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1. Introduction

Experiments show that many excited-state hadrons exist, and there afieaigexperimental
efforts to map out the QCD resonance spectrum, such as Hall B and fhespbHall D at Jefferson
Lab, ELSA associated with the University of Bonn, COMPASS at CERN\PA at GSI, and
BESIII in Beijing. Hence, there is a great need &brinitio determinations of such states in lattice
QCD.

Higher-lying excited hadrons are a new frontier in lattice QCD, and exjiora of new fron-
tiers are usually fraught with dangers. Excited states are more difficukttact in Monte Carlo
calculations; correlation matrices are needed and operators with vedyoyedaps onto the states
of interest are crucial. To study a particular state of interest, all states Ig@lgviihat state must
first be extracted, and as the pion gets lighter in lattice QCD simulations, momaredmulti-
hadron states will lie below the excited resonances. To reliably extract thaki-hadron states,
multi-hadron operators made from constituent hadron operators with witiedi relative mo-
menta will most likely be needed, and the computation of temporal correlatiatidms involving
such operators will require the use of all-to-all quark propagators. éMaluation of disconnected
diagrams will ultimately be required. Perhaps most worrisome, most excitedrigmdre unsta-
ble (resonances), so the results obtained for finite-box stationaryestatgies must be interpreted
carefully.

This talk will describe the key issues and challenges in exploring excitesbhsdh lattice
QCD, emphasizing the importance of multi-hadron operators and the needl-forall quark
propagators. Dealing with resonances in a box is discussed, and tm®ltEgph associated with
extracting excited stationary-state energies, including operator desiyfiedesh smearing, is de-
tailed. Efforts in variance reduction of stochastically-estimated all-to-altkgpeopagators using
source dilutions are outlined. Results on excited hadrons during the Esaggeesummarized.

2. Resonancesin a box

A simple example serves to illustrate the issues that must be confronted wkigimgtteso-
nances in a box. Consider the (dimensionless) Hamiltonian for a singlelativigtic particle of
massm= 1 moving in one dimension in a potent)(x) is given by

H=31p24V(X)., V() =(x*-3) e 1)

This potential has an attractive core surrounded by a repulsive haseshown in Fig. 1. The
infinite-volume spectrum of this Hamiltonian for energes< 4 is shown in Fig. 1. The ground
state is a bound state of even parity, and there is one bound state in theridgdtipannel. A
continuum of scattering states is found fér> 0, with a narrow resonance in the even-parity
channel and a broad resonance in the odd-parity sector, both beleved(+) and odd(—) parity
scattering phase shifts. (E) can be defined in the usual way as the phase between the transmitted
and incident wave, appearing in the asymptotic wave functions as

0.7 .ok 8.0 ). 079 o sargsin(kix +8.09). (=), (22)
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Figure 1: (Left) The solid curve shows the potentia(x) of the example given in Eq. (2.1). The spectrum
for energiesE < 4 is also shown. The ground state is an even-parity bound,stat there is one bound
state in the odd-parity channel. Two resonances (a harr@wotie even-parity and a very broad one in the
odd parity sector) in a continuum of scattering stdes 0 are shown. (Right) The scattering phadg$§E)

for this example are shown f& < 4. The locations of the resonance energies are shown astiesttieal
lines.

wherek = v/2E. These phase shifts are also shown in Fig. 1. The narrow even-pasiipance is
seen as a sudden dramatic increase in the phase shift (by an amountatgmfiar) and the broad
odd-parity resonance appears as a not-so-sudden increase iratigegbiift. The resonance masses
and widths can be extracted by fitting a Breit-Wigner plus a polynomial bacikgttodd. /dE in
the vicinity of the resonances (or by employing the complex rotation methodibedin Ref. [1]).

Now consider solving the system in a box of lendgtisuch tha—%L <X < %L, assuming
periodic boundary conditions. Note that the potential is Mo(X) = 5,V (x+nL). The infinite
volume gets tiled intd.-length strips in which the potential is replicated. We assumeltimtarge
compared to the extent of the potentiabo that interactions with mirror potentials is negligible.

In a finite-box with periodic boundary conditions, the momentum is quantizethesentire
spectrum is a series of discrete energies, everkfor0. The periodic-box spectrum can be de-
termined in two ways: diagonalization of the Hamiltonian in a basis of states happrgmiate
boundary conditions, and by solving the differential equation and mat¢biag asymptotic form
having the correct boundary conditions. Either way, one finds themspeshown in Fig. 2. The
light dotted lines indicate the spectrum #r= 0 which have valuesi®n?/L? forn=1,2,3,...,
plus ann = 0 line in the even parity channel. One sees that a resonance shows gemaseof
avoided level crossings when viewed against box lehgtA narrow resonance, as in the even
parity sector, can be easily identified by a closely-avoided level crodsinig broad resonance, as
in the odd parity sector, is essentially impossible to recognize.

These plots illustrate the difficulty in extracting resonance parameters fniterfiox energies.
Under certain special circumstances, resonance parameters carebedfeut using tricks such as
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Figure 2: (Left) Spectrum of even-parity states for the example Hamihan given in Eq. (2.1) in a box of
extentL with periodic boundary conditions. (Right) Spectrum of eultity states. The light dotted lines
indicate the energy levels f& = 0 which have values®n?/L? for n=1,2,3,..., plus ann = 0 line in
the even parity channel. The horizontal dashed lines shewatations of the infinite-volume resonance
energies.

described in Ref. [2]. Examining the spectrum in several volumes is imgpead knowing the
pattern of multi-hadron states based on mass determinations of the stable pantidlgroup-
theoretical combinations of the constituents having total zero-momentum ¢ghalps. For high
precision, the phase-shift method of Refs. [3, 4] can be used. In thisodhethe finite-volume
energies are used to determine the scattering phase shifts of the partes, i)mm which one
can deduce resonance masses and widths. This method has recentéyplksshto study th@-
meson resonance[5]. Thet phase shift was extracted from the finite-volume spectrum, and the
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Figure 3. (Left) rrrr scattering phase shift showing tiperesonance [5]. A width, = 2oot}gg MeV is
obtained from a Breit-Wigner fit. (Right) Illustration ofétbinning method of Ref. [6] in which a proba-
bility distribution is used to identify resonant structufeor various values df, energies are collected into
momentum bins to construct a probability distributiip).



Exploring Excited Hadrons Colin Morningstar

A— : — 0.4———————1— ———r
Even parity ! 09<E<18 Odd parity 1 10<E<40
F : 10<L<25 1 | : 10<L<25 |
1 AE=0.03 1 AE=01
3r | AL=005 7] | AL =005
— 1 levels 3,4,5 —~~ 0.2 1 levels 4,5,6 7|
L ! ] LL !
~% X ~0 ]
02 : 0 :
= | = o0 |
ar 1 l m) l
I N’ I
3 | = |
[ -0.2 [
0 l i
1 1
1 1
1 1
1 | L L L : L | L L O 4 PR S T T Y .: PR
1 15 "1 2 3

Figure 4. (Left) Results of applying the binning method of Ref. [6] ndae even-parity resonance of the
example Hamiltonian in Eq. (2.1). Location of the resonaadedicated by the vertical dashed line. (Right)
Results for the very broad odd-parity resonance.

p resonance parameters extracted (see Fig. 3). However, the practdalityphase-shift method
has yet to be demonstrated for other resonances in QCD.

A new histogram method has been recently proposed[6] and appliedttesigrpion-nucleon
data which mocks up thA-resonance. Energies for several volumes are collected into momen-
tum bins, and with suitable normalization and free-result subtraction, sstbghams produce a
probability distributionW (p) which shows peaks corresponding to the resonances of interest (see
Fig. 3). The method has no prior theoretical bias and provides the possiliisgeing resonant
structure even when avoided level crossings are washed out byad f@sonance. The application
of this method to the example Hamiltonian in Eqg. (2.1) is shown in Fig. 4. The nagswnance
appears quite clearly, and amazingly, the odd-parity broad resonaals® isorrectly reproduced.

Deducing resonance parameters from finite-box spectra remains altiffiallenge, espe-
cially considering that higher-lying resonances will lie above three-pasied four-particle thresh-
olds and that these resonances can have multiple decay channels. I dttehmer work in this
area is needed. Perhaps matching the finite-box spectra to that of ativeftheory, such as a
one-boson exchange model, might ultimately be the way to make progress.

3. Excited stationary states. recent results

Before discussing the issues and challenges in extracting the energtesiafary states in a
box, | would like to summarize the excited-state results which have appdacedtie last lattice
conference.

A first glimpse of the higher-lying nucleon spectrum in lattice QCD was praVio the
Hadron Spectrum Collaboration in Ref. [7]. These first results, showig. 5, were on a small
128 x 48 anisotropic quenched lattice with a very heavy pion. Results for bothutieans and
A-resonances on 239 quenched configurations or*acB& lattice and 167 quenched configura-
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Figure5: (Left) Nucleon spectrum from 200 quenched configurationa &g x 48 anisotropic lattice using
the Wilson gauge and quark actions wéh~ 0.1 fm, as/a; ~ 3.0 andm; ~ 700 MeV from Ref. [7]. (Right)
Nucleon spectrum from 43Q; = 2 configurations on a 24« 64 lattice using a stout-smeared clover fermion
action and Symanzik-improved gauge action vagi- 0.1 fm, as/a; ~ 3, andmy; = 400 MeV from Ref. [9].

tions on a 24 x 64 lattice using an anisotropic Wilson action with spatial spaeing 0.1 fm,
as/a; ~ 3, and a pion mass;; ~ 490 MeV appeared during the past year[8]. These masses have
been determined in the past year using 480= 2 configurations on a 24x 64 lattice with a
stout-smeared clover fermion action and a Symanzik-improved anisotropgegection[9]. The
results for a pion mass,; = 400 MeV, spacings ~ 0.1 fm andas/a; ~ 3 are shown in Fig. 5. The
low-lying odd-parity band shows the exact number of states in each ehasexpected from ex-
periment. The two figures show the splittings in the band increasing as tHemaas is decreased.
At these heavy pion masses, the first excited state ifGiigechannel is significantly higher than
the experimentally measured Roper resonance. It remains to be seeemdratbt this level will
drop down as the pion mass is further decreased. Most of the levels ilgkitenand plot lie very
close to two-particle thresholds. The use of two-hadron operators wileleeed to go to lighter
pion masses.

During the past year, extractions of excited meson states have beemtgsn Ref. [10].
Results in the pseudoscalar, vector, and axial-vector channels ave é#hnéig. 6. These results
were obtained using 99 quenched configurations on3a<1® isotropic lattice with a chirally-
improved fermion action and the Luscher-Weisz gauge action for latticéergpagc~ 0.15 fm and
a range of pion masses. This work emphasizes the use of derivatiesdn correlation matrices
to obtain the excited states. A search for light scalar tetraquark states véfirise= 0, % was also
presented at this conference[11].
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Figure 6: (Upper left) Results from Ref. [10] for the first-excited pgescalar 0T meson mass against
pion mass squared from 99 quenched configurations orf & 3@ lattice with a chirally-improved fermion
action and the Luscher-Weisz gauge action for lattice sygsi ~ 0.15 fm. (Upper right) First-excited 1
meson mass. (Lower left) Second-excited Imeson mass. (Lower right) Ground and first-excited 1
meson masses.

4. Excited stationary states: key issues

Reliably capturing the masses of excited states requires the computationstdton matrices
Gij(t) = (O]T P, (t)(D]-L(O)\O> associated with a large set Nfdifferent operatorsp;(t). It has been
shown in Ref. [12] that th&l principal effective massesW (t), defined by

_ )\a(t,to)
Wa(t) =In (Aa(t+1,to)> ’

where A4 (t,t) are the eigenvalues @(tg) /2 C(t) C(tp) 1/2 andty < t/2 is usually chosen,
tend to the eigenenergies of the lowBkstates with which thé&l operators overlap asbecomes
large. The eigenvectors associated With{t,tp) can be viewed as variationally optimized opera-
tors. When combined with appropriate fitting and analysis methods, suchimaaltechniques
are a particularly powerful tool for investigating excitation spectra. Twaet the stationary state
energies, one can fit a single-exponential or a sum of two exponentiatctoprincipal correla-
tor; alternatively, optimized operators can be determined on an early time afidea fit to the
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correlation matrix of optimized operators can be carried out. The use ofrbethods is a good
consistency check.

The use of operators whose correlation functi@fly attain their asymptotic form as quickly
as possible is crucial for reliably extracting excited hadron masses. Arriamangredient in con-
structing such hadron operators is the use of smeared fields. Operatstsucted from smeared
fields have dramatically reduced mixings with the high frequency modes of ¢oeythBoth link-
smearing and quark-field smearing should be applied. Since excitedrnisaam® expected to be
large objects, the use of spatially extended operators is another kegdimgfran the operator de-
sign and implementation. A more detailed discussion of these issues can Derfdvef. [13].

Spatial links can be smeared using the stout-link procedure described. ifL&e The stout-
link smearing scheme is analytic, efficient, and produces smeared links atdchutomatically
elements oBU (3) without the need for a projection back irfBd (3). Note that only spatial staples
are used in the link smoothening; no temporal staples are used, and thedelmporariables are
not smeared. The smeared quark fields can be defined by

2

P(x) = (1+ 9 Z) N W(x), (4.1)

4Ang

whereas andng are tunable parametensy(is a positive integer) and the three-dimensional covari-
ant Laplacian operators are defined in terms of the smeared link varliﬁbe)%s follows:

2O = S (Uk(x)O(x+R) - O(x)>, (4.2)
k=+{F2+3
whereO(x) is an operator defined at lattice sitevith appropriate color structure, and noting that
U_k(x) = UJ(X— k). The smeared field§ and@ are Grassmann-valued; in particular, these fields
anticommute in the same way that the original fields do, and the square of maetnes! field
vanishes.

Hadron states are identified by their momentppintrinsic spinJ, projectionA of this spin
onto some axis, paritl? = +1, and quark flavor content (isospin, strangenetgs). Some mesons
also includeG-parity as an identifying quantum number. If one is interested only in the madse
these states, one can restrict attention toghe0 sector, so operators must be invariant under all
spatial translations allowed on a cubic lattice. The little group of all symmetryftranations on
a cubic lattice which leave = 0 invariant is the octahedral point gro@p, so operators may be
classified using the irreducible representations (irrep€)fFor mesons, there are ten irreducible
representation8ig, Aog, Eg, Tig, Tog, Atu, Aou, Eu, T1u, Tou. The representations with a subscigot)
are even (odd) under parity. Tlgrreps are one dimensional, tearreps are two dimensional, and
theT irreps are three-dimensional. The irreps contain the = 0,4,6,8,... states, thé, irreps
contain thel = 3,6,7,9,... states, thd irreps contain the = 2,4,5,6,7, ... states, thd; irreps
contain the spid = 1,3,4,5,... mesons, and th& irreps contain the spid = 2,3,4,5, ... states.
For baryons, there are four two-dimensional irr€pg, Gy, Gog, G2y and two four-dimensional
representationsly andH,. TheG; irrep contains thd = 1, £, 3 11 . states, théd irrep contains

29292 29"
thed = 3,3, 1.9,... states, and th&; irrep contains thed = 3, £, ... states. The continuum-

2929 29
limit spinsJ of our states must be deduced by examining degeneracy patterns theraéfferent
O, irreps.



Exploring Excited Hadrons Colin Morningstar

single-  singly- doubly- doubly- ly- I
sﬂg dispPa%ed dlsplac%d |dISp|and L dlspFI)a%:ed T dlsglgced 0]

Figure 7: The spatial arrangements of the extended three-quark bargerators. Smeared quark-fields
are shown by solid circles, line segments indicate gauger@ant displacements, and each hollow circle
indicates the location of a Levi-Civita color coupling. Ramplicity, all displacements have the same length
in an operator. Results presented here used displacenmgpitéeof &g (~ 0.3 fm).

The authors of Ref. [13] advocate operators designed with one eyedswnaximizing over-
laps with the low-lying states of interest, and the other eye towards minimizing theemushb
sources needed to calculate the required quark propagators. Théasi@gthat a construction
method which can be easily adapted for baryons, mesons, hybrid stadesudti-hadron systems
is ideal. Since the calculation of quark propagators can be computationg&nsixe, baryon,
meson, and multiquark operators which share the same basic building bloeksmsmended.

Thus, these authors advocate a three-stage approach to constraatiog bperators. First,
basic building blocks are chosen. These are taken to be smeared ntlyatiaplaced quark fields

G @), @DPNL, -3<j<3, (4.3)

whereA s a flavor indexa is a color indexg is a Dirac spin index, and thelink gauge-covariant
displacement operator in tHeth direction is defined by

BIP (x.X) =Uj(x) Uj(x+1)...0j(xH (P~ D)8y ppy DY (X X) =8¢, (44)

for j = £1,+£2 +3 andp > 1, and wherg = 0 defines a zero-displacement operator to indicate no
displacement. Nexg&lemental operatorsf (t,x) are devised having the appropriate flavor structure
characterized by isospin, strangeness, and color structure constrained by gauge invariance. For
zero momentum states, translational invariance is impoBEdt) = ¥, BF (t,x). Finally, group-
theoretical projections are applied to obtain operators which transfoeauicibly under all lattice
rotation and reflection symmetries:

dn

A0 =5 TR URBT (D) UL, (4.5)

Yop récp

whereOp is the double group ady,, Rdenotes an element 6, Jop is the number of elements in
OP, andd, is the dimension of th& irreducible representation. Projections onto both the single-
valued and double-valued irreps ©f, require using the double grou@P in Eq. (4.5). GiverMg

> oe [, T[T [

single- sin oubly- - -
sﬁg dispig ced dISp|and L dlsglgced U dlsglgced @)

Figure 8: The spatial arrangements of the quark-antiquark mesoratper In the illustrations, the smeared
quarks fields are depicted by solid circles, each holloweimdicates a smeared “barred” antiquark field,
and the solid line segments indicate covariant displacésnen
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Figure 9: Effective massedM(t) for unsmeared (black circles) and smeared (red trianglpsyators
Oss, Osp, OrpT, Which are representative single-site, singly-displacat triply-displaced-T nucleon
operators, respectively. Top row: only quark-field smegnig = 32, g5 = 4.0 is used. Middle row:
only link-variable smearing, = 16, npp = 2.5 is applied. Bottom row: both quark and link smearing
Ng = 32, 0s= 4.0, np = 16, n,p = 2.5 are used, dramatically improving the signal for all threemtors.
Results are based on 50 quenched configurations of & 48 anisotropic lattice using the Wilson action
with as ~ 0.1 fm, as/a; ~ 3.0.

elementaBl™ operators, many of the projections in Eq. (4.5) vanish or lead to lineapgsttent
operators, so one must then choose suitable linear combinations of thet@dapperators to obtain
a final set of independent baryon operators. Thus, in each symnigtnnel, one ends up with a
set ofr operators given in terms of a linear superposition of kMg elemental operators. The
different spatial configurations (see Fig. 7 for the baryon confifpma and Fig. 8 for the meson
configurations) yield operators which effectively build up the necgssdital and radial structures
of the hadron excitations. The design of these operators is such thgeaniamber of them can
be evaluated very efficiently, and components in their construction casda for both meson,
baryon, and multi-hadron computations.

Finding appropriate smearing parameters is a first crucial part of afrphapectrum calcu-
lation. Fig. 9 demonstrates thboth quark-field and link-field smearing are needed in order for
spatially-extended baryon operators to be useful[15]. It is importardedhe smeared links when
smearing the quark field. Link smearing dramatically reduces the statisticas$ énrthe correla-
tors of the displaced operators, while quark-field smearing dramaticallycesdthe excited-state
contamination.

The above approach to designing hadron and multi-hadron interpolatidg léads to a very

10
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Figure 10: Effective masses for the lowest eight levels in tBg channel (left) andd, channel (right).
The green circles are fixed-coefficient effective massegreds the red squares are the principal effective
masses. Fit values are shown by the blue lines. Results aesllmm 200 quenched configurations on a
123 x 48 anisotropic lattice using the Wilson gauge and quarloastiwithas ~ 0.1 fm, as/a; ~ 3.0 and

my ~ 700 MeV.

large number of operators. It is not feasible to do spectrum computatsang all of the operators

so designed; for example, in tii&y symmetry channel for nucleons, the above procedure leads to
179 operators. It is necessarypgaune down the number of operators. Six months of exploratory
testing and trials led to the following guideline: noise is the enemy, so a praeddatr keeps a
variety of operators while minimizing the effects of noise works best. Sometipe are intrin-
sically noisy and must be removed. In addition, a set of operators, eifichitile intrinsic noise,

can allow noise to creep in if they are not sufficiently independent of anéhar.

In Ref. [7], the following procedure is advocated. (1) First, removerars with excessive
intrinsic noise. This can be done by examining the diagonal elements of ttedadimn matrix and
discarding those operators whose self-correlators have relatwesetbove some threshold for a
range of temporal separations. Of course, this requires a low-statisticgeNCarlo computation on
a reasonably small lattice. (2) Second, prune within operator types (ssitglesingly-displaced,

11
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etc.) based on the condition number of the submatrices
Gij(t)
VGit)Cj (1)’

The condition number is taken to be the ratio of the largest eigenvalue ovemntikest eigenvalue.
A value near unity is ideal. For each operator type, the set of about spatgps which yields the
lowest condition number of the above submatrix is retained. (3) Lastlyepagross all operator
types based again on the condition number of the remaining submatrix asddaioee. In this
last step, the goal is to choose about 16 operators, keeping two oratheageh type, such that a
condition number reasonably close to unity is obtained. As long as a gomsdiyvaf operators is
retained, the resulting spectrum seems to be fairly independent of theolxace of operators at
this stage. Eigenvectors from a variational study of the operators camalased to fine tune the
choice of operators.

Calculations in Ref. [7] using about 16 operators in all irreps for thdemrcchannel on
only 200 configurations were very successful. The extraction of &grievels in each irrep was
possible, which was a major milestone achieved. A determination of the hgazotriam requires
the ability to extract several excited energy levels, and up until that time sin@bknown whether
or not extracting more than one or two levels would be possible. Fig. 10sstitemsignal quality
in the Gig andHy, irreps for the nucleon excitations from that first calculation. Similar calcuiatio
for the A resonance spectra have also been achieved[16, 17]. Comparisle@sefresults with
experiment is not justified since the quenched approximation was usedphagsically largeu, d
guark mass was used, and the lattice volume is too small.

It is my strong opinion that the use of correlation matrices is the best way tactxxcited-
state energies reliably. However, there are efforts to deduce informeliont excited states from
single correlation functions. Bayesian statistics have been used[18sl@ll as maximum en-
tropy methods[20, 21]. A novel evolutionary fitting method has been me@2], and a new
method based on statistical concepts which relies heavily on simulation technmiasgresented
at this conference[23].

Gij(t) = t=a.

5. Stochastic estimates of many-to-many quark propagator s with source dilution
variance reduction

To study a particular eigenstate of interest, all eigenstates lying below thanstst first be
extracted, and as the pion gets lighter in lattice QCD simulations, more and more auribirh
states will lie below the excited resonances. Consider a baryon at restpgxopriate quantum
operator for a baryon at rest typically has the form

B(p:O,t):\%Z(PB(r,t), (5.1)

whereV is the volume of the lattice angk(r,t) is an appropriate localized interpolating field. In
the above equation, the summation over spatial lattices makes the operatatiaaly invariant,
producing a zero momentum state. A baryon correlator, thus, has a dsahhaation over spatial

12
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sites:
(0B(p=0,t)B(p=10,0)|0) = VZZ 0l¢e(x,t)Pg(y,0)[0). (5.2)

Evaluating the above correlator requires computingythe x element of the quark propagators. In
other words, the quark propagators from all spatial grtes time slice = 0 to all spatial sitex on

later time slice > 0 must be known. Computing all such elements of the propagators exactly is no
possible (except on very small lattices). In the example above, this prat@arbe circumvented

by appealing to translational invariance to limit the summation over the source saingle site:

(0B(P=0.t)B(P=0,0)|0) = Z 0[¢s(x,)9(0,0)[0). (5.3)
However, agood baryon-meson operator of total zero momentum typically has the form

B(p7t)M(_p7t) - \% z ¢B<xat)¢|\/| (y,t)eip(x—y)’ (54)
Xy

wheregn (Y, t) is a localized interpolating field for a meson. In the evaluation of the temporal co
relations of such a multi-hadron operator, it is not possible to completely remibgummations
over the source site. Hence, the need for estimates of the quark ptogsigam all spatial sites on

a time slice to all spatial sites on another time slice cannot be sidestepped. Ultirmateéy/cor-
relators will involve disconnected diagrams which necessarily involve altquark propagators.
Hence, all-to-all (or many-to-many) quark propagators are becominglatary, and some way of
stochastically estimating them is needed.

Random noise vectorg whose expectations satisB(ni) = 0 andE(nin;) = &; are useful
for stochastically estimating the inverse of a large mattias follows. Assume that for each Nk
noise vectors, we can solve the following linear system of equatidi&?) = n() for X("). Then
X" =M-17" and

E(Xin;) ZM"‘ nwny) ZM&lE(nknf) = ZMipl% =M™ (5.5)

The expectation value on the left-hand can be approximated using the Mamben@&thod. Hence,
a Monte Carlo estimate cbﬂijl is given by

Mt~ lim = X whereMX® = n®. (5.6)
" Ngoo Nr ZL !

Unfortunately, this equation usually produces stochastic estimates with eesiarhich are much

too large to be useful.

Progress is only possible if stochastic estimates of the quark propagatbreeduced vari-
ances can be made. Techniqueditiiting the noise vectors have been developed which accomplish
such a variance reduction[24, 25, 26, 27, 28, 29]. A given dilutidres® can be viewed as the
application of a complete set of projection operators. To see how dilutioksyoonsider a gen-
eralN x N matrix M having matrix elementdl;;. Define some complete set Nfx N projection
matricesP® which satisfy

POPD =P, S P =1 PAT-PE, (5.7)
a
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Then observe that

Mt = My to = leklpkj ZM|k1Pkk’ Pk’ ZM|k1Pkk’ O P

- ZMlklpkk') (rlk/r]] ZMIklE ( Kk’ r]k/rlj i’ J)> (58)
Define
e =Rgne, 0 =nPY =P n; (5.9)
and further defin& @ as the solution of
Mikxia} = ni[a}, (5.10)
then we have
ZMIklE '7k ZE . (5.11)

Although the expected value ganka n; @ is the same aslknj*, the variance of zank [a] is

significantly smaller than that afqn;’. For bothZ, andU (1) noise, we have

ar(Re(nin;)) =Var(Im(nin;)) = 3(1— &;).

Although the variance is zero for= j, there is a significant variance for all~ j. The dilution
projections ensurexact zeros for many of the off-diagonal elements, instead of values that are only
statistically zero. In other words, many of thg j elements become exactly zero.

Of course, the effectiveness of the variance reduction dependsegoréfectors chosen. A
particularly important dilution scheme for measuring temporal correlationsdnoméc quantities
s “time dilution” where the noise vector is broken up into pieces which only lsay@ort on a
single time slice:

ng?bp(x,t;y,t’) — 30updydede, B=01..-,Ne—1, (time dilution) (5.12)

wherel; is the number of time slices on the lattieeb are color indices, and, 3 are spin indices.
Spin and color dilution are two other easy-to-implement schemes:

P;?bﬁ(x,t;y,t’) — 3dBalesdydy,  B=0,1,2,3 (spin dilution) (5.13)
PLos (X tY.) = Geadendapdydy.  B=0,1,2, (color dilution) (5.14)

Various spatial dilution schemes are possible, too. For example, evedilatidns are simple to
implement. The above dilution projectors can also be combined to make hybethesh

Before presenting tests of these different dilution schemes, an importaatk@bout the use
of stochastic quark propagators should be mentioned. The use of .Ef) {6 approximate quark
propagators leads to a very desirable source-sink factorization.id&srasbaryon correlator of the
form

Gr =cicr Q¥ (5.15)
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Figure 11: (Upper row) Effective masses for a single-site (left), $ndisplaced (middle), and triply-
displaced-T (right) nucleon operator using quark propagaevaluated with the standard point-to-all

method. (Lower row) The effective masses for the same naabperators but using stochastic quark propa-
gators with time+spin+color dilution. Without dilutionthe errors in these effective masses would be orders

of magnitude larger. An effective mass defined using a tinpausgion 2 is used in these plots. These re-
sults used 100 quenched configurations on an anisotropig 48 lattice with a Wilson fermion and gauge
action.

whereQW denotes a quark propagator of flaveand all other quark indices have been combined
into a single index or j, and so on. Stochastic estimates of this correlator using Eq. (5.11) lead to

the form
1 (1) oD (g (Ar)[da] ) (Ar)[da] (Br)[ds] ,, (Br)[dg]+ (Cr)lde] , (Cr)[dc]+
Gi= Nr ZdA;Bchijk%R <¢| n; ) <¢J ny ) ( K Ny ) , (5.16)

wherer labels the noise vectorda,ds, dc are the dilution indicesy are the noise vectors, ard
are the solution vectors. If one defines

(1ol _ 1) g (A0I0] g (B0 g O] (5.17)
Q] _ o) () (80 o] O] (5.18)

then the baryon correlator becomes a glorified dot product of the s@ertor with the sink vector:

G = Ni rl(r)[dAdBdC]QIEr)[dAdBdC]*_ (5.19)
R T dadadc

The source and sink vectors in Egs. (5.17) and (5.18) can be sdparedtiated for a variety of
operators, and the dot product applied afterwards to evaluate the matixrelation functions.
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Figure12: (Left) The relative errors in the correlation function ofingle-site nucleon operator for temporal
separatioth = 5g; evaluated using stochastically-estimated quark propagatith different dilution schemes

against JZN#K,Z, whereNiny is the number of Dirac matrix inversions required. The opedle shows the

point-to-all error, and the horizontal dashed line shovesghuge-noise limit. The black (red) dashed-dotted
line shows the decrease in error expected by simply inangasie number of noise vectors, starting from
the time (time + even/odd-space) dilution point. (Rightirgaas the left plot, except for a triply-displaced-T
nucleon operator. These results used 100 quenched coniimsran an anisotropic 2« 48 lattice with a
Wilson fermion and gauge action.

Different ABC permutations of the noise vectors must be stored in order to accommodatedsbne
Wick contractions. The use of stochastic all-to-all quark propagatarkelao an enormous simpli-

fication of the effort required to compute the hadron correlation matricesighr this source-sink

factorization. Another advantage of this approach is the fact that, givigsible non-zero momenta,
these same baryon and meson operators can be combined later to make mahidystators.

The effectiveness of stochastically-estimated all-to-all quark propesgyasing diluted noise
vectors is demonstrated in Fig. 11. This figure compares the effectiveemémsa single-site,
singly-displaced, and triply-displaced-T nucleon operator using qoiemkagators evaluated with
the conventional point-to-all method (top row) and with the all-to-all stochaséithod including
time+spin+color dilutions (bottom row). The fact that these effective nsalsaee comparable er-
rors indicates that the stochastic method with suitable dilutions has not intidngeappreciable
noise into the final mass extractions.

A comparison of different dilution schemes has been presented at tHerenoe[30]. Fig. 12
shows the relative errors in the correlation functions of a single-site ariglg-displaced-T nu-
cleon operator for temporal separatios 5a; evaluated using stochastically-estimated quark prop-
agators with different dilution schemes againﬁl\li{/z, whereN;jny, is the number of matrix inver-
sions required. These results were obtained using 100 quencheduwatifins on an anisotropic
128 x 48 lattice with a Wilson fermion and gauge action. The open circles show thétpeall
errors, and the horizontal dashed lines show the gauge-noise limits.ladie(ked) dashed-dotted
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lines show the decrease in error expected by simply increasing the nufnt@se vectors, start-
ing from the time (time + even/odd-space) dilution points. These computatiommar@ated by
the inversions of the Dirac matrix, so using the number of matrix inverdigndo compare com-
putational efforts is reasonably fair. The advantage in using incredifgtbns compared to an
increased number of noise vectors with only time dilution is evident in the plotsvekier, this

advantage quickly diminishes after time + even/odd-space dilution, or time+avltime+spin

dilution. Note that time+spin+color+even/odd-space dilution yields an eamparable with the
gauge-noise limit using only a single noise vector! First results for multidradperators were
also presented at this conference[31].

These encouraging results demonstrate that the inclusion of good multiFhaglerators will
certainly be possible using stochastic all-to-all quark propagators with dikdgarcte variance re-
duction. In fact, just before this conference, the authors of Rebgghn exploring a new method
that might allow nearly-exact determinations of many-to-many quark peipegywithout intro-
ducing any noise vectors at all. The method exploits a novel, cleverlyatbelice of quark-field
smearing to facilitate the nearly-exact computations. Details and tests of thisthskttwald appear
very soon.

6. Summary and outlook

This talk discussed the key issues and challenges in exploring exciteshsaddattice QCD.
The importance of multi-hadron operators and the need for all-to-all quamagators were em-
phasized. The challenge of dealing with unstable states (resonancds)xmas outlined, and the
technology associated with extracting excited stationary-state energikslimgoperator design
and field smearing, was detailed. Efforts in variance reduction of stocakg-estimated all-to-
all quark propagators using source dilutions were described, anllses excited hadrons which
appeared during the last year were summarized.

Given the major experimental efforts to map out the QCD resonance specuch as Hall
B and the proposed Hall D at Jefferson Lab, ELSA associated with thetdity of Bonn, COM-
PASS at CERN, PANDA at GSI, and BESIII in Beijing, there is a greatirfee ab initio deter-
minations of such states in lattice QCD. The exploration of excited hadrons irel@@D is well
underway.

This work was supported by the National Science Foundation througidawdlY 0653315
and PHY 0510020.
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