatively improved) perturbative
renormalisation [53], while those from the other approaches use nonperturbative renormalisation
of the operators involved. Of course, for this issue to be fully resolved,the mixed action results
need to be renormalised nonperturbatively.

The χQCD collaboration has also started an investigation of〈x〉 using 163×32, N f = 2+ 1
Clover configurations from the CP-PACS/JLQCD collaborations witha = 0.1219 fm. Preliminary
results from simulations atmπ ∼ 800 MeV were presented in [57], with results from lighter quark
masses forthcoming.

RBC/UKQCD also presented results for the nucleon’s helicity fraction, tensor charge and
twist-3 matrix element,d1 [12].

3.2 Operator Product Expansion on the Lattice

Moments of the nucleon structure functions can be expanded in the lattice regularisation as

M (q2) = c(2)(aq)A2(a)+ c(4) 1
q2 A4(a)+ . . .higher twist, (3.1)

whereq is the momentum transfer,a the lattice spacing,c(n) the Wilson coefficients of twist,n, and
An the reduced matrix elements.

The leading twist matrix elements are nonperturbative quantities and can be studied on the
lattice (an example of which we have just seen in the previous section). The corresponding Wilson
coefficients, however, are usually calculated in continuum perturbation theory. Recently it has been
shown that by applying the Operator Product Expansion to a product ofelectromagnetic currents
between quark states, it is possible to determine the Wilson coefficients nonperturbatively [58],
allowing for a consistent treatment of the moments of structure functions.

QCDSF are currently performing a quenched simulation on a 243 × 48 lattice using over-
lap fermions [59], which have the advantage that undesired operator mixings are suppressed by
chiral symmetry and results are free ofO(a) artifacts. By considering two different momenta,
q = π

4a(1,1,1,1) and π
3a(1,1,1,1), it was shown that preliminary results for Wilson coefficients of

the 67 operators considered have the correct Bjorken scaling. Further improvements will involve
using twisted bc’s to access smaller momenta. With the full data available, a fully nonperturbative
and consistent evaluation of the moments of nucleon structure functions will be possible.

4. Baryon Axial Charges

The axial coupling constant of the nucleon is important as it governs neutron β -decay and
also provides a quantitative measure of spontaneous chiral symmetry breaking. It is also related to
the first moment of the helicity dependent quark distribution functions,gA = ∆u−∆d. It has been
studied theoretically as well as experimentally for many years and its value,gA = 1.2695(29), is
known to very high accuracy. Hence it is an important quantity to study on thelattice, and since it
is relatively clean to calculate (zero momentum, isovector), it serves as useful yardstick for lattice
simulations of nucleon structure.
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Figure 13: Scaling ofgA with mπ L [62]
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Figure 14: gA, gΣΣ, gΞΞ from [64] using a mixed
action approach.

4.1 gA

The axial charge is defined as the value of the isovector axial form factor at zero momentum
transfer and is determined by the forward matrix element

〈p, s|Au−d
µ |p, s〉 = 2gAsµ , (4.1)

wherep is the nucleon momentum, andsµ is a spin vector withs2 = −m2
N .

gA has been studied in-depth for many years by the QCDSF [60] and LHP collaborations [61]
and has been shown to suffer from large finite size effects. The RBC/UKQCD collaborations have
recently calculatedgA on theirN f = 2+1 DWF configurations [62], where they observed the finite
size effects to scale exponentially withmπL [62] as seen in Fig. 13 for the DWF and Clover results.

The ETM collaboration have also started simulations to measuregA on theirN f = 2 twisted
mass lattices, and we saw a status report [63].

Finally, LHPC have a new simulated mixed action point atmπ ∼ 293 MeV and have also
started to measuregA on theN f = 2+1 DWF configurations generated by RBC/UKQCD [13]. For
the latter, measurements are being performed at three quark masses and twolattice spacings, but
with similar volumes. Preliminary analysis indicates that results from the two approaches agree,
indicating that effects due to unitarity violation in the mixed action approach is negligible.

4.2 Axial Coupling Constants of Octet Baryons

While there has been much work on the (experimentally well-known) nucleon axial coupling,
there has been limited work on the axial coupling constants of the other octet baryons, which
are relatively poorly known experimentally. These constants are important since at leading order
of SU(3) heavy baryon ChPT, these coupling constants are linear combinations of the universal
coupling constantsD andF , which enter the chiral expansion of every baryonic quantity.

Lin and Orginos [64] have used DWF valence quarks on an Asqtad sea with mπ ranging be-
tween 350 and 750 MeV and their results forgA, gΣΣ andgΞΞ are shown in Fig. 14. Fitting all
three couplings simultaneously usinggA = D + F + ∑nC(n)

N xn, gΞΞ = F −D + ∑nC(n)
Ξ xn, gΣΣ =
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F +∑nC(n)
Σ xn, with x = (m2

K −m2
π)/(4π f 2

π ), they find

gA = 1.18(4)stat(6)sys, gΞΞ = 0.450(21)stat(27)sys, gΣΣ = −0.277(15)stat(19)sys, (4.2)

andD = 0.715(6)(29), F = 0.453(5)(19). Since there is little known from experiment forgΞΞ and
gΣΣ, these results serve as a prediction and are in agreement with findings from ChPT and large-Nc.

4.3 N∗ Axial Charges

In the previous sections, we have seen results for axial couplings of ground state baryons.
Recently, there has been an attempt to calculate the axial couplings of the two lowest lying, negative
parity nucleon states, theN∗0−(1535) andN∗1−(1650) [65].

The authors have used the 163×32,N f = 2 clover configurations from the CP-PACS collabo-
ration witha = 0.1555(17) fm andmps/mv = 0.804(1), 0.752(1), 0.690(1). In order to isolate the
two negative parity states, they construct optimised source/sink operatorsfrom a combination of
operators. In order to verify their method, they also calculategA of the nucleon to compare with
other determinations. They are able to see a signal and after extrapolating their results linearly in
m2

π to the physical pion mass, they findg0−
A < 0.2, g1−

A ≈ 0.55, which is consistent with the NR
quark model.

5. Generalised Parton Distributions

Generalised Parton Distributions (GPDs) have received much attention, from both theory and
experiment, in the past decade since they provide a solid framework in QCD torelate many different
aspects of hadron physics, including form factors, parton distribution functions, impact parameter
dependent PDFs and spin sum rules. The importance of these functions has led the QCDSF and
LHP collaborations to perform lattice investigations of their moments [53, 66], where it is has
been shown that theq2-dependence of the generalised form factors associated with these moments
flatten for increasing moment. This has the interpretation of a narrowing quark distribution in the
transverse plane of a fast-moving nucleon asxq → 1.

Here we focus on the insights moments of GPDs provide into the spin structure of the nucleon.

5.1 Spin Sum Rules

It is now well known that quark spin carries only∼ 30% of the total spin of the nucleon, with
the remaining∼ 70% coming from quark orbital angular momentum and glue. The total spin of
the nucleon can be decomposed in terms of the quark and gluon angular momentum

1
2

= ∑
q

Jq(µ2)+ Jg(µ2) , (5.1)

which is then further decomposed into the quark and gluon spin and orbital angular momentum
contributions

1
2

= ∑
q

1
2

∆Σq +∑
q

Lq +∆G+Lg , (5.2)

where∆Σ and∆G are the standard gauge-invariant quark and gluon spin fractions, whilethe orbital
angular momentum contributions are defined byLq = Jq−∆Σ/2 andLg = Jg−∆G. The relation of
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Figure 15: LHPC: ∆Σq/2 andLq (left) and evolution ofLu−d with respect to the scale,Q2 (right) [13].

total angular momenta,Jq,g, to the GPDs is due to Ji[67] who showed that they can be expressed in
terms of moments of GPDs

Jq/g =
1
2

[

∫

dxx(Hq/g(x,ξ , t)+Eq/g(x,ξ , t))

]

=
1
2

[

Aq/g
20 (∆2 = 0)+Bq/g

20 (∆2 = 0)

]

, (5.3)

wheret = ∆2 andA,B20 are matrix elements of the energy momentum tensor

〈P′|T µν |P〉 = U(P′)

{

γµP
ν
A20(∆2)+

iσ µρ∆ρP
ν

2mN
B20(∆2)+

∆µ∆ν

mN
C20(∆2)

}

U(P) . (5.4)

SinceAq,g
20 (0) = 〈x〉q,g are simply the quark and gluon momentum fractions, we have by momentum

conservation 1= ∑q Aq
20(0)+Ag

20(0), hence we have a sum rule for the anomalous gravitomagnetic
moments 0= ∑q Bq

20(0)+ Bg
20(0). Here we stress that although the sum is scale and scheme inde-

pendent and is equal to zero, for the individualBq,g
20 , this is not necessarily the case.

Most of the work towards a determination ofBq,g
20 has been done by the LHP [53] and QCDSF

[68] collaborations. This year, we have seen an update from LHPC fortheir simulations using
the mixed action approach (left plot, Fig. 15) and some preliminary results of astudy using the
N f = 2+1 DWF configurations from the RBC/UKQCD collaborations [13]. The results in the left
of Fig. 15 indicate that the signs of the spin(∆Σq) and orbital angular momentum(Lq) contributions
are opposite for each quark flavour. The same behaviour has been observed by QCDSF [68]. The
lattice resultLu+d ∼ 0 is in strong disagreement with relativistic quark models and has led LHPC to
search for scale dependence inLq, as suggested by [69]. As seen in the right of Fig. 15, they find that
Lu−d changes dramatically at smallQ2 and in fact changes sign, which may help to reconcile the
lattice and the quark model results, which generically are valid at a low hadronic scaleµ ≪ 1 GeV.
Although as the authors point out, the one-loop evolution used here is not perhaps not quantitatively
reliable below 1 GeV.

A potential improvement in the determination ofBq
20 from the lattice is in the extrapolation that

is required from the simulated points atq2 6= 0 to the required pointq2 = 0. As seen in Sec. 2.2, this
can be achieved through the use of twisted boundary conditions, which is currently being explored
by the QCDSF collaboration [24]. This may become particularly important at lightquark masses
when the data becomes noisier, and hence the extrapolation is poorly constrained.
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5.2 Spin Asymmetries

In the past couple of years, lattice calculations of the moments of GPDs have provided faci-
nating insights into how quarks are spatially distributed inside the nucleon [70]and pion [71]. Of
particular interest is the strong correlation between the transverse spin and coordinate degrees of
freedom [72], providing evidence for a sizeable Boer-Mulders function, h⊥1 (x,k2

⊥) [73].
Recently, there has been an attempt to determine on the lattice (moments of) the Transverse

Momentum Dependent PDFs (TMDPDFs), e.g.f⊥1 (x,k⊥), h⊥1 (x,k⊥), which are important in semi-
inclusive DIS (SIDIS). In order to obtain information on the dependenceof these functions on the
transverse momentum,k⊥, of the quarks inside a hadron, it is necessary to consider matrix elements
〈P|q̄(ℓ)ΓU q(0)|P〉, where the quark fields are separated by a distance,ℓ, andU is a Wilson line
(to infinity and back). Of course, this is not possible on the lattice so instead one is required
to consider a path of finite total lengthℓ separating the quark and anti-quark in the operator, as
illustrated in Fig. 3a of [74].

The matrix element is then obtained from from

C3pt(τ, tsink,P,Γ)

C2pt(tsink,P)

0≪τ≪tsink−→ 〈P|q̄(ℓ)ΓU q(0)|P〉 ∝ Ãi(ℓ
2, ℓ ·P) . (5.5)

ChoosingΓ to beγµ gives access tõA2, Ã3, while γµγ5 gives Ã6, Ã7, Ã8. The ℓ2-dependence of
these functions is fitted with a double Gaussian. Moments of the TMDPDFs are then obtained via
a Fourier transform

f n=1
1,lat (~kT ) =

∫

dx f1(x,~k⊥) =
∫

d2~ℓ⊥
(2π)2 ei~k⊥·~ℓ⊥2Ã2(|~ℓ⊥|,0) , (5.6)

and similarly forg(1)lat
1T which is obtained from̃A7.

Figure 16: TMDPDF for au-quark in a nucleon
that is polarised in along thex-axis

Information on the correlation between the
intrinsic quark transverse momentum and the
transverse polarisation of the nucleon can then be
obtained by considering the combination

1
2

(

f (1)lat
1 (k⊥)+

k⊥ ·S⊥
mN

g(1)lat
1T (k⊥)

)

, (5.7)

which is shown in Fig. 16 for a longitudinally po-
larisedu-quark inside a nucleon that is transver-
sly polarised in along thex-axis,S⊥ = (Sx,0). We
clearly see that the distribution is distorted along
thex-axis.

6. Distribution Amplitudes

Distribution amplitudes (DAs) describe the momentum-fraction distribution of partons at zero
transverse separation in a particular Fock state, with a fixed number of constituents. They are
essential for the determination of the hard contributions to exclusive processes, but being universal

15



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
0
0
7

Investigations of hadron structure on the lattice James M. Zanotti

Figure 17: 〈ξ 1〉
‖
K∗ and〈ξ 2〉

‖
ρ usingN f = 2+1 DWF [78].

hadronic properties, are process independent. Hence, they are important for calculations of form
factors at largeQ2, B-decays, and can be related to the Bethe-Salpeter wave function.

DAs are defined as non-local matrix elements on the light cone, e.g. the leading twist pion DA

〈0|d̄(−z)γµγ5[−z,z]u(z)|π+(p)〉 = i fπ pµ

∫ 1

−1
dξ e−iξ p·zφπ(ξ ,µ2), ξ = x− x̄ . (6.1)

Results for moments of the light pseudoscalar meson distribution amplitudes havebeen presented
by QCDSF [75] and UKQCD/RBC [76] in the last couple of years. Here wewill focus on some
recent results for vector mesons and the nucleon.

6.1 Vector Mesons

For spin-1 mesons, there are two DA’s,φ ‖(ξ ), φ⊥(ξ ), as opposed to a single DA for spin-0
mesons. The lowest moments ofφ ‖(ξ ) are obtained from the local matrix elements

〈0|q̄(0)γ{ρ
↔
Dµ} s(0)|V (p,λ )〉 = mV fV p{ρε(λ )

µ} 〈ξ
1〉

‖
V , (6.2)

〈0|q̄(0)γ{ρ
↔
Dµ

↔
Dν} q(0)|V (p,λ )〉 = −imV fV p{ρ pµε(λ )

ν} 〈ξ 2〉
‖
V , (6.3)

wheremV and fV are the mass and decay constant, respectively, of the the vector meson,V , and
εµ is a polarisation vector. The moments,〈ξ n〉

‖
V are extracted by constructing ratios of lattice

two-point functions [77, 78] and the bare lattice results are then renormalised.
In Fig. 17 we see some preliminary results from the RBC/UKQCD collaborationsfor 〈ξ 1〉

‖
K∗

and〈ξ 2〉
‖
ρ calculated withN f = 2+ 1 DWF configurations with 4 values of the light quark mass

and 2 volumes [78]. The results indicate that there are no clear signs of finite volume effects.
After renormalising perturbatively (although in [78] they also presented astatus report on their
nonperturbative renormalisation programme and the results should be finalised soon) to theMS
scheme atµ2 = 4GeV2, they find

〈ξ 〉‖K∗ ≈ 0.0359(17)(22) 〈ξ 2〉
‖
ρ ≈ 0.240(36)(12) 〈ξ 2〉

‖
K∗ ≈ 0.252(17)(12) , (6.4)

which compare well with the preliminary results from QCDSF [77]〈ξ 〉‖K∗ ≈ 0.036(3), 〈ξ 〉⊥K∗ ≈

0.030(2). These results show theSU(3) f -breaking effects in theK∗ DAs in a similar way to that
observed for theK DAs in [75, 76].
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Figure 18: Nucleon decay constant,fN , (top/left) and difference between ratios of moments (bottom/left) in-
dicating an asymmetry betweenφ200 andφ020. Right: Barycentric contour plot of the leading-twist nucleon
distribution amplitude atµ = 2 GeV.

6.2 Nucleon

For the proton, there are three distribution amplitudes,V, A, T . In a similar way to the case of
mesons above, their moments (V lmn, Almn, T lnm) can be obtained from hadron-to-vacuum matrix
elements of local operators [79]. It is useful to construct the combination, φ lmn = 1

3(V lmn −Almn +

2T lnm). In the asymptotic limit,ϕ(xi,Q2 → ∞) = 120x1x2x3 and we haveφ100 = φ010 = φ001 = 1
3,

φ200 = φ020 = φ002 = 1
7, φ110 = φ101 = φ011 = 2

21, hence it is useful to look for asymmetries, such
asφ100−φ010.

QCDSF have calculated first two moments [80] using an improved constrainedanalysis which
considers ratios of correlators [80] together with nonperturbative renormalisation of the appropriate
3-quark operators [81]. By considering the difference between two such ratio, as shown in Fig. 18,
the asymmetry is pronounced and increases as one approaches the chiral limit.

These asymmetries are visualised in Fig. 18, where the lattice moments have beenused in a
polynomial expansion of the full nucleon DA. Herex1,2,3 refer to momentum fractions of the three
quarks in the proton and the asymmetries indicate that theu-quark with spin aligned with proton
spin has largest momentum fraction (x1). Interestingly, the asymmetries are less pronounced than
for QCD sum rules [82] and other phenomenological determinations [83].

7. Strange Quarks in the Proton

The determination of the strange quark content of the nucleon offers a unique opportunity to
obtain information on the role of hidden flavour in the structure of the nucleon. Since the nucleon
has no net strangeness, the strangeness contribution to the total chargeof the nucleon must be zero,
i.e. Gs

E(0) = 0. However, there is no such simple constraint on either the sign or magnitudeof
the strangeness contribution to the magnetic moment,Gs

M(0). Additionally, the strangeness charge
radius may also be non-zero. While the latest experimental results [84] suggest that the strange
form factors of the proton are consistent with zero, forthcoming experiments at JLab and Mainz
will further clarify this picture. Additionally, the strangeness contribution to the total spin of the
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[88].

nucleon is poorly determined. Hence there is an opportunity for lattice simulations to make an
important contribution to the current understanding of the role of strange quarks in the nucleon.

7.1 Indirect strangeness

An indirect method for determining the electromagnetic strangeness form factors has been
proposed over the last couple of years by the Adelaide group [85]. Bycombining charge symme-
try constraints with chiral extrapolation techniques, based on finite-range-regularisation [86], and
low-mass quenched-QCD simulations of the individual quark contributions tothe charge radii and
magnetic moments of the nucleon octet, precise estimates of the proton’s strangeelectric charge
radius and magnetic moment were obtained.

Recently, Lin & Orginos [26] have followed this procedure using results from a mixed action
simulation (DWF valence on Asqtad sea) with pion masses in the rangemπ = 350−750 MeV. Their
findings for the individual quark contributions to the charge radii of the nucleon octet indicate that
the contribution from the heavier strange quark is smaller than those from thelight quarks (Fig 19),
in agreement with quenched results [40].

After taking these mixed action results and following the Adelaide method, Lin & Orginos
find atQ2 ∼ 0.1GeV2

Gs
M = −0.082(8)(25) , Gs

E = −0.00044(1)(130) , (7.1)

which is in excellent agreement with earlier findings [85] and recent JLabexperiments [84].

7.2 Direct strangeness and other disconnected

Direct lattice calculations of the strangeness content are computationally demanding and are
renowned for suffering from large statistical noise. Recent advances in computing power combined
with technical innovations, such as all-to-all propagators [87], have ledto a renewed interest in
direct determinations of disconnected quantities, such as strangeness in the nucleon. This year we
have seen the progress being made in this area from several groups using a variety of different
methods.
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The χQCD collaboration [88] have started a simulation to determine the gluonic and strange
quark momentum fractions of the nucleon,〈x〉g, 〈x〉s, and the strangeness magnetic moment using
N f = 2+1 dynamical clover configurations from the CP-PACS/JLQCD collaborations. They use
Z(4) stochastic noise sources combined with an unbiased subtraction from the hopping parameter
expansion (HPE) [89], and multiple (up to 32) sources. By summing over theoperator insertion
times, they can then fit to the slope, as shown in Fig. 20. Their preliminary findings suggest
that the strange-to-light momentum fraction ratio,〈x〉s̄/(1

2(〈x〉ū + 〈x〉d̄)) = 0.857(40), which is
slightly larger than the CTEQ value, 0.27 < r < 0.67. Additionally, 〈x〉g is studied using the
overlap operator to constructFµν [90] in quenched QCD; since ultraviolet fluctuations are expected
to be suppressed due to the exponentially local nature of the overlap operator. For〈x〉g, a signal is
obtained with∼ 3σ accuracy, however renormalisation is required.

Another group that is making substantial progress is the Boston group [91]. They are using
stochastic sources with maximum dilution withN f = 2 Wilson fermions andmπ ≈ 400 MeV. By
using vacuum-subtracted currents, e.g.V − 〈V 〉, they fit the three-point function directly using
input from the two-point functions to calculateGs

S(q
2 = 0), Gs

A(q2 = 0) = ∆s. They find that they
are able to determine∆s with 30% errors and their result forGs

M is consistent with zero. From the
scalar form factor, they obtain the resultfT s = ms〈N|s̄s|N〉

MN
= 0.48(7)(3).

There was an update [92] on work outlined in [93] to calculate∆s and〈N|s̄s|N〉 using various
noise reduction techniques such as HPE, truncation solver method, truncated eigenmode approach
and dilution so that the stochastic source is only defined on a single timeslice. They find a reduction
in the stochastic variance at fixed cost of around 25-30. Disconnectedloops are currently being
calculated using Wilson propagators on a staggered sea for three valence quark masses and two sea
quark masses, with plans to move on to a fullN f = 2+1 simulation in the near future.

7.2.1 Scalar Form Factor

An analysis of the chiral behaviour of the scalar radius of the pion,〈r2
S〉, can lead to a deter-

mination of the LECℓ4 and it is expected to have an enhanced chiral logarithm as compared to
the vector radius discussed in Sec. 2.5. Hence it is a good place to searchfor chiral nonanalytic
behaviour in the chiral regime. However, such a calculation would need to take into account of the
disconnected contribution to the form factor, and as a result it has received little attention to date.

As mentioned in Sec. 2.5, the JLQCD collaboration are computing all-to-all propagators on
their N f = 2 overlap configurations [36]. These all-to-all propagators allow them tocompute the
scalar form factor of the pion, including the contributions coming from disconnected diagrams.

From the slope of this form factor, they calculate the scalar radius of the pion, 〈r2〉S
π , which is

shown in Fig. 21 as a function ofm2
π . Also shown in the plot is the result of a combined NNLO

ChPT fit to〈r2〉S
π , 〈r2〉Vπ andcV (see Sec. 2.5), where we can clearly see the predicted chiral cur-

vature at light quark masses. It will be interesting to see if this can be confirmed as results be-
come available at masses below 300 MeV. After extrapolating to the physical pion mass, they find
〈r2〉S

π = 0.578(69)(46) fm2, in agreement with experiment.

8. Background Field & Polarizabilities

All of the results presented in the previous sections have been obtained using sequential source
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Figure 21: Chiral extrapolation of〈r2〉S
π . Figure 22: Quadratic of the energy of theΣ0 as a

function of electric field.

methods, where a current with a particular momentum is inserted into one of the quark propaga-
tors used to construct the hadron. Static quantities are then obtained from afit to the momentum
transfer,q2, dependence of the resulting form factors. An alternative method is to consider lattice
simulations in the presence of constant electric,E, and magnetic,B, fields, and by studying the en-
ergy shifts in a hadron as a function of the field strength, it is possible to extract not only magnetic
moments, but also electric and magnetic polarisabilities,αE andβM.

On a finite volume, discontinuities can occur as the quark crosses the boundary of the lattice
unless the fields are quantised asqa2B = 2πn/L. However, this means that for the volumes being
used in current lattice simulations, the applied fields are so large that nonlinearities can arise (and
dominate) in theB-dependence of the masses and possible distortions in the particles themselves.

Aubin et al. [94] studied the finite volume effects of the magnetic moment of the∆ baryon.
They perform a test with quenched lattices for two different spatial volumes ((1.6fm)3 and(2.4fm)3),
they implement a “patch” to the field by adding thex-link modificationAµ(L−1,y,z, t)=−aBLyδµx

if x = L−1, resulting a field that is quantised in units of 2π/L2. They find that when using un-
patched data withqa2B < 2π/L, large finite size effects are seen on the small volume. However,
after patching, so long as simulations are performed close to 2π/L2, reliable results are obtained,
even on the small volume.

Having justified their method, they then proceeded to use 2+ 1 flavours of stout-smeared
clover fermions on anisotropic lattices with two spatial volumes and patched magnetic fields. One
light quark propagator (mπ ∼ 366 MeV) and one strange quark propagator to obtain results for the
magnetic moments of∆++,+,−,0 andΩ−. Results for∆− andΩ− are consistent with experiment,
with the accuracy ofΩ− comparable to experiment.

Tiburzi et al. [95] calculatedαE for both neutral and charge hadrons using clover fermions
on DWF sea as a test run, with valence DWF to follow. They also showed the benefit of patching,
although here it is referred to as “including transverse links”, by showing that it is possible to
remove “spikes” in, e.g. the pion’s effective mass, by including links suchas mentioned above. The
electric polarisability,αE , of hadrons are then determined by examining the quadratic dependence
of the energy as a function of field strength, as in Fig. 22.

For charged hadrons, one must also take into account the sum of the Born couplings to the
particles total charge, leading to a modification of the time-dependence of the particles two-point
function. As a result,αE for charged hadrons are extracted from the exponential time behaviourof
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the two-point functions by fitting them withexp(−Et− (Q2E 2t3)/(6M)). While errors obtained in
this initial study are fairly large, a couple of particularly interesting results are the ratioαπ+

E /αK+

E ,
which is found to be in good agreement with expectations from one-loop chiral perturbation theory,
i.e. it scales asmK/mπ , andαE of K∗0 andK∗+ which are found to be negative. For the proton and
neutron, they findαn

E = 3.6(1.3) andα p
E = 8.8(5.9) ×10−4 fm3.

Alexandrou [96] showed that an earlier calculation ofαn
E [97] can be improved by simulating

with an exponential background electric field rather than the linear field used in [97].
Finally, in [98] we saw some preliminary results forβ p,n

M onN f = 2 clover configurations from
the CP-PACS collaboration with three lattice spacings but constant physicalvolume, and quark
masses in the range 0.547< mπ/mρ < 0.8.

9. Conclusion & Outlook

Due to recent computer and algorithmic improvements, lattice calculations of hadronic quanti-
ties are now becoming available at pion masses as low asmπ ≈ 250 MeV, and it is not unreasonable
to expect that soon simulations will be performed close to the physical pion mass. However, as
we have seen in, e.g.gA, finite size effects (FSE) are starting to become a serious issue. As a
result, many groups are now planning future simulations on volumes as big as(4fm)3, in order to
minimise these effects, although corrections from ChPT will still probably need to be taken into
account.

This year we have seen an impressive amount of progress in many different hadronic quanti-
ties, providing fascinating insights into the structure of hadrons. From the slope of the electromag-
netic form factors, charge radii are now being computed for hadrons such asπ, ρ, N, ∆ in a region
where we expect to see dramatic chiral curvature towards the physical point. However, as these
radii are an indication of the size of a hadron, as mentioned earlier, FSE need to be considered
carefully.

The Q2 scaling of hadronic form factors is now receiving an increasing amountof attention.
In particular, twisted boundary conditions are providing access to smallQ2, but there also is work
underway to attempt to probe the largeQ2 region (> 4 GeV2). The smallQ2 region is also an
interesting place to study the Dirac and Sachs electric form factors of the neutron. The results that
are now becoming available at smallQ2 are not only able to help constrain static quantities such as
charge radii and magnetic/quadrupole moments, but also the value of the generalised form factor
B20(q2), which atq2 = 0 provides the value of the anomalous gravitomagnetic moment, which is
important in Ji’s angular momentum sum rule.

Lattice calculations of moments of generalised parton distributions are providing insights into
the different quark contributions to the nucleon’s spin and angular momentum, and current results
indicateJu ≈ 46%, Jd ≈ 0, Lu+d ≈ 0. These moments are also providing evidence for non-trivial
transverse spin densities in the pion and nucleon.

Simulations with zero momentum transfer lead to moments of ordinary parton distribution
functions, and include phenomenologically interesting quantities such asgA and〈x〉. Here, FSE
appear to playing an important role in the extraction of these quantities, especially for gA where we
have seen FSE lowering the lattice results. While there appears to be a slight tension between the
renormalisation of some of the lattice results for〈x〉u−d, the overall pattern seems to indicate that
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we may now at last be entering the region where the results may start to “benddown” towards the
phenomenological value. Although once again, FSE are predicted to become an issue close to the
physical pion mass, so care will need to be taken to ensure this encouraging behaviour continues.

Following the recent success of lattice calculations of the moments of the light pseudoscalar
meson distribution amplitudes (DAs), there are now results becoming available for moments of
vector meson and proton DAs. Results for the proton are providing evidence that asymmetries
exist in the way the momentum of the nucleon is distributed amongst its constituent quarks, with
the u-quark with its spin aligned to that of the proton carrying the most momentum. The results
also indicate that the symmetries are less pronounced than in QCD sum-rules.

While it is important to push these more “standard” hadronic measurements as far as we can
with the new sets of dynamical configurations that are becoming available, it isalso important to
develop new ideas and techniques. This year we saw a number of innovative methods for accessing
less well known quantities.

By considering matrix elements of operators where the quark fields are spatially separated,
moments of Transverse Momentum Dependent PDFs have been computed. From these moments,
it has been seen that densities of longitudinally polarised quarks in a transversely polarised nucleon
are deformed.

To date, lattice calculations of hadronic quantities have neglected the contributions coming
from disconnected diagrams, since these are notoriously difficult to compute. Recently, however,
there has been a renewed interest in determining these disconnected contributions to investigate
the strangeness and gluonic content of the nucleon and, in particular, their contributions to nucleon
spin. Through the use of all-to-all propagators and various noise reduction techniques, it may now
be possible to calculate some of these contributions with as small as 10% errors.

Although background field methods have been around for a long time, they have only recently
received a lot of interest, since traditionally the electromagnetic fields inducedon currently sized
lattices were too large. However recent developments show that it is now possible to consider
fields that are a factor ofL smaller. As a result, magnetic moments and polarisabilities can now
be extracted from these simulations with much more confidence. Additionally, it has recently been
shown that it is possible to extract the electric polarisabilities of charged hadrons from a lattice
simulation, and preliminary results are promising.

In summary, lattice simulations of hadronic observables have received a surge of interest over
the past few years, such that we are now not only in a position to confirm experimental findings
from a first-principles calculation, but also to provide predictions for, and in some cases to guide,
future experimental programmes.
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