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In the low-energy region far below the chiral symmetry breaking scale ofΛχ ∼ 1 GeV chiral

perturbation theory (ChPT) provides a model-independent approach for quantitative description

of nuclear processes. In the two- and more-nucleon sector perturbation theory is applicable only at

the level of an effective potential which serves as input in the corresponding dynamical equation.

To deal with the resulting many-body problem we put chiral effective field theory (EFT) on the

lattice. Here we present the results of our lattice EFT studyup to next-to-next-to-leading order

(N2LO) in the chiral expansion. Accurate description of two-nucleon phase-shifts and ground

state energy ratio of dilute neutron matter up to corrections of higher orders shows that lattice EFT

is a promising tool for a quantitative description of low-energy few- and many-body systems.
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1. Introduction

Quantum chromodynamics (QCD) describes the interaction between quarks and gluons which
is responsible for the strong nuclear force. Recent advances in QCD using computational lattice
methods have made it possible to accurately predict the spectrum and properties of many isolated
hadrons. Unfortunately, lattice QCD calculations of nuclear and neutron matter or even few-body
systems beyond two nucleons are presently not possible. Themost significant challenge in such
simulations would be to overcome the exponentially small signal-to-noise ratio caused by the sign
and complex phase oscillations for simulations at large quark number.

Nuclear lattice simulations based on EFT provide an alternative method to describe few- and
many-body systems at low energy without losing connection to QCD. The lattice EFT approach
addresses the few- and many-body problem in nuclear physicsby applying non-perturbative lattice
methods to low-energy nucleons and pions. The effective Lagrangian is formulated on a spacetime
lattice and the path integral is evaluated by Monte Carlo sampling. Pions and nucleons are treated
as point-like particles on the lattice sites. By using hadronic degrees of freedom and concentrating
on low-energy physics, it is possible to probe large volumesand greater number of nucleons than in
lattice QCD. After a brief overview what has been done in thisfield so far we present some results
of our recent studies of the two nucleon system [1][2] and neutron matter [3] at subleading order.
Accurate description of two-nucleon phase-shifts and ground state energy ratio of dilute neutron
matter up to corrections of higher orders show that lattice EFT is a promising tool for quantitative
studies of low-energy few- and many-body systems.

2. Lattice EFT: previous achievements

Lattice EFT is a rather new and fast developing field. Here we give a brief overview on what
has been done in this field so far. For a comprehensive discussion the reader is referred to [4]. The
first lattice study of nuclear matter was carried out in the early nineties by Brockman and Frank [5]
using a momentum lattice and based on the hadrodynamics model of Walecka [6]. The first nuclear
lattice calculation based on EFT was carried out by Müller etal. [7]. They looked at infinite nuclear
and neutron matter at nonzero density and temperature. Later a series of analytical studies were
carried out: Chen and Kaplan [8] showed the absence of sign oscillation for nonzero chemical
potential in the Hubbard model. Non-linear realization of chiral symmetry with static nucleons on
the lattice was discussed by Chandrasekharan et al. [9]. Also ChPT within the lattice regularization
was considered by several groups [10, 11, 12]. This was followed by the first many-body lattice
calculation using chiral EFT [13]. Since that time a number of lattice calculations for cold atoms
and low-energy nuclear physics were carried out. See [4] fora review article. It is important to
note that in the low-energy sector the phase region accessible by lattice EFT is much broader than
in lattice QCD. Severe sign oscillation problem limits the accessibility of finite density lattice QCD
simulations. In contrast, sign oscillations in nuclear lattice EFT are strongly suppressed due to the
approximate SU(4)-symmetry in the two-nucleon sector. One can show explicitely that SU(4)-
symmetric nuclear EFT does not have a sign problem. SU(4) symmetry breaking leads to small
sign oscillations which, however, turns out to be not severe.
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NLO N2LO N3LO Exp

Ed [MeV] −2.171. . .−2.186 −2.189. . .−2.202 −2.216. . .−2.223 −2.224575(9)

ηd 0.0256. . .0.0257 0.0255. . .0.0256 0.0254. . .0.0255 0.0256(4)

AS [fm−1/2] 0.868. . .0.873 0.874. . .0.879 0.882. . .0.883 0.8846(9)

Table 1: Deuteron properties at NLO, N2LO and N3LO compared to the data. Here,Ed is the binding
energy,ηd the asymptoticD/S ratio andAS the strength of the asymptotic S–wave normalization. The data
for Ed are from [23], forηd from [24] and forAS from [25].

3. Nuclear EFT

Let us now give a brief introduction to the basic foundationsof our approach. The low-energy
properties of hadronic systems are, in principle, accessible in lattice QCD. This method is, however,
very expensive, especially if one wants to consider few- andmany-nucleon systems. Alternatively,
we can exploit the spontaneously broken approximate chiralsymmetry of QCD which implies
the existence of light weakly interacting Goldstone bosons. In the SU(2) sector, we identify the
Goldstone bosons with pions. Since the interaction betweenthe Goldstone bosons is weak one
can apply perturbation theory, where the expansion parameter is not a coupling constant but small
momenta and masses of the Goldstone bosons divided by the chiral symmetry breaking scaleΛχ .
This systematic procedure is called chiral perturbation theory [14] and reproduces (as explicitely
proved by Leutwyler [15] in mesonic sector) order by order the original QCD Green-functions.

ChPT has been extended to one nucleon sector. In the two and more nucleon sector additional
problems appear. Due to the existence of nuclear bound states, the strict perturbative procedure
breaks down. As shown by Weinberg [16], the power counting isviolated by nucleon-nucleon
(NN) cuts. He suggested to construct perturbatively a so-called chiral effective potential which,
per construction, excludes the NN cuts and, for this reason does not violate the power counting
of ChPT. To describe nuclear observables in the two-, three-or more-nucleon sectors one should
numerically solve the Lippmann-Schwinger, Faddeev or Faddeev-Jakubowsky equations, respec-
tively, with the chiral effective potential as an input.

Chiral effective potential has been extensively studied inthe last decade up to next-to-next-to-
next-to-leading order (N3LO) in chiral expansion (for extensive discussion see [17]). At this order
two leading-order (LO), seven subleading order (NLO) and fifteen N3LO unknown low energy
constants have been fitted to low energy nucleon data [18, 19,20]. At this order in the chiral
expansion, one observes an accurate description of all NN low-energy observables, see Figs. 1, 2
and Table 1.

4. Nuclear EFT on the lattice

Once the chiral nuclear forces are determined and the low energy constants appearing in the
nuclear forces are fitted (in the two and three-nucleon sector) one can make predictions in the
four- and more-nucleon sectors based on chiral EFT. However, explicit numerical treatment of the

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
0
2
3

Nuclear effective field theory on the lattice Hermann Krebs

Figure 1: S–, P– and D–wavesnp phase shifts. The dashed, light shaded and dark shaded bandsshow
the NLO, N2LO and N3LO [18] results, respectively. The dashed line is the N3LO result of Ref. [19]. The
filled circles (open triangles) depict the results from the Nijmegen multi–energy PWA [20, 21] (Virginia
Tech single–energy PWA [22]).

Jakubowsky equations for more than four nucleons is a very difficult task. To solve the many-
body problem we propose to put the chiral effective potential on the lattice and apply the powerful
Monte-Carlo techniques which are already developed to highdegree. In this framework, nucleons
are represented as point-like Grassman-fields and pions as point-like instantaneous (in order to
reproduce the chiral potential) pseudoscalar fields. Typically, our calculations are carried out using
the lattice lengthL ≃ 20 fm and the lattice spacinga ≃ 2 fm which corresponds to the cutoff
Λ = π/a≃ 300MeV. The correlation function forA nucleons in the Euclidean space is defined by

ZA(t) = 〈ΨA|exp(−tH)|ΨA〉, (4.1)

where the states|ΨA〉 refer to the slater determinants forA free nucleons,H is the Hamiltonian
of the system andt the Euclidean time. The ground state energy of theA-nucleon system can be
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Figure 2: np differential cross section and vector analyzing power atElab = 50 MeV. The Nijmegen PWA
result is taken from [21].

derived from the asymptotic behavior of the correlation function for larget.

E0
A =− lim

t→∞

d
dt

lnZA(t). (4.2)

Expectation value of a normal ordered operatorO can be derived in a similar way by

〈Ψ0
A|O|Ψ

0
A〉= lim

t←∞

ZO
A (t)

ZA(t)
, ZO

A (t) = 〈ΨA|exp(−tH/2)O exp(−tH/2)|ΨA >, (4.3)

where the states|Ψ0
A〉 denote the ground states ofA-nucleons system. It is convenient to de-

scribe NN contact interactions by standard bilinear nucleon density operators using the Hubbard-
Stratonovich transformation. Using the relation

exp(ρ2/2) ∼
∫

dsexp(−s2/2−sρ) (4.4)

one can express terms quadratic in the nucleon density operator ρ as terms linear inρ in the
presence of auxiliary background fields. In this representation, the full correlation function is
related to the path integral over pions and auxiliary fields,

ZA(t)∼
∫

∏
I=1,2,3

DπI ∏
i

Dsi exp(−Sππ −Sss)〈ΨA|M
(Lt−1)(πI ,si) · · ·M

(0)(πI ,si)|ΨA〉. (4.5)

Here Sππ and Sss are free actions for pions and auxiliary fieldssi and M(n) is a transfer matrix
defined as ann’th step in the temporal direction. Note since we only have linear nucleon density
operators in the action the amplitude

〈ΨA|M
(Lt−1)(πI ,si) · · ·M

(0)(πI ,si)|ΨA〉 (4.6)

is just a slater determinant of single nucleon matrix elements Mi, j with i, j = 1, . . . ,A.

5. Lattice EFT at leading order

To be specific, we give here the leading order action startingwith the free theory. The presen-
tation here is somewhat sketchy. For an extensive discussion see [26]. The free auxiliary fields and
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pion actions are given by

Sss(s,sI ) =
1
2 ∑

~n

s(~n)2 +
1
2

3

∑
I=1

∑
~n

sI (~n)2, Sππ (πI) =
αt

2

3

∑
I=1

∑
~n

πI (~n)(−∆ +M2
π)πI (~n), (5.1)

whereMπ is the physical pion mass,I denotes isospin indices andαt = at/a. For nucleons we use
O(a4) improved free lattice Hamiltonian defined by

Hfree =
1
m

3

∑
k=0

∑
~ns,l̂s,i, j

fk
[

a†
i, j (~ns)

(

ai, j (~ns+kl̂s)+ai, j(~ns−kl̂s)
)

]

, (5.2)

wherem is the nucleon mass, the operatorsa†
i, j(~ns) andai, j (~ns) are the nucleon creation and anni-

hilation operators,~ns are spatial coordinates,l̂s are spatial unit vectors, the indicesi and j stay for
spin and isospin indices, respectively, and the coefficients fk read:

f0,1,2,3 =
49
2

,−
3
4
,

3
40

,−
1

180
. (5.3)

To define the interactions we introduce the nucleon-densityoperators with different spin/isospin
polarizations

ρa†,a(~ns) = ∑
i, j

a†
i, j (~ns)ai, j(~ns), ρa†,a

I (~ns) = ∑
i, j, j ′

a†
i, j ′(~ns)[τI ] j ′, jai, j (~ns), (5.4)

ρa†,a
I ,S (~ns) = ∑

i,i′, j, j ′
a†

i′, j ′(~ns)[σS]i′,i [τI ] j ′, jai, j (~ns). (5.5)

The transfer matrix fornt -th step has, besides the free part, two important contributions:

M(nt) = : exp

{

−Hfreeαt −
gAαt

2Fπ
∑
S,I

∑
~ns

∇SπI(~ns,nt)ρa†,a
S,I (~ns)

+
√

−Cαt ∑
~ns

[

s(~ns,nt)ρa†,a(~ns)+ i
√

CI αt ∑
I

sI (~ns,nt)ρa†,a
I (~ns)

]}

: . (5.6)

Here :: denotes normal ordering. The first long-range contribution includes the instantaneous pion-
nucleon interaction and describes the one-pion-exchange in the leading-order effective potential.
The second short-range contribution corresponds to the NN contact interactions. The low-energy
constantsC andCI fitted to Nijmegen PWA appear to have different signs:

C < 0, CI > 0. (5.7)

With these signs the pion-less theory appears to have no sign-oscillations if the number of protons
and neutrons are equal and they stay pair-wise in isospin-singlet states. In this case the multipli-
cation withτ2 of the single-nucleon matrix elementsM from left and right is well defined and
gives

τ2M τ2 = M
∗. (5.8)

For this reason, the determinant ofM appears to be real:

detM ∗ = detM . (5.9)
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Sinceτ2 is antisymmetric, the eigenvalues ofM are doubly degenerate. This leads to a positive
slater determinant [8, 27]

detM ≥ 0. (5.10)

The introduction of pions causes small sign-oscillations which, however, are not severe and appear
to be suppressed.

To perform our simulations in a most efficient way we, in addition, exploit the approximate
SU(4)-Wigner [28] symmetry in the NN system. The symmetry transformation is given by inde-
pendent rotation of spin and isospin degrees of freedom.

δN = αµν σ µτνN with σ µ = (1,~σ ) and τ µ = (1,~τ). (5.11)

One can show that in the limit where the NN S-wave scattering lengths approach infinity the two-
nucleon system becomes invariant under the SU(4)-transformation [29]. The SU(4)-breaking cor-
rections come from the finite scattering length and higher order terms in the chiral expansion:

SU(4)−breakingterms∼
1

a(3S1)
−

1
a(1S0)

,
q

Λχ
. (5.12)

Since the NN scattering lengths

a(1S0) = (−23.758±0.010)fm a(3S1) = (5.424±0.004)fm (5.13)

are very large, the SU(4)-breaking corrections appear to be small. This fact can be used to improve
the performance of our lattice simulations. The SU(4) symmetric transfer matrix is given by

M(nt) =: exp

[

−Hfreeαt +
√

−Cαt ∑
~ns

s(~ns,nt)ρa†,a(~ns)

]

: . (5.14)

In this case there are no sign-oscillations for even number of nucleons [30] and we do have only
one auxiliary field such that the simulations are much cheaper. Although there is no positivity
theorem for odd numbers of nucleons, sign oscillations appear to be suppressed also in systems
with odd number of nucleons because it is only one particle away from an even system with no
sign-oscillation. Since the final result is closed to the oneproduced by SU(4)-symmetric simulation
we divide our simulations in three parts. To simulate an expectation value of some observable we
use SU(4)-symmetric transfer matrices in the first and the lastLt0 steps in order to filter the low-
energy signal and after filtering start the simulation with realistic transfer matrices. A schematic
overview of the transfer matrix calculation is shown in Fig.3.

For our nuclear lattice simulations we use the hybrid Monte-Carlo (HMC) method [31]. We
introduce the conjugate fieldspπI , ps, psI and use molecular dynamics trajectories to generate new
configurations for the fieldspπI , ps, psI , πI , s, sI which keep the HMC Hamiltonian

HHMC =
1
2 ∑

~n

(

∑
I

[

p2
πI

(~n)+ p2
sI
(~n)
]

+ p2
s(~n)

)

+V(πI ,s,sI ), (5.15)

constant, where the HMC potential is defined by

V(πI ,s,sI ) = Sππ +Sss− log|detM |. (5.16)

Upon completion of each molecular dynamics trajectory, we apply Metropolis accept or reject step
for the new configuration according to the probability distribution exp(−HHMC). This process of
molecular dynamics trajectory and Metropolis step is repeated many times.

7
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Figure 3: Overview of the various pieces of the transfer matrix calculation.

E3H[MeV] r3H[fm] E4He[MeV] r4He[fm]

Simulation −8.9(2) 2.27(7) −21.5(9) 1.50(14)

Experiment −8.482 1.755(9) −28.296 1.673(1)

Table 2: Experimental and nuclear lattice simulation results for binding energies and root-mean-square
radius of triton and helium-4.

6. Leading-order results

With the presented method we performed nuclear lattice simulations on JUBL/JUGENE su-
percomputer at Forschungszentrum Jülich. Already at leading order we get promising results for
binding energies, radii and density correlations for the deuteron, triton and helium-4 [26]. Numer-
ical results on a 53 lattice for triton and helium-4 are shown in Table 2. The triton binding energy
agrees with experiment within 5% and the triton root-mean-square radius is accurate to 30%. The
binding energy for helium-4 is within 25% of the experimental value while the root-mean-square
radius agrees within 10%. Our results for the triton nucleondensity correlations are shown in
Fig. 4. We also studied the feasibility of simulations for light nuclei with up to eight nucleons and
observed that forA≤ 8 the CPU time scales approximately linear with A.

7. Next-to-leading-order results

At NLO there appear 9 low energy constants (LECs) which we fitted to the Nijmegen NN
scattering data. Elastic scattering phase-shifts on the lattice are related by Lüscher’s [32, 33, 34]
formula to the energy levels of two-body states in a finite large volume cubic box with periodic
boundary conditions. While this method is very useful at lowmomenta, it is not so useful for
determining phase shifts on the lattice at higher energies and higher orbital angular momenta. Fur-
thermore, spin-orbit coupling and partial-wave mixing aredifficult to measure accurately using
Lüscher’s method due to multiple-scattering artifacts produced by the periodic cubic boundary
conditions. In [1] we proposed a more robust approach to measure phase shifts for two nonrela-
tivistic point particles on the lattice using a spherical wall boundary. The basic idea is to impose

8
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Figure 4: The nucleon density correlation for the triton inxy-plane.

a hard spherical wall boundary on the relative separation between the two interacting particles at
some chosen radius. The reason for this spherical wall is to remove copies of the two-particle in-
teractions due to the periodic boundaries on the lattice. This additional boundary condition allows
for a direct extraction of the phase-shifts and mixing angles from the finite-volume spectrum. For
more details see [1].

Using the spherical wall method we determined the values of 9LECs by matching three S-
wave, four P-wave scattering data points, as well as deuteron binding energy and quadrupole mo-
ment. In Fig. 5 we show NN S-wave phase-shifts and mixing angles for two different actions, called
LO1 and LO2. The action LO1 is the one presented in Eq. 5.6. In the action LO2 the contact inter-
actions are smeared by a Gaussian. The two actions are identical at leading order and differ only
by higher-order terms. The main motivation to introductionthe Gaussian smearing was to cure a
multi-particle clustering instability at coarse lattice spacing present in simulations with LO1 and to
estimate a systematic error coming from higher-order corrections see [26] for extended discussion.
As can be seen from Fig. 5, our lattice simulation results arein a good agreement with the partial
wave results for momenta smaller than 80 MeV. Deviations between the two results for different
actions appear merely at larger momenta and are consistent with the expected higher order effects.

8. Dilute neutron matter

As a first application at NLO we simulate dilute neutron matter in a periodic box [3]. We
probe the density range from 2% to 8% of normal nuclear matterdensity. Neutron-rich matter at
this density is likely to be present in the inner crust of neutron stars. The Pauli suppression of
three-body forces in dilute neutron matter makes it a good testing ground for chiral EFT applied to

9
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Figure 5: NN S-wave phase shifts and mixing angles versus center-of-mass momentum with actions LO1

and LO2.

many-nucleon systems. Neutron matter atkF ∼ 80 MeV, where

kF =
1
L
(3π2N)1/3 (8.1)

is Fermi momentum, is close to the so-called idealized unitary limit. In this limit the S-wave
scattering length is infinite and the range of the interaction is zero such that the scattering amplitude
is as strong as possible. At lower densities corrections dueto the finite scattering length become
more important while at higher densities corrections due toeffective range start to dominate. In the
unitary limit the ground state has no dimensionful parameters other than the particle density and so
the ground state energy of the system should obey a simple relation

E0 = ξ Efree
0 (8.2)

whereξ is a dimensionless measurable constant. Due to its universal nature, the unitary limit can be
studied in atomic systems. Ultracold6Li and 40K atoms e.g. can be tuned into the unitary limit by
using a magnetic-field Feshbach resonance. Recently measured values forξ scatter considerably
and have large error bars:

ξ = 0.51(4)[35],0.46+12
−05[36],0.32+10

−13[37]. (8.3)
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Figure 6: Results forE0/Efree
0 versus Fermi momentumkF . For comparison we show the results for

FP 1981 [39], APR 1998 [40], CMPRv6 andv8′ 2003 [41], SP 2005 [42] and GC 2007 [43]

Earlier experiments tend to yield larger value forξ indicating the need of further experimental
studies.

There have been numerous analytic calculations ofξ , see [38] for a recent review. The ob-
tained values forξ vary roughly from 0.2 to 0.6. To get a nuclear lattice EFT picture of the neutron
matter in the unitary regime we simulate the ground state of 8,12 and 16 neutrons in a box of
lengthL = 10,12 and 14 fm using Monte Carlo. In Fig. 6 we show ground energy ratio E0/Efree

0

in dependence of Fermi momentumkF . For comparison we also show earlier phenomenological
calculations. Our predictions seem to be consistent with the earlier results. We find a good fit to
the lattice data using

E0/Efree
0 ≃ ξ −

ξ1

kF ascatt
+0.16kF reff− (0.51fm3)k3

F . (8.4)

The results from the fit are
ξ ≃ 0.31 and ξ1≃ 0.81. (8.5)

9. N2LO three-body forces

At N2LO three-body forces start to show up which depend on two constants. We fit these
LECs from neutron-deuteron scattering data in the spin-1/2 doublet channel and the triton binding
energy. To describe the neutron-deuteron scattering we usestandard Lüscher formula [32, 33, 34].
Finite volume spectrum was generated with Lanczos diagonalization method. In Fig. 7 we show the
S-wave phase-shift in spin-1/2 doublet channel versus the square of the relative momentumand the
triton binding energy versus the length of the lattice box. One observes a very natural convergence
pattern in our simulations with increasing chiral order. Probing the triton binding energy we see

11



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
0
2
3

Nuclear effective field theory on the lattice Hermann Krebs

0 0.10 0.20 0.30 0.40-0.10-0.20

0

0.25

0.50

0.75

-0.25

-0.50

-0.75

-1.00

-1.25

p2 (fm-2)

p
 c

o
t 

δ
 (

fm
-1

)

n-d (exp.)

NNLO

NLO

LO

p-d (exp.)

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

 0  5  10  15  20

E
tr

it
o
n
 (

M
eV

)

L (fm)

physical

LO
NLO

NNLO

Figure 7: In the left panel: neutron-deuteron S-wave scattering phase-shifts in the spin-1/2 doublet channel
versus the square of relative momentum. For completeness weshow experimental data [44] for proton-
deuteron and neutron-deuteron scattering. In the right panel: triton binding energy versus the length of the
lattice box.

from Fig. 7 that at the box length∼ 15 fm the volume dependence already becomes very small
and the binding energy approaches its physical value. This is consistent with our expectation that
the volume dependence in nuclear lattice EFT simulations should become weak forL ∼ 20 fm. In
Fig. 8 we show the S-wave phase-shifts in the spin-3/2 quartet channel versus the square of relative
momentum. This channel was not taken into account in the fit procedure. Again we observe a very
nice convergence with increasing chiral order. Our predictions are located between the proton-
deuteron and neutron-deuteron experimental data. Since the isospin-breaking was not taken into
account in our simulations the results are very satisfactory.

As a first Monte-Carlo simulation of N2LO lattice EFT we studied the binding energy of4He.
The length of the box was chosenL = 16 fm. In Fig. 9 we show the resulting binding energy of the
4He system

〈E4He〉=
〈Ψ4|exp(−t H/2)H exp(−t H/2)|Ψ4〉

〈Ψ4|exp(−t H)|Ψ4〉
(9.1)

versus Euclidean timet. Our Monte-Carlo simulations overpredict the physical binding energy
with subtracted Coulomb-effects by 5%. This is consistent with the expected theoretical accuracy
of our simulations.

10. Summary and outlook

The results of our studies demonstrate that lattice EFT is a promising tool for a quantitative
description of light nuclei. At leading order binding energies and radii of nuclei up to4He are
reproduced with the accuracy 5. . .30%. At NLO, 9 LECs were fitted to the NN scattering phase-
shift using the spherical wall method which is best suited tomeasure phase shifts and mixing
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Figure 9: Binding energy expectation value of4He versus Euclidean timet. Plot produced by Monte-Carlo
simulation with the box lengthL = 16 fm.

angles for nonrelativistic point particles on the lattice.With the NLO EFT action, we studied dilute
neutron matter close to the unitary limit. We performed Monte-Carlo simulation withN = 8,12
and 16 neutrons in a box of lengthL = 10,12 and 14 fm. Our simulation results are consistent with
earlier phenomenological determinations. We also presented the first analysis of N2LO lattice EFT.
At this order, the two LECs entering the three-body force were fitted to neutron-deuteron scattering
data and the triton binding energy. In our first N2LO Monte-Carlo simulation we calculated the
binding energy of4He. Our simulations overpredict the physical binding energy of 4He by∼ 5%
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which is within the expected accuracy of our lattice simulations.
In the future, we plan to perform N2LO Monte-Carlo simulations of light nuclei and probe

neutron matter with larger number of neutrons in a box.
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