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1. Introduction

The fact that QCD has no obvious expansion parameter, (thigling sets the length scale
and cannot otherwise be independently varied) led 't Haofuggest [1] a parameter that is not
obvious: ¥N whereN is the number of colours. One thinks of the Sl)theory as being the
same as the S theory up to corrections that a@(1/N?), or O(1/N) in QCDy. There are
a number of ill-understood features of the strong inteoastj such as the OZI rule, that become
obvious and exact dfl = « [2]. However all these ‘successes’ require that= 3 should be
‘close to' N = c0; something that is not at all guaranteed. In particular,levtiieN = o theory is
simpler, it is unfortunately not simple enough to have besvnesl. There are however a number
of things one can say on simple counting arguments [1, 2]. ekample analysing perturbation
theory to all orders tells us that to achieve a smddth: « limit one should keep the 't Hooft
coupling,A = g?N, fixed asN — «. Simple combinatorics (the colour singlet combinationdrees
vanishingly unlikely a®\ — o) tells us that in the confining phase of that limit mesons dudlualls
do not mix or decay, and indeed there are no colour singletdntions at all. The lack of scattering
makes it conceivable that integrability might play a roldNat . Of course, all this depends on
theN = o« theory having a confining phase — again something that isueiagiteed.

During the past decade, the larljelimit has been at the center of one of the most exciting
theoretical developments: the strong-weak coupling tuafi AdS/CFT and its derivatives. (See
[3] for a review.) As attempts are made to develop supertyraaals of non-conformal largi-
field theories it is important to know something about theailied properties of those theories to
test the success of these attempts.

There are some simple questions here that lattice methadbatp to answer. In this brief
review | will say something about the following with someests on open, accessible problems.

e Is largeN confining?

e Is SU(3) really close to Sl«)?

e Mesons and QCD a¥ — oo,

e Space-time reduction at largé-

e Hot SUNN) gauge theory.

e Interlacing6-vacua.

e The spectrum of closed flux tubesin= 3,4.

The list of things | will not discuss is (unfortunately!) ntudonger. For example | will
not discuss the work on largé-phase transitions that has been reviewed in Lattice 2005rand
Lattice 2007 [6]. Neither will | discuss numerical tests ff]the remarkably successful analytic
calculations by Karabali-Nair of string tensionddn= 2+ 1 [5]. Nor will | review k-string tensions,
inD=2+1orD =341, nor highT domain wall tensions; nor chiral symmetry breaking, and
the role of topology, nor--.

Throughout my talk | will try to point to problems which arecassible, interesting and are
awaiting your involvement!

2. IsN = o confining? IsN = 3 close toN = 00?

At N = o decay widths are zero and we have a prefect OZI rule. This tnagplain why
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in QCD we can have modest decay widths, elg./m, ~ 1/5 < 1, and a good OZI rule. At
large N the explanation is essentially combinatoric: if the themrgonfining, so that all states
are colour singlets, we need thg that pops out of the vacuum to have the right colour to make
two colour singletr when combined with theg, q in the p, and there is clearly a/N ‘phase space’
suppresssion there. If the theory is not confining any botatd san decay without any suppression
into coloured states.

Is SU(w) confining? A pedestrian but reliable approach to this qoess to repeat for SU(4),
SU(5), ... the kind of calculations that answered this qaedbr SU(2) and SU(3). Let me show
you an example for SU(6) [7].

We are on & = 3+ 1 hypertorus. Suppose its spatial dimensiond arlsﬁ. Consider one unit
of fundamental flux wrapped around théorus. If the theory is linearly confining this becomes a
flux tube of length and we expect its ground state energy to vary Wals

Eoll) = 01— Cerr ()5 22 = 01 - T2 (2.1)
where the correction term arises from the zero-point easrgf the massless transverse oscillations
(the Luscher correction) and we have assumed that the ordgless modes along the flux tube are
those of these stringy oscillations. This is the univetgaliass of the simple free bosonic string,
and it is important to determine numerically whether in fagt; (1) =2 1.

In Fig. 1 | show you what one obtains for SU(6). [7]. The appioto linearity at largé is
evident. And we see that the deviations from linearity atlimé, can be described by« (I)
that appears to approach unity at largerSo it appears that thid = o gauge theory is linearly

confining and is in the bosonic string universality class.
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Figure 1: SU(6) : flux loop energy (left); effective Luscher correctigight).

This is a good start. However for largéto be phenomenologically relevant, we need to show
that for typical physical quantities the difference betw&iJ(3) and SU¢p) is ‘small’. So let us
calculate the lightesi”® = 0™+, 27+ glueball masses, express them in units of the simultangousl
calculated string tension, and extrapolate the ratiosdcctmtinuum limit so as to obtain values
of m/y/a. Now repeat this for variousl. The leading larg\ correction should b&(1/N?), so
plot the resulting ratios [8, 9] againsyN? in Fig. 2. (For a very detailed comparison of SU(3)
and SU(8) glueball spectra see [10].) We observe in Fig. 2tiesD(1/N?) corrections are indeed
small, SU(3) appears to be ‘close to’ $tJ( so largeN does appear to be physically relevant.
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Figure 2: Continuum glueball masses in units of the string tensioswef/N2.

3. QCD:N=o0

Because quarks are in the fundamental, some correction<C §e O(1/N) rather than
O(1/N?), i.e. the size of the corrections might be closer to thosela®@$than SU(3) in Fig. 2.
Even so, we see from Fig. 2 that this is modest.

Since QCL) is a (unitary) quenched theory, we can approach it througlgaence of quenched
calculations of increasiny. These will generally hav®(1/N?) corrections. If one calculates
hadron masses at variollsand extrapolates thl = o at various fixed values afy, one can then
do the usual chiral extrapolation in that limit.

A first step might be to do calculations not in the continuumitibut at some fixed small value
of a,/o0. And, if the calculation is not trying to be too precise, oa& clo chiral extrapolations at
fixed N without worrying about the subtleties. In this way one gkéshadron spectrum Bit= o, in
units of \/o orro. One can then compare it either to experiment or to full QGiickacalculations,
to see how large are th@(1/N) corrections.

There have recently been two pioneering calculations ofatter kind [11, 12] that calculate
m,/+/0. (Alsomy, but that is traded for the physicai,.) In Fig. 3 | show some figures from [12].
On the leftis a chiral plot afn, versusm? for N € [2,6] and on the right is the large extrapolation
of m,/\/o. TheN-dependence is clearly very weak, but this is expected fgtrenched theory.
More to the point, thé\ = o chiral value is

% _ 167024 ~735MeV  ; /o ~440MeV (3.1)
which is within ~ 35MeV ~ I, /4 of the experimental value. These calculations [11, 12§ thu
provide explicit evidence that, as long hoped, QCD is clos@E€D..

Let me list a few of the many interesting questions that lasgaleN — oo calculations of this
kind could address:
e Scalar mesons d&¢ — o : do the< 1GeV states disappear?
e The scalar nonet and the place of lightest scalar glueball?
e Flavour singlet tensor and pseudoscalar mesons and gk@bal
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Figure 3: m, versusmy (Ieft); m, for mq = 0 versus IN? (right).

¢ Excited states stable— Regge trajectories?

e Excited states stable— clean meson excitation spectrum.

e SU(2n;) baryon (Dashen-Manohar) symmetryMis— 3.

(This last might require fulRCDy — the next step.) Note that the suppression of decays andgsixi
asN T might clarify many questions about the hadron spectrumalabbscured by large decay
widths and mixings, and make such lattice calculations noledner and simpler at largiirthan at

N = 3. Answering the above questions would help answer somedtargling questions in hadron
spectroscopy, e.g. are the1GeV scalar mesons molecular? Do the thréeg @avour singlets
€ 1.3—1.7GeV arise from the scalar glueball mixing with two scalanetomesons? And this
would give phenomenologists some concrete idea of how amdlenth look for the lightest tensor
and pseudoscalar glueballs. Finally, te= 0 mesonic spectrum might show simple patterns that
will provoke more theoretical understanding of that theory

4. Calculating asN — o : how much harder?

First some obvious counting. The pure gauge theory is ddetnly the basic operation of
multiplying two N x N matrices together, i.€0(N%) operations. (The Cabibbo-Marinari heat-bath
update of all SU(2) subgroups can be done in [DEN?) operations.) Current quenched QGD
calculations are, by contrast, dominated by the fermionit where one is multiplying matrices
times vectors, i.eO(N?) operations.

Second, some less obvious counting. We calculate massesfronected correlators and in
the pure gauge theory these &x¢gl/N?). Does this mean we need to increase the statistics to main-
tain the signal adl 1? The answer is no: the statistical fluctuations are theraseklated to higher
order correlation functions and one can show [9] that theselthe sameD(1/N?) dependence:
the error/signal ratio is independentf Indeed if one compares actual calculations of masses at
differentN one finds [9] very littleN-variation in the error/signal ratio when one goes from SU(2
all the way to SU(8). One can apply the same analysis to mesgagators in quenched QCD.
Just as thé-dependence of the error/signal ratio is very differentgloieball and meson propaga-
tors (it grows exponentially for the former but is nearly stamt for the latter) one finds a different
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N-dependence: while it i©(N°) for the former one can show [12] that it@1/N) for the latter.
In practice the observed decrease [12] is clos@(th/+/N). So forQCDy there is a gain.

In summary: the cost of pure gauge calculationglisl® while that of (quenched) QCD is
0 N® or evend N, unless one goes to very lartye where it will revert toN3.

There are other less quantifiable gains at laigeiThe existence of a first order strong-weak
coupling transition foN > 5 means that one has some confidence about where one campphgart a
ing weak-coupling (Symanzik-type) analyses. The rapidmgfigarance of instantons withv O(a)
asN 7 [13] means that exceptional configurations (with their acpanying ‘exceptional’ fixes)
should rapidly disappear. Also, the fact that finite voluroerections disappear & — c means
that we can work on smaller volumes. And the fact that excstates become stable means that
they will be much easier to identify.

Pure gauge lattice calculations, with continuum limits &rgeN extrapolations of these, can
and have been carried out on a few PC’s. The quenched QCDat#das have used small clusters
(or equivalents).

5. A = ¢°N fixed asN — o0?

Counting diagrams tells us that to have a smddth- « limit we should kee?N constant.
For a running coupling that means keepifiN(u) constant at constant/,/a. That is to say, if
we plotg?N(u) againstu /y/a the result should not depend dhup to 1/N? corrections. In Fig 4
we show how the (mean-field improved) bare couptifly (a running coupling on the length scale
a) varies with the scale, and it displays exactly suchiNamdependence [8]. In [14] it has been
shown how the usud-function with modest lattice corrections describes thnimg in Fig 4 and
this allows the calculation ofs for all N.
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Figure 4: SF running coupling for SU(4) (left); bare 't Hooft runningupling forN € [2, 8] (right).

Of course it would be nice to have a continuy@¥function calculation at largad. That has
recently been provided in [15] for SU(4) using the Schrodinfyinctional definition. | reproduce
it in Fig 4. Coupled with earlier SU(2) and SU(3) resultsstldads to [15]

Nips 0.18(36
—MS _ 0.528(40) + %

v (5.1)
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which is entirely consistent with the values obtained in[14
Question: does th&l = «o SF coupling acquire non-perturbative jumps at the Narayana
Neuberger [6] finite volume phase transitions?

6. Hot gauge theories at largeN

Calculations [16] forN € [2,8] show that the deconfining transition is first order for> 3
with a latent heat o®(1) when expressed in natural units. NowJathe free energies of the gluon
plasma and the confined ensembles are ecrEg@I:TiTc Feonf. SO, since we expedty, [ N2 we
are only interested in th@ N? piece ofFeont at T whenN — o« . The only piece in the confined
phase that has this dependencdNda the vacuum energy density, which provides one convealion
definition of the gluon condensate. (Without this we coulgest T, — 0 asN — «.) So if the
gluon plasma was weakly coupled, we could use the usualrBBdlizmann (SB) expression for
Fgp and thus obtail; in terms of the vacuum energy density and the gluon condensathich
would be a very nice prediction! Unfortunately for us (for&tely for our AAS/CFT colleagues -
see below) the plasma turns out to be strongly coupled fiear

The deconfining temperature is shown as a function/d§lin Fig. 5 [16]. We see modest
corrections to thé\ = oo limit: the fit is T, /\/o = 0.597(4) + 0.45(3) /N?. Remarkably this even
fits SU(2), where the transition is second order.
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Figure 5: N-dependence of the deconfining temperature (left) and teefate tension (right).

We also show in Fig. 5 the interface tension [16] between ¢imdiced and deconfined phases.
We see that the SU(3) value is strongly suppressed: indesfit shown isoy /TS = 0.0138N2 —

0.104N§3 0.020. This suppression is much stronger than the modestessgpn of the SU(3) latent
heat, and is presumably the real reason why that transiisridoked so ‘weakly’ first order in the
past.

One finds a very similar pattern of resultsin= 2+ 1 [17] except that now it is SU(4) that is
weakly first order and, as expectdy,is larger, T/ /o = 0.903(3) + 0.88(5) /N2.

For quite a large range &f aboveT; we have a non-trivial strongly coupled (quark-)gluon
plasma, that is being probed by experiments at RHIC and Jsod. Calculating the kinetic
properties of this plasma has become the area of choice tayeggravity applications [18]: we
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have a strongly coupled system, and fifitereaks the supersymmetry (fermions become massive,
scalars are then unprotected and also become massiveg sestliting theory (possiby rescaling
the number of degrees of freedom) may be ‘not so differenthfQCD. However one major issue

is that gauge-gravity dualities tell us abdi= © notN = 3. So, is the observed strongly coupled
plasma a feature of just SU(3), or does it survivdNas> c?

This answer is that it survives &— o [19]. In Fig. 6 we see how the (lattice SB normalised)
pressure varies witN [19]; clearly U (3) ~ SJ () for this quantity that provides one character-
istic measure of strong coupling. For balance | also show € — 3p which is a measure of the
breaking of conformality: that also suvives lafye Nonetheless this provides an important piece
of the motivation for believing AAS/CFT may be applicablehis physics.

The fact that the pressure ‘anomaly’ survivedNat c has implications for the dynamics; for
example, alN = « it cannot be due to instantons, or to the survival of colonglgt hadrons.
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Figure 6: N-dependence of pressure (lett)- 3p (right) for T > Te.

The critical result for motivating AAS/CFT far > T, was the result for shear viscosity divided
by entropy,n/s= 1/4m, and the fact that it is close to RHIC, and is ‘universal’ faydheory with
a gauge/gravity dual. So in both the experimental and thieateommunities, a lattice calculation
of n/sis eagerly awaited. As you have heard in the status reportdoydy Meyer [20] in his
Plenary talk at this meeting, his large-scale lattice dataans ofn/slook like being consistent
both with experiment and with AAS/CFT.

It might be interesting to repeat these calculationg gé for D = 2+ 1 gauge theories. This
might tell us whether the theory has a gravity dual or not?

7. Space-time reduction at largeN

At N = oo we have the factorisation of gauge-invariant operatorsP, Trdp) = (Trd,) (Trdy,).
This implies that there is a single gauge field (gauge orb#) lominates the path integral. Since
physics is translation invariant, this gauge field must aklst¢ranslation invariant (for gauge invari-
ant quantities). Thus one can imagine thatlhe o theory could be defined on any volume, even
infinitesimal. On a lattice, this would be a single sit¢: — 1%. This heuristic argument is made
concrete in Eguchi-Kawai (EK) reduction [21] which tellsthat atN = « the Schwinger-Dyson
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equations for Wilson loops on 4 lattice are the same as for the= o lattice theory. This requires
that the center symmetty, — 2, z € Zy, which follows because the pIaquetteUgU\,UJUJ
on a T torus, is not spontaneously broken. To maintain this oneidampose twisted boundary
conditions (TEK) [22]. In the mid-1980’s there were a numbtlattice calculations using in the
TEK model that claimed to calculate physical quantitieshsagT. at very largeN ~ O(64) [23].

Recently this has become a very active area again, and a nafrlbag-standing beliefs have
been demolished in the process.

Firstly, it was shown in [24] that at larg&\ the center symmetry is spontaneously broken in
the TEK model, for an important range of bare couplings thatdase a8l increases. In [25] it
was then shown that this range appears to increabk-as< in such a way as to probably prevent
a planar continuum limit. Moroever even where the symmetnoit broken, the TEK model seems
to be stuck in the wrong phase [24]. Typically the physicakgsired vacuum is onl@(N) below
undesired vacua at tree-level, aBdN?) quantum fluctuations overwhelm this difference — and
produce insurmountable barriers to tunnelling. So it appé#sat the only planar physics you can
get from TEK is the physics of an infinitesimaly small volun24] — and we hardly need lattice
calculations for that!

An alternative to TEK, proposed around the same time, waadnssl (in the replica sense)
Eguchi-Kawai (QEK) [26]. Following the demise of the TEK naydthere has recently been a
renewed analysis of the QEK model in [27] which has found, timaa rather more subtle way, the
center symmetry is broken here as well. So this route to plspece-time reduction fails as well.

That leaves two approaches. First one can deform the aaias ® bias the system towards
maintaining center symetry. This has been recently fortadlan a precise way in [28]. This looks
a promising route for reducing one or two space-time diogsti but it might not be practical for
going beyond that. It would be very interesting to see sommartical investigations of this idea,
to see what the costs are in practice.

Finally there is the ‘no tricks’ approach to reduction [6}efd you give up on complete space-
time reduction, and instead go as far as you can using thehacfinite volume corrections dis-
appear aN — o, as long as you remain onl&volume that remains in the confining phase, i.e.
| > 1/T.. This means working at large enoubhthat anyO(1/N?) finite volume corrections are
smaller than your statistical errors, i.e. very laljmdeed. However if you want to do that anyway,
then there is no extra cost. There has been a nice demomstadthow this can work in a recent
calculation of theD = 2+ 1 string tension, liR_«/0/g?, in [29] performed forN € [21,47),
which agrees with conventional calculations [30, 4] exttapng fromN € [2,8]. The method
applies equally well to fermions.

Time has forced me to summarise this area as a collectioruofisbites. However space-time
reduction touches on a number of deep and fascinating igsdietd theory.

8. Interlaced 6-vacua

Usually we act as though confining gauge theories had justani@um. The reality, however,
is much more interesting ...
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Consider the gauge action withBaterm
2 1 4 uv i6 ‘ 4, oHUVPO

Since 1
To2 / d*xeHVPOTIF,, Foo = Q = integer (8.2)

we know that exp—S60]} and hence the vacuum energy den&ity) are periodic inf
E(6)=E(6+2m) VN (8.3)

On the other hand, we expect that for a smdéth: « limit, we need to factoN from Sso that the
couplings to keep fixed are/¢°N, /N, ... i.e.

E(6) = N%h(6/N) (8.4)

How do we reconcile these two apparently irreconciliablmaeds?
Witten’s suggestion [31] is th&(6) is a multi-branched function

6+ 2k

Ex(0) = N2h ( N

) ; E(0)= mkin Ex(0) (8.5)
so thatE(6) = E(6 + 2m) while eachEg(6) is periodic in 2iN. See Fig 7 folN = 10.

Now, the domain wall tension between differektvacua’ iSO(N) so asN — o these will all
become stable [31, 32, 33] and there are arguments thisayippén already at modast(=37?). So
if we look at@ = 0 in Fig 7, we see that we have a whole tower of nearly stablea/#itat are
above the true vacuum, and which will, at some othethemselves become the true vacua.
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Figure 7: Interlacedf-vacua for SU(10) (left); topological suseptibility acsds (right).

There are some things we have already learned from thedlattic
e T < T.: we expectN vacua at any giver®), and there is some nice lattice evidence for this
scenario in [34] where these authors show that the pertgdi€iour usual vacuum is indeed much
greater than the naive® by the simple yet effective astuce of calculating high mota@fQ.
e T > T. : topological fluctuations disappears roughly expondstial N [35, 36], as you can see

10
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in the right hand plot [35] of Fig. 7. So in the deconfined phifisee need be no interlaced vacua
— just naive 2t periodicity in 8 with exponentially smalE(6) variation.

So asN — oo there areN stable vacua af = 0. Now at largeN and atf = 0, the lowest
of these new vacua are close to their minima, and there wesma quadratic approximation for
Ex(0), giving :

1
Ex(0 =0) =Eo(8 =0)+ EXt(znk)2 : k<N (8.6)
wherey; = (Q?)/V is the topological susceptibility. Thus the gap to the fifshese vacua is
Ex_1— Eg = 2mx; ~ (360MeV )* (8.7)

in contrast to thé&y ~ —O(N?) vacuum energy. This is a modest gap that will be much smaller,
even moderat@l, than, for example, the latent heat of the confinement-dewment transition,
Lh ~ 0.77N?T2 [16].

These near-stable vacua should appear as quasistable poisriime when using local Monte
Carlo updates and we should be able to find them! How might emetity suchk-vacua?

Firstly, in ak #£ 0 vacuum(Q) # 0 since these vacua are i@R-invariant,k S N —k, although
they come in degenerate pairs and will therefore mix — atlthahere is a large barrier. This signal
will be tricky to make use of at largd, where transitions between sectors of different topokgic
charge are suppressed exponentiallifithe famous’ exp{—8rN/(g?(p)N)} factor for small
instantons) because f@ to change, an instanton has to become small before it shounkef a
hypercube (or the reverse). So unless we work at a very caassguences of configurations will
get locked into fixed so that(Q) becomes incalculable.

Secondly, we expect the string tension to decrease witkasangk, since the vacuum energy
(the ‘bag constant’) increases. This might go as [8%) ~ o(k=0) cos{%k}. (Suggesting that
the upper half of vacua\ /4 < k < 3N /4, are unstable.) To use this we need enough metastability
to be able to acquire high statistics in this falk@\acuum.

Thirdly, since the vacuum energy increases Witk (k) = E(k = 0) + O(k?), perhaps such a
state deconfines at a lower temperatiiigk # 0) < Tc?

So how do you produce such vacua? One possibility is to ‘dueng3 across the strong-weak
coupling bulk transition. Here the latent heaOgN?) and one might hope to fall into one of these
confiningk-vacua more or less at random. | should add that | tried thesvaylears ago but could
not make it work. (It might be because the strong couplingsplfas a small correlation length, so
the configuration after quenching is full of bubbles, andukaal vacuum bubble then grows and
takes over.) Another, probably more promising possibibtyo ‘quench’ in8 from T > T; to low
T.

Note that one of the fascinating aspects of these vacua tightby are almost certainly the
pure gauge counterparts of the degenerate vacua in the iognfinase of SUY) ./ = 1 SUSY.
To be specific, start in the latter theory, where one has a seassless adjoint fermions (gluinos).
There is an anomaly and a spontaneous symmetry breakinigalaistto a gluino condensate whose
phase is an element of the center and labels the degenecate Wow make the gluino mass finite,
mga # 0, thus explictly breaking the degeneracy. Now takg — o, so that the gluinos decouple
and we are left with the pure gauge theory. The idea is thateaslavthis [32] the originally
degenerate vacua become tieacua we have been discussing here. It would be of greatsite

11
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to a much wider theory community than the one we usually as$dnath lattice QCD, if we were
to explicitly demonstrate such a scenario in a lattice datamn.

9. Flux tubes as strings

The idea that the strong interactions might be formulatesistigng theory, is older than QCD.
Indeed string theory began with the Veneziano model (latg) @hd for the first few years was
being developed as a theory of the strong interactions. atiethat at largeN diagrams can be
naturally mapped to a sequence of manifolds that look likeraupbative expansion in string theory,
and that at strong 't Hooft coupling the vertices become dengr these manifolds, suggests ('t
Hooft, mid-70’s) that at larg®N, and particularly at strong coupling, the gauge theory miggh
a string theory. This is a limit that has recently been resatec in the gauge-gravity duality
which provides a precise string description for certaigedd gauge theories at strong coupling
(Maldacena, late 90's). And finally, the string-like chaexf the confining flux tube, and the fact
that Wilson loops are natural variables for a confining gahgery, also motivated the construction
of effective string actions (Polyakov, late 70's).

The natural starting point for building up a stringy destap is to investigate the properties
of confining flux tubes. This has been an active research apea the earliest days of lattice
calculations. As a result of this, it is now fairly clear thahg flux tubes can be described by an
effective string theory [37] that is in the universality s$aof the free bosonic string theory, i.e.
Nambu-Goto in flat space-time. In recent years there has &degaat deal of work in botb =
3+ 1 andD = 2+ 1 (which are, for these purposes, equally interesting).example, comparing
Wilson loops to Nambu-Goto (Caselle, Gliozzi, ...), SU(B)ng spectrum (Kuti, ...), potentials
in D = 2+ 1 both for SU(2) (Hari Dass, Majumdar, ...) and SU(5) (Meyéddere | will briefly
describe a current programme in this area that | have beelvew in, with Barak Bringoltz and
Andreas Athenodorou. Itis for SN} gauge theories iD = 2+ 1 and itis currently being extended
toD=3+1.

If we just want to consider the properties of a confining fluetuit is convenient to have a
set-up without sources. So suppose we want a flux tube ofiérigat closes on itself. To ensure
its stability, make it wind around a spatial torus chosenaweehsizd. The correlators will involve
operators that are variants of smeared/blocked Polyalkapsithat wind around the spatial (not
temporal!) torus. Other lattice dimensions are made efelgto. There is a phase transition at
lc =1/T. ~ 1.1//0 such that forl < I we have no confining flux tube. So we can study the
spectrum of such flux tubes for &l | and compare them to simple string expectations.

We start with the ground state of the flux tube [38, 39]. In Big.show the effective Luscher
coefficentces s defined in egn(2.1). On the left SU(5), open squares; on g 8U(2) and open
circles. The approach to the free bosonic string vatde, = 1, looks unambiguous, and very
similar for SU(2) and SU(5). The other sets of points shovenddatained by modifying the ground
state energy of the Nambu-Goto string, i.e.

D-2\?
Foll) = ot (1-car() 5022 ) 9.1)
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where agairces s (1) = 1 would be the Nambu-Goto value. As we sger = 1 for almost alll,
i.e. the free string expression describes flux tubes dowr/m ~ 1 where they are presumably
fat blobs, not slim tubes at all! Note that when we exp&p(l) in eqn(9.1) in powers of A,/al?
we get the Luscher correction in egn(2.1) as the first camectSo what we have learned here is
that the higher order corrections are also Nambu-Goto tayageod approximation. In fact we
now know theoretically [40] that the next term in the expansis universal and the same as in
Nambu-Goto. However the agreement we are seeing goes mudherfthan that: if we fit with
Nambu-Goto and include the first non-universal correctierfind that its coefficient is unnaturally
small,C < O(0.1), when expressed in natural units.
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Figure 8: Effective Luscher and Nambu-Goto coefficients for SU(Sft)lend SU(2) (right).

To show how much further this goes, look at the low-lying flarp spectrum in Fig. 9 [38].
(For zero momentum along the flux tube.) The solid lines aeepitedictions of Nambu-Goto.
Essentially the excitations correspond to free massldssngns’ travelling along the flux loop,
with momenta that are quantised by the periodicity of thimgtrThe ground and first excited state
are predicted to have pariB/= + and the second excited level has te- + and twoP = — states
that are degenerate. The numerical results in Fig. 9 repmprecisely this pattern of degeneracies
and quantum numbers. Note that the only parameter in Nanaba-i& the string tension which is
obtained from the ground state fit. The excited states armeradictions with no free parameter at
all. Iinvite you to be surprised that a flux tube of lengitho ~ 2, surely a blob, has a first excited
state that is precisely given by the oscillation of a thimsgr

In Fig. 9 the long-dashed lines are what you get with just tts¢ fLuscher) correction, and the
short-dashed lines include the next universal correcildvese are clearly no use for excited states
in this region ofl. The reason is that for most of this range, the expansionyAdl? is divergent
for these excited states. (As is the expansion of the Naniio-&pression.)

So the message is that the starting approximation one shealt the Nambu-Goto spectrum,
rather than some lardetruncation thereof. It is interesting thiat= 2 flux tubes, which are bound
states of twok = 1 flux tubes, do shovD(1) corrections to Nambu-Goto, as one would expect
in a long-distance effective string description [39]. Th@ntrast highlights the significance of
what one sees here for the fundamental flux tube. This sugyfest somehow even short blobby
fundamental flux tubes know that they are really stringssTnot natural in an arbitrary ‘Nielsen-
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Figure 9: Flux loop spectrum in SU(3): solid lines Nambu-Goto, dadivezs see text.

Olesen vortex’ type of picture. But it is what happens in gageavity duals.

It is now of great interest to determine the qualitative deas of the inter-phonon interactions,
and to try and find non-string (‘breathing’?) modes that $&thdne there, even in a gauge-gravity
dual picture, and which might give hints as to the approgprgravity setup. Returning to other
methods, Wilson loop calculations are effectively a ndttramsform of the eigenspectrum, and
might reveal features that are not apparent when lookinkealow-lying spectrum. And potential
calculations with static sources, if performed at lafyemight reveal something very interesting
about the way th&l = o theory matches together the IF confining physics with the Eyhgptoti-
cally free physics.

10. Conclusions

LargeN is at the intersection of much interesting theory and phemmiogy. | have, in my
talk, pointed to some of the questions that are doable aackisting — but there is more in the large
number of topics that | have omitted. | would re-emphasisd thany precise and informative
calculations are possible with resources readily acclesgitalmost anyone — and really definitive
calculations to the many lattice groups with Teraflop resesir
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