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1. Introduction

Many important aspects of the low energy dynamics of QCD are related to the chiral symmetry
and its spontaneous breaking in the QCD vacuum. Lattice QCD is a promising tool to actually
simulate the low energy regime of QCD and to reproduce the spontaneoussymmetry breaking and
related phenomena, provided that the chiral symmetry is preserved on the lattice. This was the
prime motivation for the JLQCD and TWQCD collaborations to embark on the QCD simulations
with exact chiral symmetry,i.e. dynamical overlap fermion simulations, despite the enormous
computational costs they require.

Theoretically, with the dynamical overlap fermions, one may investigate the relation between
chiral symmetry breaking and low-lying modes of the Dirac operator, as suggested by the Bank-
Casher relation and the chiral random matrix theory. Also, the quantities related to the topology of
the SU(3) gauge field, such as the topological susceptibility, may be studied using fermionic proves
using the singlet axial-Ward-Takahashi identity.

Phenomenologically, the chiral symmetry plays an important role in the chiral extrapolation
of lattice data for many physical quantities. Since the use of the continuum chiral perturbation
theory is justified, the chiral extrapolation is largely simplified when the chiral symmetry is exactly
preserved on the lattice. In this talk, I will discuss a few examples that demonstrate the chiral ex-
trapolation performed using the next-to-next-to-leadingorder chiral perturbation theory formulae.
We have other new applications for which the exact chiral symmetry plays a crucial role. They
include a calculation of theV −A vacuum polarization functions and an extraction of the strange
quark content from the (partially quenched) nucleon masses.

This project was started in 2006 when the present supercomputer system, that comprises Hi-
tachi SR11000 and IBM Blue Gene/L, was installed at KEK. A report of the project at an earlier
stage was presented by Hideo Matsufuru at Lattice 2007 [1], which mainly described the simula-
tion itself. The present talk discusses about the physics applications from the project in some detail.
For individual contributions, see their own write-ups [2, 3, 4, 5, 6, 7, 8].

2. Simulation strategy and status

The overlap-Dirac operatorD(0)≡ ρ/a[1+X/
√

X†X ] (with the Wilson kernelX ≡ aDW −ρ)
[9, 10] provides a theoretically ideal fermion formulationon the lattice, as it has an exact chiral
symmetry at finite lattice spacings [11] while satisfying the index theorem. Implementation of the
overlap operator is however non-trivial, since the definition contains a discontinuity at the zero of
the denominatorX†X (or the zero of the hermitian Wilson-Dirac operatorHW ≡ γ5X ). One usually
approximates the sign function sgn(HW ) using polynomial or rational functions, but the near-zero
eigenmodes must be specially treated. At finite lattice spacings, it is known that there are finite
density of near-zero modes ofHW [12], that means that the computational cost to identify thenear-
zero modes grows as quickly asO(V 2) and prevents one from performing large scale simulations
using the overlap fermion.

The near-zero modes are associated with a dislocation of thebackground gauge field and thus
are unphysical (an explicit example is found in [13]). We suppress them by introducing extra heavy
Wilson fermions (and associated ghosts) [14, 15]. They produce a factor det[H2

W/(H2
W +µ2)] to the
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Boltzmann factor (µ is a mass of the associated ghosts) and naturally suppress the near-zero modes.
The numerical cost for the overlap fermion simulation is then dramatically reduced especially when
the lattice volume is large.

Since the topology change (or the change of the number of zero-modes of the overlap-Dirac
operator) may occur only when a small eigenvalue ofHW changes its sign, the suppression factor
strictly prohibits the tunneling among different topological sectors, as far as the Monte Carlo algo-
rithm is based on a continuous change of the gauge field configuration. This is in fact a property
of the continuum QCD,i.e. topology change cannot occur through continuous deformation of the
gauge field.

Dynamical overlap fermions have been attempted by several authors [16, 17, 18], in which the
treatment of the topology tunneling is one of the main issues. Among them, our simulations have
reached the level to produce broad physics results for the first time. On a lattice of size∼ (2 fm)3 we
simulate dynamical fermions with several quark masses betweenms/6 andms with ms the physical
strange quark mass. In addition to the runs for two-flavor QCD, which is already published [19],
we have completed a series of runs for 2+1-flavor QCD. The mainreason that made this possible
is the topology-fixing, as well as the computational power provided by the BlueGene/L.

The two-flavor runs were done atβ = 2.30 using the Iwasaki gauge action on a 163×32 lattice.
The lattice spacing determined through the Sommer scaler0 = 0.49 fm is 0.118(2) fm. For each
of six sea quark masses covering the regionms/6∼ ms, we accumulated 10,000 HMC trajectories
in the trivial topological sectorQ = 0. (For a check of the fixed topology effect, we also produced
configurations ofQ = −2 and−4 at one sea quark mass. For details, see below.)

The 2+1-flavor runs were carried out at the sameβ value on a 163 × 48 lattice. This corre-
sponds to the lattice spacinga = 0.108(2) fm. We took two strange quark masses. For each of them,
five up and down quark masses are taken covering the similar quark mass region. In total, ten runs
of each length 2,500 HMC trajectories have been accumulatedat Q = 0.

3. Topology issues

If the topological charge is frozen in the QCD simulation, isthere any problem? The answer to
this question is obviously “yes”. The QCD vacuum is requiredto be theθ -vacuum, a superposition
of different topological sectors, in order to satisfy the cluster decomposition property. Therefore,
we cannot sample the correct QCD vacuum unless the topological charge fluctuates sufficiently.
This is a serious problem for everyone doing dynamical QCD simulation aiming at approaching
the continuum limit, since the topological charge would notchange near the continuum limit irre-
spective of which fermion formulation one employs.

We believe that the solution (one of the solutions, at least)to this problem is to reconstruct
the θ -vacuum physics from the fixed topology simulations [20]. This is based on the observation
that the effect of fixed topological charge is a finite volume effect of O(1/V ), which can be derived
from a simple Fourier transform between theθ vacuum and the fixedQ “vacuum”. For instance,
the partition function at a given topological chargeQ is obtained using a saddle point expansion as

ZQ =
1

2πχtV
exp

[

− Q2

2χtV

][

1− c4

8V χt
+ O

(

1
(χtV )2 ,

Q2

(χtV )2

)]

, (3.1)
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Figure 1: Pseudo-scalar density correlator (3.3) summed over spatial separation and plotted as a function
of t. The data forN f = 2 QCD atam = 0.025. Solid line shows a fit with a constant giving the topological
susceptibility.

whereχt is the topological susceptibility andc4 characterize a deviation from the Gaussian dis-
tribution at a finite volume. Therefore, if one can calculateχt andc4 (and higher order terms if
necessary), theθ -vacuum can be reconstructed by simply adding the differenttopological sectors
asZ(θ) = ∑Q ZQe−iθ Q. The method to calculate these key parameters is discussed shortly.

The relation between theθ andQ vacuums can be extended to any physical quantities. For
example, for a (CP-even) two-point function, one can express it in a given topological chargeQ
in terms of its counterpart in theθ (=0) vacuumG(0) and its second and fourth derivativesG(2)(0)

andG(4)(0) as [20, 21]

GQ = G(0)+ G(2)(0)
1

2χtV

[

1− Q2

χtV
− c4

2χ2
t V

]

+ G(4)(0)
1

8χ2
t V 2

+ · · · (3.2)

up to higher order corrections in 1/V . Therefore, provided that theθ -dependence of the quantity of
interest is known, theθ -vacuum physics can be reconstructed. Theθ -dependence can be obtained
for the quantities that can be analysed using chiral perturbation theory; if it is not applicable one
needs the data at severalQ to extractG(2)(0) for instance.

By applying the formula (3.2) for a topological charge density correlator, or equivalently a
correlator of flavor-singlet pseudo-scalar densitiesmP(x), one obtains a relation

lim
x→∞

〈mP(x)mP(0)〉Q = − 1
V

(

χt −
Q2

V
+ · · ·

)

+ O(e−mη′x), (3.3)

where〈· · ·〉Q stands for an expectation value in the givenQ. The topological susceptibilityχt can
be extracted from the asymptotic value of the correlator in (3.3). One expects a negative constant
when Q = 0, which is intuitively understood as follows. When one findsa positive topological
charge density at the origin, it is more likely that a negative value is observed at a far distant point
x, if the net topology is fixed toQ = 0. The value will suppressed when the volume is increased.
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Figure 2: Topological susceptibility as a function of sea quark mass.The data forN f = 2 (circles) and
N f = 2+1 (triangles) are shown. The solid curves represent a fit withthe form of chiral effective theory.

An example obtained in two-flavor QCD is shown in Figure 1 [22]. We observe a clear plateau
for all six different ensembles with different sea quark masses. Atam = 0.050, we obtain a consis-
tent results from the configurations with different topological chargesQ = 0,−2, and−4.

Sea quark mass dependence ofχt is expected to behave asχt = Σ/(1/mu +1/md +1/ms) at the
leading order of chiral perturbation theory [23]. In two-flavor QCD with degenerate sea quark mass
m, it becomesχt = mΣ/2. Figure 2 shows the results for 2- and 2+1-flavor QCD [2]. Thedata show
a clear linear dependence on the sea quark mass. The fits to two- or 2+1-flavor formula yield the
value of chiral condensateΣ. After a renormalization, we obtainΣ(2 GeV) = [242(5)(10) MeV]3

(N f =2) andΣ(2 GeV) = [240(5)(2) MeV]3 (N f =2+1).

4. Physics applications

4.1 Chiral condensate

For the lattice calculation of the chiral condensate, the exact chiral symmetry plays a crucial
role. Without the exact symmetry the scalar density operator on the lattice(ψ̄ψ)lat may mix with
the identity operator under radiative corrections. This leads to a power (cubic) divergence in the
matching onto the corresponding continuum operator(ψ̄ψ)cont , which prevents one from calculat-
ing this quantity on the lattice with any useful precision.

Thanks to the exact chiral symmetry, we are able to preciselycalculate this quantity from
several different sources. They contain the use of the Banks-Casher relation (as demonstrated in
Figure 3), the spectrum of low-lying eigenvalues (with a help of the chiral random matrix theory),
the meson correlators in theε-regime, the topological susceptibility, and the Gell-Mann-Oaks-
Renner (GMOR) relation.

In the ε-regime, where pion Compton wavelength is longer than the spatial extent, the dy-
namical degrees of freedom is dominated by the zero-momentum modes of pions. In this cir-
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Figure 3: Spectral densityρ(λ ) as a function ofλ , calculated from lattice data in theε-regime. Banks-
Casher relation infers a constant atλ = 0, which is not of course satisfied at a finite volume, but the remnant
is clearly seen. The horizontal dashed line is an expectation for a nominal value ofΣ.
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Σ1/3
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Figure 4: Chiral condensate calculated in two-flavor QCD with severaldifferent methods:ε-regime eigen-
value spectrum [24, 25],p-regime eigenvalue spectrum [25],ε-regime meson correlator [26], topological
susceptibility [2], GMOR relation [27].

cumstance, the low-lying eigenmode spectrum can be obtained using the Chiral Random Matrix
Theory (ChRMT). The chiral condensate can be extracted by matching the spectrum calculated on
the lattice with the ChRMT prediction. We obtainΣMS(2 GeV) = [251(7)(11) MeV]3 [24, 25]. The
meson correlator calculated in theε-regime can also be used to determine the chiral condensate
Σ as well as the pion decay constantF. We obtainΣMS(2 GeV) = [240(4)(7) MeV]3 and F =
87(6)(8) MeV [26].

Figure 4 compares the chiral condensate extracted with various observables in two-flavor
QCD. They are in good agreement. This strongly indicates that the low-energy dynamics of QCD
is indeed determined by the pion degrees of freedom and therefore that the chiral symmetry is
spontaneously broken, which is usually assumed when constructing the chiral effective theory.
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Figure 5: Comparison of chiral expansion in terms ofx, x̂ andξ . The plots representm2
π/mq (left) and fπ

(right). Fits of the three lightest data points with the NLO ChPT formulae (4.1) and (4.2) are shown.

4.2 mπ and fπ

Near the massless limit of quarks the chiral effective theory is expected to provide a good
description of the low-energy QCD. For larger pion masses, one must calculate loop corrections
and also introduce irrelevant operators to subtract associated divergences. This leads to the chiral
perturbation theory (ChPT), which is organized as an expansion in terms of smallm2

π andp2. The
region of the convergence of this chiral expansion is not known a priori. Using lattice QCD, one can
test the expansion and identify the region of convergence. With the exact chiral symmetry, the test
is conceptually cleaner, since no additional term to describe the violation of chiral symmetry has
to be introduced. (With other fermion formulations, this isnot the case. The unknown correction
terms are often simply ignored.)

For the pion massmπ and decay constantfπ the expansion is given as

m2
π

mq
= 2B

[

1+ x lnx+ c3x+ O(x2)
]

, (4.1)

fπ = f
[

1−2x lnx+ c4x+ O(x2)
]

, (4.2)

wheremπ and fπ denote the quantities after the corrections whilem and f are them at the leading
order. The expansions (4.1) and (4.2) may be written in termsof either x ≡ 2m2/(4π f )2, x̂ ≡
2m2

π/(4π f )2, or ξ ≡ 2m2
π/(4π fπ )2 (we use a notation offπ = 131 MeV). Theoretically, they all

give an equivalent description at this order, while the convergence behavior may depend on the
expansion parameter.

Figure 5 shows the comparison of different expansion parameters [27]. The fit curves are
obtained by fitting the three lightest data points with the three different fit parameters. They all
provide equally precise description of the data in the region of the fit. If we look at the heavier
quark mass region, however, it is clear that only theξ -expansion gives a reasonable function and
others miss the data points largely. This clearly demonstrates that at least for these quantities the
convergence of the chiral expansion is much improved by the use of theξ -parameter than the
conventional choice,i.e. thex-expansion.
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Figure 6: Low energy constants of two-flavor QCD as determined from the(N)NLO analysis of our lattice
data. The results are obtained using 4, 5, or 6 lightest sea quark mass data. Phenomenological numbers are
taken from Colangelo-Durr [29], Colangeloet al. [30]; the previous JLQCD results were obtained from the
meson correlators in theε-regime [26].

Therefore, we consider only theξ -expansion when we extend the analysis to the next-to-next-
to-leading order (NNLO). I do not write down the NNLO terms here, but an important point is that
the coefficient of theleading log terms of the form(ξ lnξ )2 is determined solely from ChPT and
thus is not a fit parameter. The terms of the formξ 2 lnξ andξ 2 have to be determined by the fit.
It is indeed possible by a combined fit ofm2

π/mq and fπ ; we obtain the low energy constants as
shown in Figure 6.

It is clear from Figure 6 that the results depend on the order of the chiral expansion,i.e. NLO
or NNLO, especially for the NLO low energy constantsℓ̄3 andℓ̄4. This is because the NNLO term
appears with a relatively large numerical coefficient, suchas ℓ̄3ξ (1− 9/2ξ lnξ ), for instance. A
large effect is then expected for the determination ofℓ̄i unlessξ is much less than 0.1. The NNLO
terms are mandatory in the analysis of lattice data.

We are currently extending the NNLO analysis to the partially quenched data in two-flavor
QCD and to the 2+1-flavor QCD data [4].

4.3 Pion form factor

Pion vector and scalar form factors provide another simple testing ground for the chiral dy-
namics of pion. They are defined as

〈π(p′)|Vµ |π(p)〉 = (pµ + p′µ)FV (q2), (4.3)

〈π(p′)|S|π(p)〉 = FS(q
2), qµ ≡ p′µ − pµ , (4.4)

for the vector currentVµ and the scalar densityS. At small momentum transferq2, the form factors
are characterized by the charge and scalar radii,〈r2〉π

V , as〈r2〉π
S ) as

FV (q2) = 1+
1
6
〈r2〉π

V q2 + O(q4), (4.5)

8
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Figure 7: Pion vector (left) and scalar (right)form factors calculated atam = 0.050.
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Figure 8: Vector (left) and scalar (right) radii of pion as a function of M2
π . Solid curves show the fits with

the NNLO ChPT formulae. Their breakdown into NLO (dashed) and NNLO (short dashed) contributions
are also shown.

FS(q
2) = FS(0)

[

1+
1
6
〈r2〉π

S q2 + O(q4)

]

. (4.6)

Note that the vector form factorFV (q2) is normalized atq2 = 0 due to the current conservation.
We use theall-to-all quark propagator technique [31] to calculate the form factors [32, 7]. The

main advantage of this technique is, of course, that one can calculate the disconnected diagram
contribution to the scalar form factor. Furthermore, it substantially reduces the statistical error in
the calculation through an average over the source point.

We calculate the form factors at four lightest sea quark massconfigurations available in two-
flavor QCD. The data at a fixed quark mass are shown in Figure 7. For the vector form factor we
attempt a fit ansatz motivated by the pole dominanceFV (q2) = 1/(1− q2/m2

V )+ c1q2 + · · · with
mV the vector meson mass obtained at the same quark mass. This isjustified by the analyticity
of the form factor and also by a reasonable assumption that the higher pole contributions are well
approximated by a Taylor series. The data are, in fact, nicely fitted with this function as shown in
Figure 7 (left). The higher pole effects are small but visible. For the scalar form factor there is no
obvious pole, and we use a simple polynomial ofq2 to fit the data (right panel).

The charge and scalar radii thus extracted are plotted as a function ofm2
π in Figure 8 together

with the fits with the NNLO ChPT formulae. For these quantities, the ChPT predicts a logarithmic

9
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divergence in the chiral limit∼ (1/ f 2
π ) lnm2

π with a fixed numerical coefficient. The data do not
show the expected divergent behavior, but the fit is possibleand gives a value consistent with
the phenomenological value at the point of physical pion mass. This suggests that the divergent
behavior shows up in the even smaller quark mass region. We note that the fit is possible only when
we include the NNLO terms, which contain additional logarithmic divergences in the chiral limit.

4.4 Vacuum polarization functions

The vacuum polarization functions defined through
∫

d4xeiqx〈0|Jµ (x)J†
ν(0)|0〉 = (gµq2−qµqν)Π(1)

J (Q2)−qµqν Π(0)
J (Q2) (4.7)

contain rich information of QCD dynamics in both perturbative and non-perturbative regimes. (Jµ

is either a vectorVµ or an axial-vectorAµ current. We restrict ourselves in the flavor non-singlet
currents, though the flavor indices are suppressed in the expressions.) Experimentally, the vacuum
polarization function can be extracted frome+e− annihilation orτ decay processes.

The spontaneous chiral symmetry breaking can be probed withthe vacuum polarization func-
tions using the Weinberg sum rules [33], such as

f 2
π = − lim

Q2→0
Q2

[

Π(1+0)
V (Q2)−Π(1+0)

A (Q2)
]

, (4.8)

S = − lim
Q2→0

∂
∂Q2Q2

[

Π(1+0)
V (Q2)−Π(1+0)

A (Q2)
]

, (4.9)

whereS stands for the Peskin-Takeuchi’s parameter used in the context of the precision electroweak
measurement [34]. In chiral effective theory, it is relatedto a low energy constantL10. These sum
rules can be obtained in the limit of massless quarks. Because of theirV −A structure, they vanish
when the chiral symmetry is not spontaneously broken.

Along these lines, another interesting quantity is the electromagnetic mass difference of pion,
which is expressed in this limit as

∆m2
π = −3αEM

4π f 2
π

∫ ∞

0
dQ2Q2

[

Π(1+0)
V (Q2)−Π(1+0)

A (Q2)
]

, (4.10)

which is known as the Das-Guralnik-Mathur-Low-Young sum rule [35].
For a lattice calculation of these quantities, exact chiralsymmetry is essential, since we have

to extract a tiny difference between the vector and axial-vector channels. In the calculation using
the overlap fermions, we checked that even the lattice artifacts precisely cancel betweenV andA
[36].

In Figure 9 we plot the results for the differenceΠ(1)
V (Q2)−Π(1)

A (Q2). The chiral limit is taken
by assuming a linear quark mass dependence (solid curve) or by using the one-loop ChPT formula
(dashed curve). The use of ChPT is slightly questionable, because the lowest (non-zero) value of
Q2 on our lattice is already as large as (320 MeV)2 and the second lowest∼(650 MeV)2 is clearly
out of the range. The highQ2 region, on the other hand, may be analyzed using the operatorproduct
expansion (OPE). OPE is also used to extend the region ofQ2 to infinity as required in (4.10). For
the pion mass difference, we finally obtainm2

π = 992(12)(+ 0
−135)(149) MeV2 (see [36] for details),

which may be compared with the experimental value 1,261 MeV2.

10
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Figure 9: Difference of the vacuum polarization functionsΠ(1)
V (Q2)−Π(1)

A (Q2) multiplied by Q2. Data
are shown for different quark masses; the chiral limit is also plotted by a solid (linear extrapolation) and a
dashed (chiral logs) curve.
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Figure 10: Vacuum polarization functionΠ(1)
V+A(Q2) as a function ofQ2. The lattice data at different quark

masses are shown together with the fit curve with the OPE formula (solid curve).

Another use of the vacuum polarization function is an extraction of the strong coupling con-
stant by matching the lattice data with the OPE expression inthe perturbative regime. For this
purpose we consider the Adler functionDJ(Q2) ≡ −Q2dΠJ(Q2)/dQ2, which is free from ultra-
violet divergence, and thus renormalization scheme independent. It means that one can use the
expressions obtained in the continuum perturbation theoryto describe the lattice data. (In the prac-
tical analysis, we directly useΠJ(Q2) instead, to avoid numerical derivative in terms ofQ2. We
then float a divergent constant as a fit parameter.)

In the lattice calculation, it is necessary to subtract lattice artifacts mainly due to non-conserved
lattice currents. Non-perturbative subtraction is possible by utilizing several different momentum
configurations giving the sameQ2 [37].

Lattice results are shown in Figure 10. The data in highQ2 regime are fitted with the pertur-
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bative expression supplemented by OPE

Πpert
J (Q2) = c+C0(Q

2,µ2)+
CJ

m(Q2)

Q2 +CJ
q̄q(Q

2)
〈mq̄q〉

Q4 +CGG(Q2)
〈(αs/π)GG〉

Q4 + · · · , (4.11)

where perturbative expansion ofC0, Cm, etc is known toα2
s in theMS scheme.c is the divergent

constant term.
In the analysis, we may use the value of the chiral condensate〈q̄q〉 obtained through other

quantities as described above. We then obtainΛ(2)

MS
= 234(9)(+16

− 0 ) MeV in two-flavor QCD [37].
This result is compatible with previous lattice calculations 250(16)(16) MeV [38] or 249(16)(25) MeV
[39].

4.5 Nucleon structure

The last application of our dynamical overlap fermion simulations reported in this talk is a
calculation of the nucleon sigma term

σπN = mud〈N|ūu+ d̄d|N〉 (4.12)

and the strange quark content

y =
2〈N|s̄s|N〉

〈N|ūu+ d̄d|N〉 . (4.13)

For σπN both connected and disconnected quark lines contribute, while only the disconnected dia-
gram contributes to the strange quark content.

Instead of directly calculating the matrix elements in (4.12) and (4.13), we utilize the Feynman-
Hellman theorem. Namely, we calculate the derivatives of nucleon mass in terms of valence or sea
quark mass. They are related to the connected and disconnected contributions as

∂MN

∂mval
= 〈N|ūu+ d̄d|N〉conn, (4.14)

∂MN

∂msea
= 〈N|ūu+ d̄d|N〉disc(≃ 2〈N|s̄s|N〉), (4.15)

where the subscripts “conn” and “disc” stand for the connected and disconnected contributions to
the matrix element, respectively. The disconnected piece becomes identical to the strange matrix
element 2〈N|s̄s|N〉 when the sea quark mass is set equal to the strange quark mass.To obtain
the derivatives we need partially quenched (mval 6= msea) data set. For the fit of the quark mass
dependence, we use the partially quenched chiral perturbation theory calculated at one-loop for the
nucleon mass [40, 41].

Figure 11 (left panel) shows the nucleon mass calculated on our two-flavor QCD configura-
tions as a function ofm2

π [42]. Finite volume effect is corrected using the expectation from ChPT
[43]. The data are nicely fitted with the ChPT formula atO(p3) or at O(p4), through which we
obtainσπN = 52(2)(+20

− 2 )(+5
−0) MeV (for further details, see [42]).

The derivatives can be obtained after fitting the partially quenched data set with the corre-
sponding ChPT formulae. The results are shown in Figure 11 (right panel). The plot clearly shows
that the disconnected contribution is smaller than the connected contribution. In particular, the dis-
connected piece is tiny for the mass corresponding to the strange quark. As a result they parameter
we obtained is small:y = 0.030(16)(+6

−8)(+1
−2).
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Figure 11: (Left) Nucleon mass in two-flavor QCD. The data after the finite volume correction are shown
by red symbols. The curves represent the fit with baryon ChPT formulae. (Right) The connected (upper)
and disconnected (lower) contributions to the sigma term asa function of the quark mass. Sea and valence
quarks are taken to be equal. Physical up/down and strange quark masses are shown by vertical lines.

Previous lattice calculations gave rather large values fory: 0.66(15) [44], 0.36(3) [45], 0.59(13)
[46]. The problem in these calculations is that the criticalmass depend significantly on the sea
quark mass when one uses the Wilson-type fermion due to the lack of chiral symmetry. One can
misidentify this unphysical effect with the physical sigmaterm. (We note that the problem persists
even when one directly calculates the matrix element ratherthan using the Feynman-Hellman the-
orem. That is because the scalar density operator made up with valence quarks may mix with that
with sea quarks. One has to subtract this operator mixing to obtain the correct results [5].)

After subtracting this effect, UKQCD obtained a value consistent with zero,y = −0.28(33),
albeit a large error due to the subtraction [47]. Our setup isfree from this problem because of the
use of the overlap fermion for both valence and sea quarks. The exact chiral symmetry plays a key
role here, too.

5. Conclusions

In this talk I demonstrate that the dynamical overlap fermion may provide a clean approach
to the problems related to the chiral symmetry and its spontaneous breaking. Despite the large
numerical cost it requires, large scale simulation is feasible with the computational resources of
O(10 TFlops). So far, we have completed runs on a 163×48 and started test runs on a larger
volume, 243×48.

The key to this success is the new strategy of treating the global topological charge.i.e. we fix
the topology during the simulation and reproduce theθ -vacuum physics by correcting an induced
finite volume effect. In doing so, the key observation is thatthe topological susceptibility can be
correctly extracted from simulations at a fixed topology.

The problem of topology freezing will become common among all lattice simulations as one
sufficiently approaches the continuum limit, simply because this is the property of the continuum
QCD. Our work is a first attempt to overcome that situation.
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The exact chiral symmetry plays a crucial role in the calculation of many important physical
quantities. For instance, we have calculated the chiral condensate using several methods for the
first time and confirmed the consistency among them, which provides the most fundamental test of
the chiral effective theory. We are extending the test to various quantities, such as pion mass, decay
constant, charge radius and so on. (A calculation of the kaonB parameter is already published
[48].) There are other interesting applications for which the exact chiral symmetry is required;
so far we studied theV −A vacuum polarization and the nucleon sigma term. We plan to further
pursue in this direction.

The author is supported in part by Grant-in-aid for Scientific Research (No. 18340075).
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