PROCEEDINGS

OF SCIENCE

Physics results from dynamical overlap fermion
simulations

Shoji Hashimoto*
High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801.
E-mail: shoj i . hashi not o@ek. jp

| summarize the physics results obtained from large-saalamiical overlap fermion simulations
by the JLQCD and TWQCD collaborations. The numerical sioites are performed at a fixed
global topological sector; the physics results inheacuum is reconstructed by correcting the fi-
nite volume effect, for which the measurement of the topiolaigusceptibility is crucial. Physics
applications we studied so far include a calculation ofathipndensate, pion mass, decay con-
stant, form factors, as well as (vector and axial-vectotven polarization functions and nucleon
sigma term.

The XXVI International Symposiumon Lattice Field Theory
July 14-19 2008
Williamsburg, Virginia, USA

*Speaker.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Physics results from dynamical overlap fermion simulations Shoji Hashimoto

1. Introduction

Many important aspects of the low energy dynamics of QCDeleged to the chiral symmetry
and its spontaneous breaking in the QCD vacuum. Lattice GC®promising tool to actually
simulate the low energy regime of QCD and to reproduce the spontargoumetry breaking and
related phenomena, provided that the chiral symmetry isgpved on the lattice. This was the
prime motivation for the JLQCD and TWQCD collaborations tobark on the QCD simulations
with exact chiral symmetryi.e. dynamical overlap fermion simulations, despite the enargno
computational costs they require.

Theoretically, with the dynamical overlap fermions, oneyritvestigate the relation between
chiral symmetry breaking and low-lying modes of the Diraemgbor, as suggested by the Bank-
Casher relation and the chiral random matrix theory. Alse,quantities related to the topology of
the SU(3) gauge field, such as the topological suscepifilitly be studied using fermionic proves
using the singlet axial-Ward-Takahashi identity.

Phenomenologically, the chiral symmetry plays an impdrtate in the chiral extrapolation
of lattice data for many physical quantities. Since the usthe continuum chiral perturbation
theory is justified, the chiral extrapolation is largely piified when the chiral symmetry is exactly
preserved on the lattice. In this talk, | will discuss a fevammples that demonstrate the chiral ex-
trapolation performed using the next-to-next-to-leadimder chiral perturbation theory formulae.
We have other new applications for which the exact chiralregtny plays a crucial role. They
include a calculation of thg — A vacuum polarization functions and an extraction of thengtea
qguark content from the (partially quenched) nucleon masses

This project was started in 2006 when the present superdgemgystem, that comprises Hi-
tachi SR11000 and IBM Blue Gene/L, was installed at KEK. Aoref the project at an earlier
stage was presented by Hideo Matsufuru at Lattice 2007 [Riglwmainly described the simula-
tion itself. The present talk discusses about the physigkcations from the project in some detalil.
For individual contributions, see their own write-ups [2435, 6, 7, 8].

2. Simulation strategy and status

The overlap-Dirac operatd(0) = p/a[1+ X /vXTX] (with the Wilson kerneX = aDy, — p)
[9, 10] provides a theoretically ideal fermion formulation the lattice, as it has an exact chiral
symmetry at finite lattice spacings [11] while satisfying ihdex theorem. Implementation of the
overlap operator is however non-trivial, since the definittontains a discontinuity at the zero of
the denominatoX "X (or the zero of the hermitian Wilson-Dirac operakt; = y5X). One usually
approximates the sign function ggy) using polynomial or rational functions, but the near-zero
eigenmodes must be specially treated. At finite lattice igpac it is known that there are finite
density of near-zero modes Hfy [12], that means that the computational cost to identifyrtbar-
zero modes grows as quickly @§V?) and prevents one from performing large scale simulations
using the overlap fermion.

The near-zero modes are associated with a dislocation didtieground gauge field and thus
are unphysical (an explicit example is found in [13]). Wem@ss them by introducing extra heavy
Wilson fermions (and associated ghosts) [14, 15]. Theyymed factor dékZ /(H2 + u?)] to the
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Boltzmann factor g is a mass of the associated ghosts) and naturally suppeessdn-zero modes.
The numerical cost for the overlap fermion simulation istdeamatically reduced especially when
the lattice volume is large.

Since the topology change (or the change of the number ofrmedes of the overlap-Dirac
operator) may occur only when a small eigenvalugi@f changes its sign, the suppression factor
strictly prohibits the tunneling among different topolcgji sectors, as far as the Monte Carlo algo-
rithm is based on a continuous change of the gauge field coafign. This is in fact a property
of the continuum QCDi.e. topology change cannot occur through continuous defoamatf the
gauge field.

Dynamical overlap fermions have been attempted by sevetiabes [16, 17, 18], in which the
treatment of the topology tunneling is one of the main isségaong them, our simulations have
reached the level to produce broad physics results for teifire. On a lattice of size (2 fm)3 we
simulate dynamical fermions with several quark masseséssims/6 andms with mg the physical
strange quark mass. In addition to the runs for two-flavor Q®Bich is already published [19],
we have completed a series of runs for 2+1-flavor QCD. The meginon that made this possible
is the topology-fixing, as well as the computational powewjted by the BlueGene/L.

The two-flavor runs were done At= 2.30 using the Iwasaki gauge action on & ¥@&2 lattice.
The lattice spacing determined through the Sommer ggate0.49 fm is 0.118(2) fm. For each
of six sea quark masses covering the regiey6 ~ ms, we accumulated 10,000 HMC trajectories
in the trivial topological secto® = 0. (For a check of the fixed topology effect, we also produced
configurations of) = —2 and—4 at one sea quark mass. For details, see below.)

The 2+1-flavor runs were carried out at the sgBnealue on a 18x 48 lattice. This corre-
sponds to the lattice spaciiag= 0.108(2) fm. We took two strange quark masses. For eaclenf,th
five up and down quark masses are taken covering the simiéak guiass region. In total, ten runs
of each length 2,500 HMC trajectories have been accumu&t®d= 0.

3. Topology issues

If the topological charge is frozen in the QCD simulatiorthisre any problem? The answer to
this question is obviously “yes”. The QCD vacuum is requit@tle theB-vacuum, a superposition
of different topological sectors, in order to satisfy thaster decomposition property. Therefore,
we cannot sample the correct QCD vacuum unless the topalogiarge fluctuates sufficiently.
This is a serious problem for everyone doing dynamical Q@Bukation aiming at approaching
the continuum limit, since the topological charge would cizénge near the continuum limit irre-
spective of which fermion formulation one employs.

We believe that the solution (one of the solutions, at lesthis problem is to reconstruct
the 6-vacuum physics from the fixed topology simulations [20].isTis based on the observation
that the effect of fixed topological charge is a finite volurffeat of O(1/V), which can be derived
from a simple Fourier transform between teacuum and the fixe® “vacuum”. For instance,
the partition function at a given topological chai@és obtained using a saddle point expansion as

! e P 1 @
ZHXtVexp{ ZXtV:| {1 8VXt+O<(XtV)27(XtV)2>}’ (3.1)

Zo=
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Figure 1: Pseudo-scalar density correlator (3.3) summed over $g&fi@ration and plotted as a function
of t. The data folNs =2 QCD atam= 0.025. Solid line shows a fit with a constant giving the topodadyi
susceptibility.

where x; is the topological susceptibility angy characterize a deviation from the Gaussian dis-
tribution at a finite volume. Therefore, if one can calculgteandc, (and higher order terms if
necessary), th@-vacuum can be reconstructed by simply adding the diffei@mlogical sectors
asZ(8) =3o ZQe*ieQ. The method to calculate these key parameters is discuksetlys

The relation between th@ and Q vacuums can be extended to any physical quantities. For
example, for a (CP-even) two-point function, one can exgiei a given topological charg®
in terms of its counterpart in thé(=0) vacuumG(0) and its second and fourth derivative& (0)
andG¥(0) as [20, 21]

Gq = G(0) + G?(0) {1— Lo ] +G%(0) ! . (3.2)

2xV XV 2xV 8x2V2 t

up to higher order corrections in\t. Therefore, provided that th&dependence of the quantity of
interest is known, thé@-vacuum physics can be reconstructed. Bhdependence can be obtained
for the quantities that can be analysed using chiral peatiob theory; if it is not applicable one
needs the data at sevefto extractG? (0) for instance.

By applying the formula (3.2) for a topological charge dgnsiorrelator, or equivalently a
correlator of flavor-singlet pseudo-scalar densiti€%¥x), one obtains a relation

2
lim (IP()MP(0)) = (xt -4 ) +0(e ™), (3.3)
where(: - -)q stands for an expectation value in the giv@nThe topological susceptibility; can

be extracted from the asymptotic value of the correlatoBiB)( One expects a negative constant
whenQ = 0, which is intuitively understood as follows. When one firmdpositive topological

charge density at the origin, it is more likely that a negatialue is observed at a far distant point
X, if the net topology is fixed t6Q = 0. The value will suppressed when the volume is increased.
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Figure 2: Topological susceptibility as a function of sea quark mabse data folNs = 2 (circles) and
Nf = 2+ 1 (triangles) are shown. The solid curves represent a fit thigform of chiral effective theory.

An example obtained in two-flavor QCD is shown in Figure 1 [22 observe a clear plateau
for all six different ensembles with different sea quark sess Atam = 0.050, we obtain a consis-
tent results from the configurations with different topatad chargeQ = 0, —2, and—4.

Sea quark mass dependence:df expected to behave gs=%/(1/m,+1/my+1/ms) atthe
leading order of chiral perturbation theory [23]. In twovita QCD with degenerate sea quark mass
m, it becomes(; = mx /2. Figure 2 shows the results for 2- and 2+1-flavor QCD [2]. & show
a clear linear dependence on the sea quark mass. The fitstot®e1-flavor formula yield the
value of chiral condensate. After a renormalization, we obtali(2 GeV) = [242(5)(10) MeV}
(Nf=2) andZ(2 GeV) = [240(5)(2) MeVF (N;=2+1).

4. Physics applications

4.1 Chiral condensate

For the lattice calculation of the chiral condensate, theceghiral symmetry plays a crucial
role. Without the exact symmetry the scalar density operatcahe lattice( ¢)'® may mix with
the identity operator under radiative corrections. Thadketo a power (cubic) divergence in the
matching onto the corresponding continuum operégap)®™, which prevents one from calculat-
ing this quantity on the lattice with any useful precision.

Thanks to the exact chiral symmetry, we are able to precisalgulate this quantity from
several different sources. They contain the use of the B&alsher relation (as demonstrated in
Figure 3), the spectrum of low-lying eigenvalues (with gohefl the chiral random matrix theory),
the meson correlators in theregime, the topological susceptibility, and the Gell-MaDaks-
Renner (GMOR) relation.

In the e-regime, where pion Compton wavelength is longer than tlaiapextent, the dy-
namical degrees of freedom is dominated by the zero-momemntwdes of pions. In this cir-
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Figure 3: Spectral densityp(A) as a function ofA, calculated from lattice data in theregime. Banks-

Casher relation infers a constanfiat= 0, which is not of course satisfied at a finite volume, but tinerrant
is clearly seen. The horizontal dashed line is an expectédioa nominal value of.
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Figure 4. Chiral condensate calculated in two-flavor QCD with sevdiif¢rent methodse-regime eigen-
value spectrum [24, 25p-regime eigenvalue spectrum [2%}regime meson correlator [26], topological
susceptibility [2], GMOR relation [27].

cumstance, the low-lying eigenmode spectrum can be olotaisimg the Chiral Random Matrix
Theory (ChRMT). The chiral condensate can be extracted hghimg the spectrum calculated on
the lattice with the ChRMT prediction. We obtam@(z GeV) = [251(7)(11) MeVF [24, 25]. The
meson correlator calculated in tlseregime can also be used to determine the chiral condensate
> as well as the pion decay constdnt We obtainzm(z GeV) = [240(4)(7) MeVF andF =
87(6)(8) MeV [26].

Figure 4 compares the chiral condensate extracted witlousarobservables in two-flavor
QCD. They are in good agreement. This strongly indicatetsttiealow-energy dynamics of QCD
is indeed determined by the pion degrees of freedom andftimeréhat the chiral symmetry is
spontaneously broken, which is usually assumed when camtisty the chiral effective theory.
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Figure 5: Comparison of chiral expansion in terms»fk andé. The plots represemn%/mq (left) and f;
(right). Fits of the three lightest data points with the NLORT formulae (4.1) and (4.2) are shown.

4.2 mpand f;

Near the massless limit of quarks the chiral effective thasrexpected to provide a good
description of the low-energy QCD. For larger pion masses, must calculate loop corrections
and also introduce irrelevant operators to subtract aatsatidivergences. This leads to the chiral
perturbation theory (ChPT), which is organized as an exparis terms of smalm? and p?. The
region of the convergence of this chiral expansion is notkna priori. Using lattice QCD, one can
test the expansion and identify the region of convergendéh Whve exact chiral symmetry, the test
is conceptually cleaner, since no additional term to dbsdifie violation of chiral symmetry has
to be introduced. (With other fermion formulations, this the case. The unknown correction
terms are often simply ignored.)

For the pion mase; and decay constarit; the expansion is given as

% = 2B[1+4xInx+ cax+ O(XZ)], (4.1)

fr = f [1—2xInX+cax+ O] , (4.2)

wherem; and f,; denote the quantities after the corrections whiland f are them at the leading
order. The expansions (4.1) and (4.2) may be written in tesfaither x = 2m?/(41tf)?, R =
2m2,/(4mf)?, or & = 2m2/(4mfy)? (we use a notation of; = 131 MeV). Theoretically, they all
give an equivalent description at this order, while the epgegnce behavior may depend on the
expansion parameter.

Figure 5 shows the comparison of different expansion patermg27]. The fit curves are
obtained by fitting the three lightest data points with thee¢hdifferent fit parameters. They all
provide equally precise description of the data in the megibthe fit. If we look at the heavier
guark mass region, however, it is clear that only §aexpansion gives a reasonable function and
others miss the data points largely. This clearly demotestrthat at least for these quantities the
convergence of the chiral expansion is much improved by #eaf theé-parameter than the
conventional choicd,e. the x-expansion.
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Figure 6: Low energy constants of two-flavor QCD as determined from{)&LO analysis of our lattice
data. The results are obtained using 4, 5, or 6 lightest sagk quass data. Phenomenological numbers are
taken from Colangelo-Durr [29], Colangedbal. [30]; the previous JLQCD results were obtained from the
meson correlators in theregime [26].

Therefore, we consider only tifeexpansion when we extend the analysis to the next-to-next-
to-leading order (NNLO). | do not write down the NNLO termgdyebut an important point is that
the coefficient of théeading log terms of the form(& In&)? is determined solely from ChPT and
thus is not a fit parameter. The terms of the faffin & and &2 have to be determined by the fit.
It is indeed possible by a combined fit o /mq and f; we obtain the low energy constants as
shown in Figure 6.

It is clear from Figure 6 that the results depend on the orfldreochiral expansion,e. NLO
or NNLO, especially for the NLO low energy constarfigsand/,. This is because the NNLO term
appears with a relatively large numerical coefficient, SHSﬁ_;;E(l— 9/2¢In¢&), for instance. A
large effect is then expected for the determinationéfmfnlessf is much less than 0.1. The NNLO
terms are mandatory in the analysis of lattice data.

We are currently extending the NNLO analysis to the paytiglienched data in two-flavor
QCD and to the 2+1-flavor QCD data [4].

4.3 Pion form factor
Pion vector and scalar form factors provide another simgsértg ground for the chiral dy-
namics of pion. They are defined as
() VulTi(p)) = (P + PR (), (4.3)
(m(p)|Sm(p)) = Fs(&), =Py — Py, (4.4)

for the vector curreri¥, and the scalar densi At small momentum transfep, the form factors
are characterized by the charge and scalar radiif, as(r?)%) as

R(0®) = 1+ é<r2>’Jq2 +0(a), (4.5)
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Figure 7: Pion vector (left) and scalar (right)form factors calcathatam = 0.050.
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Figure 8: Vector (left) and scalar (right) radii of pion as a functiohMZ. Solid curves show the fits with
the NNLO ChPT formulae. Their breakdown into NLO (dashed) BINLO (short dashed) contributions
are also shown.

Fs(q%) = Fs(0) 1+%<r2>§q2+0(q4) : (4.6)
Note that the vector form factd¥, (¢7) is normalized atf” = 0 due to the current conservation.

We use thaill-to-all quark propagator technique [31] to calculate the form f&c82, 7]. The
main advantage of this technique is, of course, that one abnulate the disconnected diagram
contribution to the scalar form factor. Furthermore, itsantially reduces the statistical error in
the calculation through an average over the source point.

We calculate the form factors at four lightest sea quark rmasfigurations available in two-
flavor QCD. The data at a fixed quark mass are shown in Figur@i7thE vector form factor we
attempt a fit ansatz motivated by the pole dominaRggg?) = 1/(1— ¢?/m) 4 c1g? + - - - with
my the vector meson mass obtained at the same quark mass. TJisgified by the analyticity
of the form factor and also by a reasonable assumption thatiher pole contributions are well
approximated by a Taylor series. The data are, in fact, yitéd with this function as shown in
Figure 7 (left). The higher pole effects are small but visidror the scalar form factor there is no
obvious pole, and we use a simple polynomiatpfo fit the data (right panel).

The charge and scalar radii thus extracted are plotted asctidn of m? in Figure 8 together
with the fits with the NNLO ChPT formulae. For these quantitidhe ChPT predicts a logarithmic
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divergence in the chiral limit- (1/f2)Inm2 with a fixed numerical coefficient. The data do not
show the expected divergent behavior, but the fit is possihbk gives a value consistent with
the phenomenological value at the point of physical pionandsis suggests that the divergent
behavior shows up in the even smaller quark mass region. egmat the fit is possible only when

we include the NNLO terms, which contain additional lodariic divergences in the chiral limit.

4.4 Vacuum polarization functions

The vacuum polarization functions defined through

[ d€(013,(0(0)0) = (9ue? — au)NS" (@) — 6y () (A7)

contain rich information of QCD dynamics in both perturbatand non-perturbative regimes, (
is either a vectoW,, or an axial-vectoA, current. We restrict ourselves in the flavor non-singlet
currents, though the flavor indices are suppressed in thessipns.) Experimentally, the vacuum
polarization function can be extracted frane™ annihilation orr decay processes.

The spontaneous chiral symmetry breaking can be probedhkétiiacuum polarization func-
tions using the Weinberg sum rules [33], such as

fi = — Jim @ [N{ (@) i@ “.8)
_ H 4 2 (140) ; ~2 (140) , ~2
S=—dm 329 ["'v Q) -My 7 (Q )] : (4.9)

whereSstands for the Peskin-Takeuchi’s parameter used in thexooitthe precision electroweak
measurement [34]. In chiral effective theory, it is relatec low energy constart;g. These sum
rules can be obtained in the limit of massless quarks. BecaiuheirV/ — A structure, they vanish
when the chiral symmetry is not spontaneously broken.

Along these lines, another interesting quantity is thetedetagnetic mass difference of pion,
which is expressed in this limit as

ant, = 27 ["4QPQ? [0 - (@), (@10)
7 Jo
which is known as the Das-Guralnik-Mathur-Low-Young sure {35].

For a lattice calculation of these quantities, exact ctay@mhmetry is essential, since we have
to extract a tiny difference between the vector and axiatarechannels. In the calculation using
the overlap fermions, we checked that even the latticeaattifprecisely cancel betwe¥nand A
[36].

In Figure 9 we plot the results for the differend&” (Q?) — N (Q?). The chiral limit is taken
by assuming a linear quark mass dependence (solid curvg)usiig the one-loop ChPT formula
(dashed curve). The use of ChPT is slightly questionableadse the lowest (non-zero) value of
Q? on our lattice is already as large as (320 M&¥hd the second lowest(650 MeVY is clearly
out of the range. The hig®? region, on the other hand, may be analyzed using the opgnatduct
expansion (OPE). OPE is also used to extend the regi@f ¢ infinity as required in (4.10). For
the pion mass difference, we finally obtair, = 992(12)(*;1:?5)(149) Me\2 (see [36] for details),
which may be compared with the experimental value 1,261 MeV

10
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Figure 9: Difference of the vacuum polarization functioﬁlé,l)(Qz) — I'Igl) (Q?) multiplied by Q°. Data
are shown for different quark masses; the chiral limit iogdktted by a solid (linear extrapolation) and a
dashed (chiral logs) curve.

SN L
0.14 m =0.015 .

© T

o M=0025 ]

0.13 s m=0035 3

L =0.050 ]

012 v M E

= L - C+CO(Q M) 1

$ 011 — c+CQH+<aynGG>/Q'

£ od '
=
0.09~
0.08-

0.07 :

E o

0.4 0.6 0.8 1 1.2 1.

(@Q)’

Figure 10: Vacuum polarization functioﬁl\(,l}rA(Qz) as a function ofQ. The lattice data at different quark
masses are shown together with the fit curve with the OPE flar(solid curve).

Another use of the vacuum polarization function is an efiwacof the strong coupling con-
stant by matching the lattice data with the OPE expressidhénperturbative regime. For this
purpose we consider the Adler functi@y(Q?) = —Q?dM;(Q?)/dQ?, which is free from ultra-
violet divergence, and thus renormalization scheme imidget. It means that one can use the
expressions obtained in the continuum perturbation theodgscribe the lattice data. (In the prac-
tical analysis, we directly usB;(Q?) instead, to avoid numerical derivative in terms@f. We
then float a divergent constant as a fit parameter.)

In the lattice calculation, itis necessary to subtracidatartifacts mainly due to non-conserved
lattice currents. Non-perturbative subtraction is pdsdily utilizing several different momentum
configurations giving the san@? [37].

Lattice results are shown in Figure 10. The data in IQgregime are fitted with the pertur-

11
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bative expression supplemented by OPE

Can(@) (maq) ((as/m)GG)

Q Q* Q*
where perturbative expansion @, Cn, €tc is known toa?Z in the MS schemec is the divergent
constant term.

In the analysis, we may use the value of the chiral condensgpeobtained through other
quantities as described above. We then ob&%% = 234(9)("$) MeV in two-flavor QCD [37].
This result is compatible with previous lattice calculas®50(16)(16) MeV [38] or 249(16)(25) MeV
[39].

N2°™(Q%) = c+Co(Q% 1?) + +C(Q) +Coc(Q) +en (410)

45 Nucleon structure

The last application of our dynamical overlap fermion siatians reported in this talk is a
calculation of the nucleon sigma term

O = My (N|OU-+ dd|N) (4.12)
and the strange quark content
2(N|ss|N)
=\ ) 4.13
Y= INjQu+ dd|N) (4.13)

For o both connected and disconnected quark lines contributide whly the disconnected dia-
gram contributes to the strange quark content.

Instead of directly calculating the matrix elements in 22.4nd (4.13), we utilize the Feynman-
Hellman theorem. Namely, we calculate the derivatives ofean mass in terms of valence or sea
guark mass. They are related to the connected and discednamttributions as

dMy _ -
= (N|uu+dd|N , 4.14
sme = (N IN) conn (4.14)
oM = _
" = (NJOU+ dd|N) gise(~ 2(N|SIN)), (4.15)
O0Msea

where the subscripts “conn” and “disc” stand for the coneg@nd disconnected contributions to
the matrix element, respectively. The disconnected piecernes identical to the strange matrix
element 2N|ss|N) when the sea quark mass is set equal to the strange quark maszbtain
the derivatives we need partially quenched, = mse9 data set. For the fit of the quark mass
dependence, we use the partially quenched chiral pertanbiédeory calculated at one-loop for the
nucleon mass [40, 41].

Figure 11 (left panel) shows the nucleon mass calculateduotve-flavor QCD configura-
tions as a function of?, [42]. Finite volume effect is corrected using the expeotafrom ChPT
[43]. The data are nicely fitted with the ChPT formulaCitp®) or atO(p*), through which we
obtainamy = 52(2)("2)(*3) MeV (for further details, see [42]).

The derivatives can be obtained after fitting the partialleriched data set with the corre-
sponding ChPT formulae. The results are shown in Figurei@ht(panel). The plot clearly shows
that the disconnected contribution is smaller than the ectaa contribution. In particular, the dis-
connected piece is tiny for the mass corresponding to thagtrquark. As a result tlygparameter
we obtained is smally = 0.030(16){3)("3).

12
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Figure 11: (Left) Nucleon mass in two-flavor QCD. The data after the éinviblume correction are shown
by red symbols. The curves represent the fit with baryon CliPifidlae. (Right) The connected (upper)
and disconnected (lower) contributions to the sigma teria fasmction of the quark mass. Sea and valence
guarks are taken to be equal. Physical up/down and straregk masses are shown by vertical lines.

Previous lattice calculations gave rather large valueg. for66(15) [44], 0.36(3) [45], 0.59(13)
[46]. The problem in these calculations is that the criticelss depend significantly on the sea
guark mass when one uses the Wilson-type fermion due to tkeofachiral symmetry. One can
misidentify this unphysical effect with the physical sigteam. (We note that the problem persists
even when one directly calculates the matrix element rdti@ar using the Feynman-Hellman the-
orem. That is because the scalar density operator made hpalnce quarks may mix with that
with sea quarks. One has to subtract this operator mixingptaito the correct results [5].)

After subtracting this effect, UKQCD obtained a value cetesit with zeroy = —0.28(33),
albeit a large error due to the subtraction [47]. Our setdpeis from this problem because of the
use of the overlap fermion for both valence and sea quarks.eXact chiral symmetry plays a key
role here, too.

5. Conclusions

In this talk | demonstrate that the dynamical overlap femicay provide a clean approach
to the problems related to the chiral symmetry and its spaatas breaking. Despite the large
numerical cost it requires, large scale simulation is fdaswith the computational resources of
O(10 TFlops). So far, we have completed runs on &x4B and started test runs on a larger
volume, 24 x48.

The key to this success is the new strategy of treating tHeagjtopological chargd.e. we fix
the topology during the simulation and reproduce @hreacuum physics by correcting an induced
finite volume effect. In doing so, the key observation is that topological susceptibility can be
correctly extracted from simulations at a fixed topology.

The problem of topology freezing will become common amondpitice simulations as one
sufficiently approaches the continuum limit, simply beeatlss is the property of the continuum
QCD. Our work is a first attempt to overcome that situation.
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The exact chiral symmetry plays a crucial role in the calimfaof many important physical
guantities. For instance, we have calculated the chiratleasate using several methods for the
first time and confirmed the consistency among them, whichigees the most fundamental test of
the chiral effective theory. We are extending the test tiwarquantities, such as pion mass, decay
constant, charge radius and so on. (A calculation of the IBaparameter is already published
[48].) There are other interesting applications for whibk txact chiral symmetry is required;
so far we studied thg — A vacuum polarization and the nucleon sigma term. We planrtbédu
pursue in this direction.

The author is supported in part by Grant-in-aid for Scienffesearch (No. 18340075).
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