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1. Motivation

Lattice QCD promises to revolutionize our understanding of multi-hadron systems and nuclear
physics. Being one level of difficulty removed from the physics of single hadrons, the study of
nuclei has traditionally been confined to phenomenological descriptions which are, for the most
part, disconnected from the Standard Model of particle physics. Over the past decade, a great deal
of progress has been made in formulating various low-energy effective field theories (EFT) of QCD
which describe few-nucleon systems [1, 2], and even finite nuclei [3]. The study of many-hadron
systems using lattice QCD has only begun very recently, with accurate results now available for
some meson systems, as we will see in this review.

The underlying motivation for studying complicated hadronic systems (like nuclei) varies.
While many lattice theorists are interested in calculating hadronic quantities that are relevant for
an understanding of physics beyond the standard model, there exists an entirely independent moti-
vation: there are many intrinsically interesting hadronic quantities for which there is essentially no
experimental information, and for these quantities lattice QCD calculations will have substantial
impact. For instance, while there were several experiments decades ago which measured the low-
energy hyperon-nucleon (YN) interaction, very little is known about such basic scattering quantities
as the scattering lengths and effective ranges1 And yet, for instance, the Σ−n interaction is an im-
portant ingredient in the nuclear Equation of State that determines the fate of dense astrophysical
objects like neutron stars [5]. Yet another quantity of interest is hπNN , the parity-violating, flavor
conserving, pion-nucleon coupling constant. After many decades of intense experimental effort
this quantity remains mysterious, and while a lattice determination poses serious challenges [6],
the required computer-time resources constitute a minute fraction of what is required for an exper-
iment in nuclear or particle physics. As a final example, the Kπ scattering lengths have recently
been determined using lattice QCD [5], providing a prediction for the global experimental effort
led by the DIRAC collaboration [7] to measure these quantities by observing the decays of mesonic
atoms.

As is well known, lattice correlation functions involving baryons face a significant signal to
noise problem; i.e. signal to noise degrades exponentially with time [8]. Since this issue is so
fundamental to lattice QCD studies of nuclear physics, I will first review this basic result. I will
then discuss progress over the last year in calculating hadron-hadron and multi-hadron interac-
tions using lattice QCD. Before calculating a scattering process that is unknown or poorly known
experimentally, it is essential to “benchmark” against quantities that are well known either from
experiment and/or from independent theoretical considerations. The s-wave ππ scattering lengths
offer a powerful means of benchmarking lattice QCD methods as these quantities are known with
remarkable accuracy from the Roy equation method [9]. I will discuss a recent lattice QCD calcu-
lation of the I = 2 ππ scattering length which has achieved accuracy at the 1% level. Other recent
results in the meson sector will also be mentioned, including K+K+ scattering and the interactions
of up to twelve pions and kaons, which allow determinations of three-body interactions as well as
chemical potentials relevant to a description of pion and kaon condensation.

1There is some movement to remedy this deficiency; for instance, a recent YN scattering experiment at relatively
high energies is described in Ref. [4].
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In meson-baryon scattering, benchmarking is significantly more difficult because the channels
which have been calculated to date do not have disconnected diagrams and these are not well known
experimentally. I will review the status of these calculations.

In nucleon-nucleon scattering, benchmarking the s-wave scattering length poses an extreme
challenge to lattice QCD theorists. On the one hand, there is a severe signal to noise problem
which requires vast computer resources to overcome. Then there is the problem of extrapolation:
since the physical scattering lengths are fine tuned, the chiral EFT description is necessarily non-
perturbative. Furthermore, the radius of convergence of the EFT is smaller than in the sector with
mesons or a single baryon, and therefore smaller quark masses are required in order to extrapolate.
In spite of these difficulties, a great deal of progress is being made in providing a lattice postdiction
of the threshold s-wave NN scattering parameters. While a fully-dynamical lattice QCD calculation
of low-energy YN phase shifts has been carried out, presently one can only compare to model
calculations whose reliability is not clear. I will review existing results for NN and YN scattering.

Recent calculations of NN and YN potentials on the lattice have generated a great deal of
interest. Unfortunately, the flaws in these calculations have not engendered as much attention.
Therefore, I will give a detailed critique of recent attempts to calculate NN and YN potentials
using lattice QCD.

2. Signal to Noise Estimates

As is well known [8], very general field-theoretic arguments allow a robust estimate of the noise to
signal ratio of hadronic correlation functions calculated on the lattice. With an eye towards lattice
QCD attempts to describe nuclei, it is worth briefly noting the fundamental difference between
lattice-measured correlation functions involving mesons and baryons. As an example, consider the
noise to signal ratio of a correlation function involving n pion fields, where the small interaction is
neglected,

σ(t)
〈θ(t)〉 ∼

√

(

A2 −A2
0
)

e−nmπ t

√
NA0 e−nmπ t

∼ 1√
N

. (2.1)

Here 〈θ(t)〉 is the correlation function, σ(t) is the variance and the Ai are amplitudes. It is note-
worthy that in this ratio, the time dependence of the variance mirrors the time dependence of the
correlator itself. One therefore concludes that correlators involving arbitrary numbers of pions have
time-independent errors, as is indeed observed in lattice calculations. This of course renders the
study of mesonic correlators quite pleasurable (from the statistical perspective).

The baryons provide a more disturbing story; consider the noise to signal ratio for a proton
correlation function:

σ(t)
〈θ(t)〉 ∼

√
A2 e−

3
2 mπ t

√
NA0e−mpt

∼ 1√
N

e(mp− 3
2 mπ)t . (2.2)

Here the variance is dominated by the three-pion state rather than by the proton, and therefore the
noise to signal ratio of the proton correlator grows exponentially with time. More generally, for a
system of A nucleons, the noise to signal ratio behaves as

σ(t)
〈θ(t)〉 ∼ 1√

N
e A(mp− 3

2 mπ)t . (2.3)
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Therefore the situation worsens as one adds nucleons. Fig. 1 compares the theoretical expectation
from eq. 2.3 with A = 2 to data calculated by the NPLQCD collaboration [5].

These estimates, which follow from very general field theoretic arguments, indicate that nu-
cleon and nuclear physics require exponentially more resources than meson physics to achieve the
same level of accuracy. There has been an attempt to get around this problem [10] by eliminat-
ing the pion zero modes through a clever choice of boundary conditions. However, this method
does not yet have a practical implementation. Clearly more effort should be dedicated to this very
important problem.

3. n bosons in a box

The ground-state energy of an n-boson system [11] in a finite volume is calculated with an interac-
tion of the form

V (r1, . . . ,rn) = η
n

∑
i< j

δ (3)(ri − r j)+η3
n

∑
i< j<k

δ (3)(ri − rk)δ (3)(r j − rk)+ .., (3.1)

where η and η3 are the two- and three-body pseudo-potentials, respectively, and the ellipsis de-
note higher-body interactions. In general, m-body interactions will enter at O(L3(1−m)) in the large
volume expansion. For an s-wave scattering phase shift, δ (p), the two-body contribution to the

Figure 1: Signal to noise ratio for the NN system in the 1S0 channel. The lattice data (black line) is generated
from the MILC coarse ensemble with pion mass ∼ 350 MeV, as discussed in Ref. [5]. The theoretical
prediction (red line) is from eq. 2.3.
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pseudo-potential is given by η = − 4π
M p−1 tanδ (p) = 4π

M a + 2π
M a2rp2 + . . ., keeping only the con-

tributions from the scattering length and effective range, a and r, respectively. To O(L−6) the
coefficient of the three-body pseudo-potential, η3, is momentum independent.

As an example, consider the 2-boson energy. The volume dependence of the energy may be
built up using Rayleigh-Schrödinger time-independent perturbation theory. The leading contribu-
tion to the perturbative expansion of the energy is given by

∆E(1)
2 = 〈−k,k|V (r1,r2)|−p,p〉 , (3.2)

where |−p,p〉 are the two-body momentum eigenstates in the center-of-mass system. The single-
particle wavefunctions in the finite volume are given by: 〈r|p〉 = exp(ik · r)/L3/2. Inserting two
complete sets of position eigenstates in eq. (3.2), one finds

∆E(1)
2 =

η
L3 =

4π a
M L3 . (3.3)

One sees that in the large volume limit, the two-particle ground-state energy, say, calculated on
the lattice, is related to the scattering length. (Excited levels then allow reconstruction of the
entire phase shift.) It is straightforward to calculate higher-order 1/L corrections in this manner.
Similarly, for n bosons in a finite volume, one finds

∆E(1)
n =

(

n
2

)

4π a
M L3 . (3.4)

The volume dependence of the energy of the n-boson ground state in a periodic cubic spatial vol-
ume of periodicity L has now been calculated [12, 13, 14, 15, 16, 11, 17, 18] up to O

(

1/L7). While
the calculational framework described here is non-relativistic, the results remain valid relativisti-
cally. In the two-body case, this has been shown by Lüscher [16]. With n ≥ 3 the interaction of
three particles due to the two-body interaction first enters at L−5, and relativistic effects in such in-
teractions are suppressed by (ML)−2. Hence, the first relativistic effects occur at O(L−7) [11] and
have been calculated perturbatively in Ref. [18]. The finite-volume energy formulas for fermions
are considered in Ref. [19].

4. Meson-meson interactions

As the simplest application of eq. (3.3), consider recent results for the ππ interaction [20]. Due
to the chiral symmetry of QCD, pion-pion (ππ) scattering at low energies is the simplest and
best-understood hadron-hadron scattering process. The scattering lengths for ππ scattering in the
s-wave are uniquely predicted at leading order in chiral perturbation theory (χ-PT) [21]:

mπaI=0
ππ = 0.1588 ; mπaI=2

ππ = −0.04537 , (4.1)

at the charged pion mass. While experiments do not provide stringent constraints on the scattering
lengths, a determination of s-wave ππ scattering lengths using the Roy equations has reached a
remarkable level of precision [9, 22]:

mπaI=0
ππ = 0.220±0.005 ; mπaI=2

ππ = −0.0444±0.0010 . (4.2)
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The Roy equations [23, 24, 25], use dispersion theory to relate scattering data at high energies to
the scattering amplitude near threshold. At present lattice QCD can compute ππ scattering only
in the I = 2 channel as the I = 0 channel contains disconnected diagrams. It is of course of great
interest to compare the precise Roy equation predictions with lattice QCD calculations. Fig. 2
summarizes the theoretical (left panel) and experimental (right panel) constraints on the s-wave
ππ scattering lengths [22]. It is clearly a strong-interaction process where theory has outpaced the
very-challenging experimental measurements.

The only existing fully-dynamical lattice QCD prediction of the I = 2 ππ scattering length
involves a mixed-action lattice QCD scheme of domain-wall valence quarks on a rooted stag-
gered sea. Details of the lattice calculation can be found in Refs. [20, 26]. The energy differ-
ence ∆E2 (and via eq. (3.3) the scattering length) was computed at pion masses, mπ ∼ 290 MeV,
350 MeV, 490 MeV and 590 MeV, and at a single lattice spacing, b ∼ 0.125 fm and lattice size
L ∼ 2.5 fm [20]. The physical value of the scattering length was obtained using two-flavor mixed-
action χ-PT (MAχ-PT ) which includes the effect of finite lattice-spacing artifacts to O(m2

πb2) and
O(b4) [27]. Figure 3 (left panel) is a plot of mπ aI=2

ππ vs. mπ/ fπ with the lattice results and the fit
curves from MAχ-PT. The final result is:

mπaI=2
ππ = −0.04330±0.00042 , (4.3)

where the statistical and systematic uncertainties have been combined in quadrature. Notice that
1% precision is claimed in this result. This result is consistent with all previous determinations
within uncertainties (see Figure 3 (right panel)). In particular the agreement between this result
and the Roy equation determination is a striking confirmation of the lattice methodology, and a
powerful demonstration of the constraining power of chiral symmetry in the meson sector.

It would be of great interest to see other (fully-dynamical) lattice QCD calculations of the
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Figure 2: The state of threshold s-wave ππ scattering. Left panel: theoretical results. Noteworthy are the
red ellipse from the Roy equation analysis and the orange band from the lattice QCD calculation of the I = 2
scattering length, as discussed in the text. Right panel: experimental results. For detailed information about
all of the curves on these plot, see Ref. [22]
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s-wave ππ scattering lengths using different types of fermions. Recently, χ-PT for Wilson-type
quarks has been developed for ππ scattering [30, 31] with an eye towards lattice calculations. One
may also wonder about new methodologies for computing scattering which compete with the finite
volume method. In this respect, there has been promising recent work on calculating the phase
shift from the two-pion wavefunction [32].

The I = 3/2, K+K+ scattering length has also been computed by the NPLQCD collabora-
tion [33, 26]. At the physical value of mK+/ fK+ ,

mK+ aK+K+ = −0.352±0.016 , (4.4)

where statistical and systematic errors have been added in quadrature. This scattering parameter,
which is not measured experimentally, may be useful for the study of kaon interferometry in heavy-
ion collisions.

5. Multi-Meson Interactions

Perhaps surprisingly, lattice QCD calculations with up to twelve pions and kaons have recently
been carried out. Using the large-volume expansion of the ground state energies of these systems,
it has proved possible to extract a signature of a three-pion force [34, 35, 36, 37]. The difficulty
with this result is that, unlike the relation between two-body interactions and scattering, it is not
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Figure 3: Left panel: mπ aI=2
ππ vs. mπ/ fπ (ovals) with statistical (dark bars) and systematic (light bars)

uncertainties. Also shown are the experimental value from Ref. [28] (diamond) and the lowest quark mass
result of the n f = 2 dynamical calculation of CP-PACS [29] (square). The blue band corresponds to a
weighted fit to the lightest three data points using the one-loop MAχ-PT formula (the shaded region corre-
sponds only to the statistical error). The red line is the tree-level χ-PT result. Right panel: A compilation
of the various measurements and predictions for the I = 2 ππ scattering length. The prediction described
in these proceedings is labeled NPLQCD (2007), and the Roy equation determination of Ref. [9] is labeled
CGL (2001).

7



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
0
0
8

Hadronic interactions and nuclear physics Silas R. Beane

obvious how to relate the three-body interaction (which is proportional to the coefficient of a three-
body operator in a non-relativistic Lagrangian) to an observable quantity. Nevertheless, Ref. [35]
has noted that a comparison can be made between χ-PT predictions for pion condensation [38] and
the lattice QCD results. And indeed the lattice-extracted three-body force appears to be essential
for agreement with the χ-PT result, which in principle contains all n-pion forces. Similar results
have been found for kaons in Ref. [37]; however the kaon three-body is consistent with zero (See
Fig. 4.) This agreement is quite remarkable given that the lattice calculation is clearly not in the
thermodynamic limit. This result demonstrates that lattice QCD calculations with a finite number
of particles are useful for the study of many-body physics, like pion and kaon condensation.

6. Meson-Baryon Interactions

Pion-nucleon scattering has long been considered a paradigmatic process for the comparison of χ-
PT and experiment. To this day, controversy surrounds determinations of the pion-nucleon coupling
constant and the pion-nucleon sigma term. While it would be of great interest to calculate scattering
parameters for this process on the lattice, pion-nucleon correlation functions necessarily involve
disconnected diagrams. Indeed, considering the meson and baryon octets, there are six processes
that are free of annihilation: π+Σ+, π+Ξ0, K+p, K+n, K̄0Σ+, and K̄0Ξ0. Preliminary lattice QCD
results by the NPLQCD collaboration now exist which use domain-wall valence quarks on a rooted
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Figure 4: K− chemical potential as a function of K− density on the coarse MILC lattices. Finite differences
obtained from lattice data appear as boxes. The curves are: leading-order χ-PT (dashed), fitted scattering
length with three-body interaction (solid) and same with no three-body interaction (dotted)
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staggered sea [39]. An example of effective scattering lengths is shown in Fig. 5. An interesting
aspect of this system of six processes is that the χ-PT description at next-to-leading order contains
two free parameters [40]. Hence the overconstrained nature of the system provides an interesting
test of chiral symmetry and the lattice methodology. It is also worth noting that an understanding
of meson-baryon energy levels is an essential ingredient in any attempt to extract excited-baryon
masses from lattice calculations [41].

7. Baryon-Baryon Interactions

7.1 Potentials or Phase Shifts? A No-Go Theorem

Modern nucleon-nucleon (NN) potentials fit the NN phase shift “data” at low energies with a chi-
squared of order one. One might then envisage calculating an NN potential directly from lattice
QCD which could be input into the Schrödinger equation to generate first principles predictions
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Figure 5: Effective scattering length (times reduced mass) plots for the six annihilation-free meson-baryon
processes. For this MILC ensemble the pion mass is roughly 600 MeV, b ∼ 0.125 fm and L ∼ 2.5 fm.
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for phase shifts. A priori, this seems problematic; after all, unless the scattering particles are in-
finitely heavy, the potential is not an observable in quantum mechanics, as a unitary transformation
will change the potential and the wavefunction in such a way as to leave observables invariant.
Therefore at best one can calculate a potential that has been defined as a particular lattice QCD
correlation function with the understanding that this choice is not unique.

With this defined NN potential in hand, could one compare it to modern NN potentials? Mod-
ern NN potentials tend to treat the short-range part of the NN force in completely different ways, in-
deed sometimes using arbitrary parameterizations, while maintaining more or less the same almost-
perfect agreement with data at low energies. This is no surprise if one thinks in the language of
the renormalization group. Ref. [42] has considered momentum-space matrix elements of various
modern NN potentials, VNN(k,k), that fit the low-energy data and yet look quite different at short
distances. See Fig. 6. If one integrates out physics above a cutoff Λ, one sees that as Λ is reduced,
the various potentials, Vlowk(k,k), approach a universal curve, thus indicating that the details of
the short-distance physics are irrelevant to low-energy scattering data. The bottom line is that if
one is able to compute the NN potential from QCD, then there is no meaningful way in which the
short-distance part of the potential may be compared to phenomenological NN potentials. The only
utility of the potential would be to calculate phase shifts.

Recently, it has been claimed that the NN and YN potentials can be extracted from the lattice
wavefunctions of two nucleons [43, 44], extending the technique that CP-PACS has successfully
used to determine I = 2 ππ scattering parameters [45]. Given the widespread attention that this
work has received, it is worth repeating here why this method is flawed [46].

The NN correlation function measured on the lattice in Ref. [43] (IAH) is

GNN(x,y, t) = 〈0|Ô1(x, t)i
αÔ1(y, t) j

β J(0)|0〉

Figure 6: Left panel: momentum-space matrix elements for an assortment of bare NN potentials in the
1S0 and 3S1 channels. Right panel: momentum-space matrix elements for NN potentials with short distance
physics excluded beyond a cutoff Λ.
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= ∑
n
〈0|Ô1(x,0)i

αÔ1(y,0) j
β |ψn〉〈ψn|J(0)|0〉 e−Ent

2En
, (7.1)

where Ô1(x, t)i
α is a nucleon interpolating field with Dirac-index i, and isospin index α . J is a wall-

source on the initial time-slice t0 = 0, and |ψn〉 are the eigenstates of the Hamiltonian in the finite-
volume. In particular, |ψn〉 are states of definite baryon number and isospin, and transform non-
trivially under the hyper-cubic group. Setting 〈ψn|J(t0)|0〉 = An(t0), at long times the correlation
function becomes

GNN(x,y, t) → A0(0) 〈0|Ô1(x,0)i
αÔ1(y,0) j

β |ψ0〉
e−E0t

2E0
, (7.2)

where E0 is the ground-state energy shifted from 2M by boundary effects (∆E2 in the notation given
above in eq. 3.3). From this object, IAH generate the potential:

UE0(r) = E0 +
1

2µ
∇2GNN

GNN
, (7.3)

where µ is the reduced mass of the NN system. Here the energy dependence of the potential UE0(r)
has been made explicit and Ψ = GNN trivially satisfies the Schrödinger equation for this potential.
IAH then assert that 〈0|Ô1(x, t0)i

αÔ1(y, t0)
j
β |ψ0〉 is proportional to the non-relativistic, equal-time,

Bethe-Salpeter (BS) wavefunction Φi j
αβ ≡ 〈0|N(x, t0)i

αN(y, t0)
j
β |ψ0〉, where N(x, t) is a free-field

nucleon annihilation operator.
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Figure 7: The current status of lattice QCD calculations of the s-wave NN scattering lengths; left panel: 1S0;
right panel: 3S1. The solid vertical line indicates the physical pion mass.

However, this identification of the Bethe-Salpeter wavefunction is not correct as the most
general form for the matrix element is

〈0|Ô1(x, t0)
i
αÔ1(y, t0)

j
β |ψ0〉 = Z(S,I)

NN (|r|) 〈0|N(x, t0)
i
αN(y, t0)

j
β |ψ0〉+ . . . , (7.4)

where Z(S,I)
NN (|r|) is an unknown function that depends on details of the composite sink, Ô

i
1,αÔ

j
1,β

and on the separation r = x− y. The ellipses denote additional contributions from the tower of
states of the same global quantum numbers.
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In the limit |r| → ∞, Z(S,I)
NN (|r|) → (

√
ZN)2 (where ZN = |〈0|Ô1|N〉|2) and the additional terms

in eq. (7.4) containing p > 2 particles are suppressed. Consequently the scattering parameters can
be rigorously extracted from GNN . However, inside the range of the NN interaction (|r| < m−1

π ),
GNN depends explicitly on the interpolating fields that are used. Hence the “potential” defined
in eq. 7.3 contains only a single piece of useful physics: the phase shift δ (E0), evaluated at the
specific energy E0, which is precisely what one extracts using the finite-volume method described
above. The energy dependence of the BS equation has been considered in toy models in Ref. [47],
however the implications for the realistic problem are not clear.

Perhaps not surprisingly, this no-go theorem implies that the only meaningful information
about hadron-hadron scattering that can be rigorously computed in lattice QCD consists of S-matrix
elements.

7.2 Current status of Baryon-Baryon Scattering

100 150 200 250 300 350 400 450 500 550
mπ  (MeV)
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-70
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-40
-30
-20
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20
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δ(
 |k
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 2
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 M

eV
 ) 

   
 (d
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)
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nΣ−   ( 3S1 )      
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a 0
 (

fm
)

mπ2 (GeV2)

mπ=0.135 GeV

1
3
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Figure 8: Lattice QCD calculations of the s-wave YN scattering lengths; left panel: the nΣ− 3S1 phase shift
evaluated at center-of-mass momentum |k| = 261 MeV, compared to various potential models; right panel:
the s-wave pΞ0 scattering lengths at various pion masses in quenched QCD.

Recently, the NPLQCD collaboration has performed the first full-QCD calculation of the s-wave
NN scattering lengths [48]. At the pion masses used in these calculations, the NN scattering lengths
were found to be of natural size in both channels, and much smaller than the L ∼ 2.5 fm lattice
spatial extent. (See Fig. 7, which also includes the quenched calculations of Refs. [49, 50].) The
lowest pion mass calculated (∼ 350 MeV ) is at the upper limit of where one expects the EFT
describing NN interactions to be valid. While the NN system is clearly plagued by the signal to
noise problem discussed above, as the NN signals improve with increased statistics, a lattice QCD
prediction of the low-energy scattering parameters will become possible. However, it may well be
the case that accurate benchmarking for the NN system will initially be done with higher partial
waves, whose effective range parameters are of natural size and dominated by pion physics.

Study of the interactions of hyperons with nucleons and nuclei is an exciting area of nuclear
physics, as mentioned in the introduction. YN interactions influence the structure and energy-
levels of hypernuclei and are expected to be a basic input in studies of the Equation of State of
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dense stellar matter. Initial investigations of these interactions using lattice QCD have been carried
through. Here scattering lengths of natural size are expected as there are probably no YN bound
states near threshold. As an example, Fig. 8 (left panel) displays the spin-triplet nΣ− phase shift at
(center of mass) momentum |k| = 493 MeV and mπ ∼ 350 MeV calculated by the NPLQCD col-
laboration in fully-dynamical lattice QCD [51], compared to various potential models. Fig. 8 (right
panel) displays the s-wave pΞ0 scattering lengths in a recent quenched calculation, for various pion
masses [44].

8. Conclusion

Lattice QCD calculations of two- and three-body interactions of pions and kaons are now a preci-
sion science (for those channels that do not involve disconnected diagrams). The study of multi-
pion systems has led to the first lattice QCD evidence of many-body forces. While these results
provide an important test of the basic methodology for extracting many-body physics from lattice
QCD, they are also useful for the study of many-body physics like meson condensation. It will be
of great interest to see results of competing calculations with different fermion discretizations in
the meson sector.

A milestone for this area of research is to see a definitive signal for nuclear physics. Here
one is plagued by a severe signal to noise problem and, for the case of the NN interaction, a
fine-tuned system that requires a non-perturbative effective field theory description. However a
great deal of progress has been made in a short period; initial results for NN and YN scattering
parameters now exist in fully-dynamical lattice calculations and the advent of petascale computing
aligns nicely with the need for very high-statistics calculations, which promise to herald a golden
age of exploration for nuclear physics.
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