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1. Introduction

Experiments show that many excited-state hadrons exist, and there are significant experimental
efforts to map out the QCD resonance spectrum, such as Hall B and the proposed Hall D at Jefferson
Lab, ELSA associated with the University of Bonn, COMPASS at CERN, PANDA at GSI, and
BESIII in Beijing. Hence, there is a great need forab initio determinations of such states in lattice
QCD.

Higher-lying excited hadrons are a new frontier in lattice QCD, and explorations of new fron-
tiers are usually fraught with dangers. Excited states are more difficult to extract in Monte Carlo
calculations; correlation matrices are needed and operators with very good overlaps onto the states
of interest are crucial. To study a particular state of interest, all states lying below that state must
first be extracted, and as the pion gets lighter in lattice QCD simulations, more andmore multi-
hadron states will lie below the excited resonances. To reliably extract these multi-hadron states,
multi-hadron operators made from constituent hadron operators with well-defined relative mo-
menta will most likely be needed, and the computation of temporal correlation functions involving
such operators will require the use of all-to-all quark propagators. The evaluation of disconnected
diagrams will ultimately be required. Perhaps most worrisome, most excited hadrons are unsta-
ble (resonances), so the results obtained for finite-box stationary-stateenergies must be interpreted
carefully.

This talk will describe the key issues and challenges in exploring excited hadrons in lattice
QCD, emphasizing the importance of multi-hadron operators and the need forall-to-all quark
propagators. Dealing with resonances in a box is discussed, and the technology associated with
extracting excited stationary-state energies, including operator design and field smearing, is de-
tailed. Efforts in variance reduction of stochastically-estimated all-to-all quark propagators using
source dilutions are outlined. Results on excited hadrons during the last year are summarized.

2. Resonances in a box

A simple example serves to illustrate the issues that must be confronted when studying reso-
nances in a box. Consider the (dimensionless) Hamiltonian for a single nonrelativistic particle of
massm = 1 moving in one dimension in a potentialV (x) is given by

H = 1
2 p2 +V (x), V (x) = (x4−3) e−x2/2. (2.1)

This potential has an attractive core surrounded by a repulsive barrier, as shown in Fig. 1. The
infinite-volume spectrum of this Hamiltonian for energiesE < 4 is shown in Fig. 1. The ground
state is a bound state of even parity, and there is one bound state in the odd parity channel. A
continuum of scattering states is found forE > 0, with a narrow resonance in the even-parity
channel and a broad resonance in the odd-parity sector, both below 4.Even(+) and odd(−) parity
scattering phase shiftsδ±(E) can be defined in the usual way as the phase between the transmitted
and incident wave, appearing in the asymptotic wave functions as

ϕ(+)
k (x) = c+ cos

(
k|x|+δ+(k)

)
, ϕ(−)

k (x) = c−sgn(x)sin

(
k|x|+δ−(k)

)
, (|x| → ∞), (2.2)
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Figure 1: (Left) The solid curve shows the potentialV (x) of the example given in Eq. (2.1). The spectrum
for energiesE < 4 is also shown. The ground state is an even-parity bound state, and there is one bound
state in the odd-parity channel. Two resonances (a narrow one in the even-parity and a very broad one in the
odd parity sector) in a continuum of scattering statesE > 0 are shown. (Right) The scattering phasesδ±(E)

for this example are shown forE < 4. The locations of the resonance energies are shown as dashed vertical
lines.

wherek =
√

2E. These phase shifts are also shown in Fig. 1. The narrow even-parity resonance is
seen as a sudden dramatic increase in the phase shift (by an amount comparable toπ) and the broad
odd-parity resonance appears as a not-so-sudden increase in the phase shift. The resonance masses
and widths can be extracted by fitting a Breit-Wigner plus a polynomial background todδ±/dE in
the vicinity of the resonances (or by employing the complex rotation method described in Ref. [1]).

Now consider solving the system in a box of lengthL such that−1
2L < x < 1

2L, assuming
periodic boundary conditions. Note that the potential is nowVL(x) = ∑∞

n=−∞V (x+nL). The infinite
volume gets tiled intoL-length strips in which the potential is replicated. We assume thatL is large
compared to the extent of the potentialV so that interactions with mirror potentials is negligible.

In a finite-box with periodic boundary conditions, the momentum is quantized, so the entire
spectrum is a series of discrete energies, even forE > 0. The periodic-box spectrum can be de-
termined in two ways: diagonalization of the Hamiltonian in a basis of states having appropriate
boundary conditions, and by solving the differential equation and matchingto an asymptotic form
having the correct boundary conditions. Either way, one finds the spectrum shown in Fig. 2. The
light dotted lines indicate the spectrum forV = 0 which have values 2π2n2/L2 for n = 1,2,3, . . . ,

plus ann = 0 line in the even parity channel. One sees that a resonance shows up as aseries of
avoided level crossings when viewed against box lengthL. A narrow resonance, as in the even
parity sector, can be easily identified by a closely-avoided level crossing, but a broad resonance, as
in the odd parity sector, is essentially impossible to recognize.

These plots illustrate the difficulty in extracting resonance parameters from finite-box energies.
Under certain special circumstances, resonance parameters can be ferreted out using tricks such as

3
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Figure 2: (Left) Spectrum of even-parity states for the example Hamiltonian given in Eq. (2.1) in a box of
extentL with periodic boundary conditions. (Right) Spectrum of odd-parity states. The light dotted lines
indicate the energy levels forV = 0 which have values 2π2n2/L2 for n = 1,2,3, . . . , plus ann = 0 line in
the even parity channel. The horizontal dashed lines show the locations of the infinite-volume resonance
energies.

described in Ref. [2]. Examining the spectrum in several volumes is important, and knowing the
pattern of multi-hadron states based on mass determinations of the stable particles and group-
theoretical combinations of the constituents having total zero-momentum certainly helps. For high
precision, the phase-shift method of Refs. [3, 4] can be used. In this method, the finite-volume
energies are used to determine the scattering phase shifts of the partial waves, from which one
can deduce resonance masses and widths. This method has recently beenapplied to study theρ-
meson resonance[5]. Theππ phase shift was extracted from the finite-volume spectrum, and the
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Figure 3: (Left) ππ scattering phase shift showing theρ-resonance [5]. A widthΓρ = 200+130
−100 MeV is

obtained from a Breit-Wigner fit. (Right) Illustration of the binning method of Ref. [6] in which a proba-
bility distribution is used to identify resonant structure. For various values ofL, energies are collected into
momentum bins to construct a probability distributionW (p).
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Figure 4: (Left) Results of applying the binning method of Ref. [6] near the even-parity resonance of the
example Hamiltonian in Eq. (2.1). Location of the resonanceis indicated by the vertical dashed line. (Right)
Results for the very broad odd-parity resonance.

ρ resonance parameters extracted (see Fig. 3). However, the practicalityof the phase-shift method
has yet to be demonstrated for other resonances in QCD.

A new histogram method has been recently proposed[6] and applied to synthetic pion-nucleon
data which mocks up the∆-resonance. Energies for several volumes are collected into momen-
tum bins, and with suitable normalization and free-result subtraction, such histograms produce a
probability distributionW (p) which shows peaks corresponding to the resonances of interest (see
Fig. 3). The method has no prior theoretical bias and provides the possibility of seeing resonant
structure even when avoided level crossings are washed out by a broad resonance. The application
of this method to the example Hamiltonian in Eq. (2.1) is shown in Fig. 4. The narrowresonance
appears quite clearly, and amazingly, the odd-parity broad resonance isalso correctly reproduced.

Deducing resonance parameters from finite-box spectra remains a difficult challenge, espe-
cially considering that higher-lying resonances will lie above three-particle and four-particle thresh-
olds and that these resonances can have multiple decay channels. Certainly, further work in this
area is needed. Perhaps matching the finite-box spectra to that of an effective theory, such as a
one-boson exchange model, might ultimately be the way to make progress.

3. Excited stationary states: recent results

Before discussing the issues and challenges in extracting the energies ofstationary states in a
box, I would like to summarize the excited-state results which have appeared since the last lattice
conference.

A first glimpse of the higher-lying nucleon spectrum in lattice QCD was provided by the
Hadron Spectrum Collaboration in Ref. [7]. These first results, shownin Fig. 5, were on a small
123×48 anisotropic quenched lattice with a very heavy pion. Results for both the nucleons and
∆-resonances on 239 quenched configurations on a 163×64 lattice and 167 quenched configura-
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Figure 5: (Left) Nucleon spectrum from 200 quenched configurations ona 123×48 anisotropic lattice using
the Wilson gauge and quark actions withas ∼ 0.1 fm, as/at ∼ 3.0 andmπ ∼ 700 MeV from Ref. [7]. (Right)
Nucleon spectrum from 430N f = 2 configurations on a 243×64 lattice using a stout-smeared clover fermion
action and Symanzik-improved gauge action withas ∼ 0.1 fm, as/at ∼ 3, andmπ = 400 MeV from Ref. [9].

tions on a 243 × 64 lattice using an anisotropic Wilson action with spatial spacingas ∼ 0.1 fm,
as/at ∼ 3, and a pion massmπ ∼ 490 MeV appeared during the past year[8]. These masses have
been determined in the past year using 430N f = 2 configurations on a 243 × 64 lattice with a
stout-smeared clover fermion action and a Symanzik-improved anisotropic gauge action[9]. The
results for a pion massmπ = 400 MeV, spacingas ∼ 0.1 fm andas/at ∼ 3 are shown in Fig. 5. The
low-lying odd-parity band shows the exact number of states in each channel as expected from ex-
periment. The two figures show the splittings in the band increasing as the quark mass is decreased.
At these heavy pion masses, the first excited state in theG1g channel is significantly higher than
the experimentally measured Roper resonance. It remains to be seen whether or not this level will
drop down as the pion mass is further decreased. Most of the levels in the right-hand plot lie very
close to two-particle thresholds. The use of two-hadron operators will beneeded to go to lighter
pion masses.

During the past year, extractions of excited meson states have been presented in Ref. [10].
Results in the pseudoscalar, vector, and axial-vector channels are shown in Fig. 6. These results
were obtained using 99 quenched configurations on a 163 × 32 isotropic lattice with a chirally-
improved fermion action and the Luscher-Weisz gauge action for lattice spacing as ∼ 0.15 fm and
a range of pion masses. This work emphasizes the use of derivative sources in correlation matrices
to obtain the excited states. A search for light scalar tetraquark states with isospinI = 0, 1

2 was also
presented at this conference[11].

6
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Figure 6: (Upper left) Results from Ref. [10] for the first-excited pseudoscalar 0−+ meson mass against
pion mass squared from 99 quenched configurations on a 163×32 lattice with a chirally-improved fermion
action and the Luscher-Weisz gauge action for lattice spacing as ∼ 0.15 fm. (Upper right) First-excited 1−−

meson mass. (Lower left) Second-excited 1−− meson mass. (Lower right) Ground and first-excited 1++

meson masses.

4. Excited stationary states: key issues

Reliably capturing the masses of excited states requires the computation of correlation matrices
Ci j(t) = 〈0|T Φi(t)Φ†

j(0)|0〉 associated with a large set ofN different operatorsΦi(t). It has been
shown in Ref. [12] that theN principal effective masses Wα(t), defined by

Wα(t) = ln

(
λα(t, t0)

λα(t +1, t0)

)
,

whereλα(t, t0) are the eigenvalues ofC(t0)−1/2 C(t) C(t0)−1/2 and t0 < t/2 is usually chosen,
tend to the eigenenergies of the lowestN states with which theN operators overlap ast becomes
large. The eigenvectors associated withλα(t, t0) can be viewed as variationally optimized opera-
tors. When combined with appropriate fitting and analysis methods, such variational techniques
are a particularly powerful tool for investigating excitation spectra. To extract the stationary state
energies, one can fit a single-exponential or a sum of two exponentials toeach principal correla-
tor; alternatively, optimized operators can be determined on an early time slice,and a fit to the

7
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correlation matrix of optimized operators can be carried out. The use of bothmethods is a good
consistency check.

The use of operators whose correlation functionsC(t) attain their asymptotic form as quickly
as possible is crucial for reliably extracting excited hadron masses. An important ingredient in con-
structing such hadron operators is the use of smeared fields. Operatorsconstructed from smeared
fields have dramatically reduced mixings with the high frequency modes of the theory. Both link-
smearing and quark-field smearing should be applied. Since excited hadrons are expected to be
large objects, the use of spatially extended operators is another key ingredient in the operator de-
sign and implementation. A more detailed discussion of these issues can be found in Ref. [13].

Spatial links can be smeared using the stout-link procedure described in Ref. [14]. The stout-
link smearing scheme is analytic, efficient, and produces smeared links whichare automatically
elements ofSU(3) without the need for a projection back intoSU(3). Note that only spatial staples
are used in the link smoothening; no temporal staples are used, and the temporal link variables are
not smeared. The smeared quark fields can be defined by

ψ̃(x) =

(
1+

σ2
s

4nσ
∆̃
)nσ

ψ(x), (4.1)

whereσs andnσ are tunable parameters (nσ is a positive integer) and the three-dimensional covari-
ant Laplacian operators are defined in terms of the smeared link variablesŨ j(x) as follows:

∆̃O(x) = ∑
k=±1,±2,±3

(
Ũk(x)O(x+k̂)−O(x)

)
, (4.2)

whereO(x) is an operator defined at lattice sitex with appropriate color structure, and noting that
Ũ−k(x) = Ũ†

k (x−k̂). The smeared fields̃ψ andψ̃ are Grassmann-valued; in particular, these fields
anticommute in the same way that the original fields do, and the square of each smeared field
vanishes.

Hadron states are identified by their momentumppp, intrinsic spinJ, projectionλ of this spin
onto some axis, parityP = ±1, and quark flavor content (isospin, strangeness,etc.). Some mesons
also includeG-parity as an identifying quantum number. If one is interested only in the masses of
these states, one can restrict attention to theppp = 000 sector, so operators must be invariant under all
spatial translations allowed on a cubic lattice. The little group of all symmetry transformations on
a cubic lattice which leaveppp = 000 invariant is the octahedral point groupOh, so operators may be
classified using the irreducible representations (irreps) ofOh. For mesons, there are ten irreducible
representationsA1g,A2g,Eg,T1g,T2g,A1u,A2u,Eu,T1u,T2u. The representations with a subscriptg(u)

are even (odd) under parity. TheA irreps are one dimensional, theE irreps are two dimensional, and
theT irreps are three-dimensional. TheA1 irreps contain theJ = 0,4,6,8, . . . states, theA2 irreps
contain theJ = 3,6,7,9, . . . states, theE irreps contain theJ = 2,4,5,6,7, . . . states, theT1 irreps
contain the spinJ = 1,3,4,5, . . . mesons, and theT2 irreps contain the spinJ = 2,3,4,5, . . . states.
For baryons, there are four two-dimensional irrepsG1g,G1u,G2g, G2u and two four-dimensional
representationsHg andHu. TheG1 irrep contains theJ = 1

2, 7
2, 9

2, 11
2 , . . . states, theH irrep contains

the J = 3
2, 5

2, 7
2, 9

2, . . . states, and theG2 irrep contains theJ = 5
2, 7

2, 11
2 , . . . states. The continuum-

limit spinsJ of our states must be deduced by examining degeneracy patterns acrossthe different
Oh irreps.
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Figure 7: The spatial arrangements of the extended three-quark baryon operators. Smeared quark-fields
are shown by solid circles, line segments indicate gauge-covariant displacements, and each hollow circle
indicates the location of a Levi-Civita color coupling. Forsimplicity, all displacements have the same length
in an operator. Results presented here used displacement lengths of 3as (∼ 0.3 fm).

The authors of Ref. [13] advocate operators designed with one eye towards maximizing over-
laps with the low-lying states of interest, and the other eye towards minimizing the number of
sources needed to calculate the required quark propagators. They emphasize that a construction
method which can be easily adapted for baryons, mesons, hybrid states, and multi-hadron systems
is ideal. Since the calculation of quark propagators can be computationally expensive, baryon,
meson, and multiquark operators which share the same basic building blocks isrecommended.

Thus, these authors advocate a three-stage approach to constructing hadron operators. First,
basic building blocks are chosen. These are taken to be smeared covariantly-displaced quark fields

(
D̃(p)

j ψ̃
)A

aα ,
(
ψ̃ D̃(p)†

j

)A
aα , −3≤ j ≤ 3, (4.3)

whereA is a flavor index,a is a color index,α is a Dirac spin index, and thep-link gauge-covariant
displacement operator in thej-th direction is defined by

D̃(p)
j (x,x′) = Ũ j(x) Ũ j(x+ ĵ) . . .Ũ j(x+(p−1) ĵ)δx′,x+p ĵ, D̃(p)

0 (x,x′) = δxx′ , (4.4)

for j =±1,±2,±3 andp ≥ 1, and wherej = 0 defines a zero-displacement operator to indicate no
displacement. Next,elemental operatorsBF

i (t,xxx) are devised having the appropriate flavor structure
characterized by isospin, strangeness,etc., and color structure constrained by gauge invariance. For
zero momentum states, translational invariance is imposed:BF

i (t) = ∑xxx BF
i (t,xxx). Finally, group-

theoretical projections are applied to obtain operators which transform irreducibly under all lattice
rotation and reflection symmetries:

B
ΛλF
i (t) =

dΛ

gOD
h

∑
R∈OD

h

Γ(Λ)
λλ (R) UR BF

i (t) U†
R, (4.5)

whereOD
h is the double group ofOh, R denotes an element ofOD

h , gOD
h

is the number of elements in
OD

h , anddΛ is the dimension of theΛ irreducible representation. Projections onto both the single-
valued and double-valued irreps ofOh require using the double groupOD

h in Eq. (4.5). GivenMB

ev
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e v
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e v
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Figure 8: The spatial arrangements of the quark-antiquark meson operators. In the illustrations, the smeared
quarks fields are depicted by solid circles, each hollow circle indicates a smeared “barred” antiquark field,
and the solid line segments indicate covariant displacements.
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Figure 9: Effective massesM(t) for unsmeared (black circles) and smeared (red triangles) operators
OSS, OSD, OT DT , which are representative single-site, singly-displaced, and triply-displaced-T nucleon
operators, respectively. Top row: only quark-field smearing nσ = 32, σs = 4.0 is used. Middle row:
only link-variable smearingnρ = 16, nρ ρ = 2.5 is applied. Bottom row: both quark and link smearing
nσ = 32, σs = 4.0, nρ = 16, nρ ρ = 2.5 are used, dramatically improving the signal for all three operators.
Results are based on 50 quenched configurations on a 123×48 anisotropic lattice using the Wilson action
with as ∼ 0.1 fm, as/at ∼ 3.0.

elementalBF
i operators, many of the projections in Eq. (4.5) vanish or lead to linearly-dependent

operators, so one must then choose suitable linear combinations of the projected operators to obtain
a final set of independent baryon operators. Thus, in each symmetry channel, one ends up with a
set of r operators given in terms of a linear superposition of theMB elemental operators. The
different spatial configurations (see Fig. 7 for the baryon configurations and Fig. 8 for the meson
configurations) yield operators which effectively build up the necessary orbital and radial structures
of the hadron excitations. The design of these operators is such that a large number of them can
be evaluated very efficiently, and components in their construction can be used for both meson,
baryon, and multi-hadron computations.

Finding appropriate smearing parameters is a first crucial part of any hadron spectrum calcu-
lation. Fig. 9 demonstrates thatboth quark-field and link-field smearing are needed in order for
spatially-extended baryon operators to be useful[15]. It is important to use the smeared links when
smearing the quark field. Link smearing dramatically reduces the statistical errors in the correla-
tors of the displaced operators, while quark-field smearing dramatically reduces the excited-state
contamination.

The above approach to designing hadron and multi-hadron interpolating fields leads to a very

10
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aτ E fit=0.2383(39)

 χ 2
/(d.o.f.)=0.89, Q=0.51

Level 1
aτ E fit=0.4030(78)

 χ 2
/(d.o.f.)=0.89, Q=0.51

Level 2

aτ E fit=0.4035(71)

 χ 2
/(d.o.f.)=1.20, Q=0.30

Level 3
aτ E fit=0.418(11)

 χ 2
/(d.o.f.)=1.58, Q=0.16

Level 4

aτ E fit=0.4250(81)

 χ 2
/(d.o.f.)=1.09, Q=0.37

Level 5
aτ E fit=0.475(14)

 χ 2
/(d.o.f.)=1.24, Q=0.29

Level 6

aτ E fit=0.521(13)

 χ 2
/(d.o.f.)=1.21, Q=0.29

Level 7
aτ E fit=0.548(21)

 χ 2
/(d.o.f.)=0.93, Q=0.49

Level 8

0

0.3

0.6

0.9

1.2

a τ M

0

0.3

0.6

0.9

1.2

a τ M

0 5 10 15
τ / aτ

0 5 10 15
τ / aτ

0

0.3

0.6

0.9

1.2
a τ M

0

0.3

0.6

0.9

1.2

a τ M

Hu Nucleon Fit Results

aτ E fit=0.3380(45)
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Figure 10: Effective masses for the lowest eight levels in theG1g channel (left) andHu channel (right).
The green circles are fixed-coefficient effective masses, whereas the red squares are the principal effective
masses. Fit values are shown by the blue lines. Results are based on 200 quenched configurations on a
123 × 48 anisotropic lattice using the Wilson gauge and quark actions withas ∼ 0.1 fm, as/at ∼ 3.0 and
mπ ∼ 700 MeV.

large number of operators. It is not feasible to do spectrum computations using all of the operators
so designed; for example, in theG1g symmetry channel for nucleons, the above procedure leads to
179 operators. It is necessary toprune down the number of operators. Six months of exploratory
testing and trials led to the following guideline: noise is the enemy, so a procedure that keeps a
variety of operators while minimizing the effects of noise works best. Some operators are intrin-
sically noisy and must be removed. In addition, a set of operators, each with little intrinsic noise,
can allow noise to creep in if they are not sufficiently independent of one another.

In Ref. [7], the following procedure is advocated. (1) First, remove operators with excessive
intrinsic noise. This can be done by examining the diagonal elements of the correlation matrix and
discarding those operators whose self-correlators have relative errors above some threshold for a
range of temporal separations. Of course, this requires a low-statistics Monte Carlo computation on
a reasonably small lattice. (2) Second, prune within operator types (single-site, singly-displaced,
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etc.) based on the condition number of the submatrices

Ĉi j(t) =
Ci j(t)√

Cii(t)C j j(t)
, t = at .

The condition number is taken to be the ratio of the largest eigenvalue over thesmallest eigenvalue.
A value near unity is ideal. For each operator type, the set of about six operators which yields the
lowest condition number of the above submatrix is retained. (3) Lastly, prune across all operator
types based again on the condition number of the remaining submatrix as defined above. In this
last step, the goal is to choose about 16 operators, keeping two or threeof each type, such that a
condition number reasonably close to unity is obtained. As long as a good variety of operators is
retained, the resulting spectrum seems to be fairly independent of the exact choice of operators at
this stage. Eigenvectors from a variational study of the operators can also be used to fine tune the
choice of operators.

Calculations in Ref. [7] using about 16 operators in all irreps for the nucleon channel on
only 200 configurations were very successful. The extraction of 8 energy levels in each irrep was
possible, which was a major milestone achieved. A determination of the hadron spectrum requires
the ability to extract several excited energy levels, and up until that time, it was not known whether
or not extracting more than one or two levels would be possible. Fig. 10 shows the signal quality
in theG1g andHu irreps for the nucleon excitations from that first calculation. Similar calculations
for the ∆ resonance spectra have also been achieved[16, 17]. Comparison ofthese results with
experiment is not justified since the quenched approximation was used, an unphysically largeu,d
quark mass was used, and the lattice volume is too small.

It is my strong opinion that the use of correlation matrices is the best way to extract excited-
state energies reliably. However, there are efforts to deduce informationabout excited states from
single correlation functions. Bayesian statistics have been used[18, 19], as well as maximum en-
tropy methods[20, 21]. A novel evolutionary fitting method has been proposed[22], and a new
method based on statistical concepts which relies heavily on simulation techniques was presented
at this conference[23].

5. Stochastic estimates of many-to-many quark propagators with source dilution
variance reduction

To study a particular eigenstate of interest, all eigenstates lying below that state must first be
extracted, and as the pion gets lighter in lattice QCD simulations, more and more multi-hadron
states will lie below the excited resonances. Consider a baryon at rest. Anappropriate quantum
operator for a baryon at rest typically has the form

B(ppp = 0, t) =
1
V ∑

rrr
ϕB(rrr, t), (5.1)

whereV is the volume of the lattice andϕB(rrr, t) is an appropriate localized interpolating field. In
the above equation, the summation over spatial lattices makes the operator translationally invariant,
producing a zero momentum state. A baryon correlator, thus, has a doublesummation over spatial
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sites:
〈0|B(ppp = 0, t)B(ppp = 0,0)|0〉 =

1
V 2 ∑

xxx,yyy
〈0|ϕB(xxx, t)ϕB(yyy,0)|0〉. (5.2)

Evaluating the above correlator requires computing theyyy → xxx element of the quark propagators. In
other words, the quark propagators from all spatial sitesyyy on time slicet = 0 to all spatial sitesxxx on
later time slicet > 0 must be known. Computing all such elements of the propagators exactly is not
possible (except on very small lattices). In the example above, this problemcan be circumvented
by appealing to translational invariance to limit the summation over the source site toa single site:

〈0|B(ppp = 0, t)B(ppp = 0,0)|0〉 =
1
V ∑

xxx
〈0|ϕB(xxx, t)ϕB(000,0)|0〉. (5.3)

However, agood baryon-meson operator of total zero momentum typically has the form

B(ppp, t)M(−ppp, t) =
1

V 2 ∑
xxx,yyy

ϕB(xxx, t)ϕM(yyy, t)eippp·(xxx−yyy), (5.4)

whereϕM(yyy, t) is a localized interpolating field for a meson. In the evaluation of the temporal cor-
relations of such a multi-hadron operator, it is not possible to completely remove all summations
over the source site. Hence, the need for estimates of the quark propagators from all spatial sites on
a time slice to all spatial sites on another time slice cannot be sidestepped. Ultimately,some cor-
relators will involve disconnected diagrams which necessarily involve all-to-all quark propagators.
Hence, all-to-all (or many-to-many) quark propagators are becoming mandatory, and some way of
stochastically estimating them is needed.

Random noise vectorsη whose expectations satisfyE(ηi) = 0 andE(ηiη∗
j ) = δi j are useful

for stochastically estimating the inverse of a large matrixM as follows. Assume that for each ofNR

noise vectors, we can solve the following linear system of equations:MX (r) = η(r) for X (r). Then
X (r) = M−1η(r), and

E(Xiη∗
j ) = E(∑

k

M−1
ik ηkη∗

j ) = ∑
k

M−1
ik E(ηkη∗

j ) = ∑
k

M−1
ik δk j = M−1

i j . (5.5)

The expectation value on the left-hand can be approximated using the Monte Carlo method. Hence,
a Monte Carlo estimate ofM−1

i j is given by

M−1
i j ≈ lim

NR→∞

1
NR

NR

∑
r=1

X (r)
i η(r)∗

j , whereMX (r) = η(r). (5.6)

Unfortunately, this equation usually produces stochastic estimates with variances which are much
too large to be useful.

Progress is only possible if stochastic estimates of the quark propagators with reduced vari-
ances can be made. Techniques ofdiluting the noise vectors have been developed which accomplish
such a variance reduction[24, 25, 26, 27, 28, 29]. A given dilution scheme can be viewed as the
application of a complete set of projection operators. To see how dilution works, consider a gen-
eral N ×N matrix M having matrix elementsMi j. Define some complete set ofN ×N projection
matricesP(a) which satisfy

P(a)P(b) = δ abP(a), ∑
a

P(a) = 1, P(a)† = P(a). (5.7)
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Then observe that

M−1
i j = M−1

ik δk j = ∑
a

M−1
ik P(a)

k j = ∑
a

M−1
ik P(a)

kk′ P(a)
k′ j = ∑

a
M−1

ik P(a)
kk′ δk′ j′P

(a)
j′ j

= ∑
a

M−1
ik P(a)

kk′ E(ηk′η∗
j′)P

(a)
j′ j = ∑

a
M−1

ik E
(

P(a)
kk′ ηk′η∗

j′P
(a)
j′ j

)
. (5.8)

Define

η [a]
k = P(a)

kk′ ηk′ , η [a]∗
j = η∗

j′P
(a)
j′ j = P(a)∗

j j′ η∗
j′ (5.9)

and further defineX [a] as the solution of

MikX [a]
k = η [a]

i , (5.10)

then we have

M−1
i j = ∑

a
M−1

ik E(η [a]
k η [a]∗

j ) = ∑
a

E(X [a]
i η [a]∗

j ). (5.11)

Although the expected value of∑a η [a]
k η [a]∗

j is the same asηkη∗
j , the variance of ∑a η [a]

k η [a]∗
j is

significantly smaller than that ofηkη∗
j . For bothZ4 andU(1) noise, we have

Var(Re(ηiη∗
j )) = Var(Im(ηiη∗

j )) = 1
2(1−δi j).

Although the variance is zero fori = j, there is a significant variance for alli 6= j. The dilution
projections ensureexact zeros for many of the off-diagonal elements, instead of values that are only
statistically zero. In other words, many of thei 6= j elements become exactly zero.

Of course, the effectiveness of the variance reduction depends on the projectors chosen. A
particularly important dilution scheme for measuring temporal correlations in hadronic quantities
is “time dilution” where the noise vector is broken up into pieces which only havesupport on a
single time slice:

P(B)
aα;bβ (xxx, t;yyy, t ′) = δabδαβ δxxxyyyδBtδBt ′ , B = 0,1, · · · ,Nt −1, (time dilution), (5.12)

whereNt is the number of time slices on the lattice,a,b are color indices, andα,β are spin indices.
Spin and color dilution are two other easy-to-implement schemes:

P(B)
aα;bβ (xxx, t;yyy, t ′) = δabδBαδBβ δxxxyyyδtt ′ , B = 0,1,2,3, (spin dilution), (5.13)

P(B)
aα;bβ (xxx, t;yyy, t ′) = δBaδBbδαβ δxxxyyyδtt ′ , B = 0,1,2, (color dilution). (5.14)

Various spatial dilution schemes are possible, too. For example, even-odddilutions are simple to
implement. The above dilution projectors can also be combined to make hybrid schemes.

Before presenting tests of these different dilution schemes, an important remark about the use
of stochastic quark propagators should be mentioned. The use of Eq. (5.11) to approximate quark
propagators leads to a very desirable source-sink factorization. Consider a baryon correlator of the
form

Cll = c(l)
i jkc(l)∗

i jk
Q(A)

ii
Q(B)

j j
Q(C)

kk
, (5.15)
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Figure 11: (Upper row) Effective masses for a single-site (left), singly-displaced (middle), and triply-
displaced-T (right) nucleon operator using quark propagators evaluated with the standard point-to-all
method. (Lower row) The effective masses for the same nucleon operators but using stochastic quark propa-
gators with time+spin+color dilution. Without dilutions,the errors in these effective masses would be orders
of magnitude larger. An effective mass defined using a time separation 3at is used in these plots. These re-
sults used 100 quenched configurations on an anisotropic 123×48 lattice with a Wilson fermion and gauge
action.

whereQ(A) denotes a quark propagator of flavorA and all other quark indices have been combined
into a single indexi or j, and so on. Stochastic estimates of this correlator using Eq. (5.11) lead to
the form

Cll =
1

NR
∑
r

∑
dAdBdC

c(l)
i jkc(l)∗

i jk

(
ϕ(Ar)[dA]

i η(Ar)[dA]∗
i

)(
ϕ(Br)[dB]

j η(Br)[dB]∗
j

)(
ϕ(Cr)[dC]

k η(Cr)[dC]∗
k

)
, (5.16)

wherer labels the noise vectors,dA,dB,dC are the dilution indices,η are the noise vectors, andϕ
are the solution vectors. If one defines

Γ(r)[dAdBdC]
l = c(l)

i jkϕ(Ar)[dA]
i ϕ(Br)[dB]

j ϕ(Cr)[dC]
k , (5.17)

Ω(r)[dAdBdC]
l = c(l)

i jkη(Ar)[dA]
i η(Br)[dB]

j η(Cr)[dC]
k , (5.18)

then the baryon correlator becomes a glorified dot product of the source vector with the sink vector:

Cll =
1

NR
∑
r

∑
dAdBdC

Γ(r)[dAdBdC]
l Ω(r)[dAdBdC]∗

l
. (5.19)

The source and sink vectors in Eqs. (5.17) and (5.18) can be separately evaluated for a variety of
operators, and the dot product applied afterwards to evaluate the matrix of correlation functions.
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Figure 12: (Left) The relative errors in the correlation function of a single-site nucleon operator for temporal
separationt = 5at evaluated using stochastically-estimated quark propagators with different dilution schemes
against 1/N1/2

inv , whereNinv is the number of Dirac matrix inversions required. The open circle shows the
point-to-all error, and the horizontal dashed line shows the gauge-noise limit. The black (red) dashed-dotted
line shows the decrease in error expected by simply increasing the number of noise vectors, starting from
the time (time + even/odd-space) dilution point. (Right) Same as the left plot, except for a triply-displaced-T
nucleon operator. These results used 100 quenched configurations on an anisotropic 123×48 lattice with a
Wilson fermion and gauge action.

DifferentABC permutations of the noise vectors must be stored in order to accommodate all needed
Wick contractions. The use of stochastic all-to-all quark propagators has led to an enormous simpli-
fication of the effort required to compute the hadron correlation matrices through this source-sink
factorization. Another advantage of this approach is the fact that, givensuitable non-zero momenta,
these same baryon and meson operators can be combined later to make multi-hadron operators.

The effectiveness of stochastically-estimated all-to-all quark propagators using diluted noise
vectors is demonstrated in Fig. 11. This figure compares the effective masses for a single-site,
singly-displaced, and triply-displaced-T nucleon operator using quarkpropagators evaluated with
the conventional point-to-all method (top row) and with the all-to-all stochasticmethod including
time+spin+color dilutions (bottom row). The fact that these effective masses have comparable er-
rors indicates that the stochastic method with suitable dilutions has not introduced any appreciable
noise into the final mass extractions.

A comparison of different dilution schemes has been presented at this conference[30]. Fig. 12
shows the relative errors in the correlation functions of a single-site and atriply-displaced-T nu-
cleon operator for temporal separationt = 5at evaluated using stochastically-estimated quark prop-
agators with different dilution schemes against 1/N1/2

inv , whereNinv is the number of matrix inver-
sions required. These results were obtained using 100 quenched configurations on an anisotropic
123×48 lattice with a Wilson fermion and gauge action. The open circles show the point-to-all
errors, and the horizontal dashed lines show the gauge-noise limits. The black (red) dashed-dotted
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lines show the decrease in error expected by simply increasing the number of noise vectors, start-
ing from the time (time + even/odd-space) dilution points. These computations aredominated by
the inversions of the Dirac matrix, so using the number of matrix inversionsNinv to compare com-
putational efforts is reasonably fair. The advantage in using increaseddilutions compared to an
increased number of noise vectors with only time dilution is evident in the plots. However, this
advantage quickly diminishes after time + even/odd-space dilution, or time+color, or time+spin
dilution. Note that time+spin+color+even/odd-space dilution yields an error comparable with the
gauge-noise limit using only a single noise vector! First results for multi-hadron operators were
also presented at this conference[31].

These encouraging results demonstrate that the inclusion of good multi-hadron operators will
certainly be possible using stochastic all-to-all quark propagators with diluted-source variance re-
duction. In fact, just before this conference, the authors of Ref. [9]began exploring a new method
that might allow nearly-exact determinations of many-to-many quark propagators without intro-
ducing any noise vectors at all. The method exploits a novel, cleverly-devised choice of quark-field
smearing to facilitate the nearly-exact computations. Details and tests of this method should appear
very soon.

6. Summary and outlook

This talk discussed the key issues and challenges in exploring excited hadrons in lattice QCD.
The importance of multi-hadron operators and the need for all-to-all quarkpropagators were em-
phasized. The challenge of dealing with unstable states (resonances) in abox was outlined, and the
technology associated with extracting excited stationary-state energies, including operator design
and field smearing, was detailed. Efforts in variance reduction of stochastically-estimated all-to-
all quark propagators using source dilutions were described, and results on excited hadrons which
appeared during the last year were summarized.

Given the major experimental efforts to map out the QCD resonance spectrum, such as Hall
B and the proposed Hall D at Jefferson Lab, ELSA associated with the University of Bonn, COM-
PASS at CERN, PANDA at GSI, and BESIII in Beijing, there is a great need for ab initio deter-
minations of such states in lattice QCD. The exploration of excited hadrons in lattice QCD is well
underway.

This work was supported by the National Science Foundation through awards PHY 0653315
and PHY 0510020.
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