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1. Introduction

Quantum chromodynamics (QCD) describes the interactibmd®n quarks and gluons which
is responsible for the strong nuclear force. Recent adgamc®CD using computational lattice
methods have made it possible to accurately predict therspe@nd properties of many isolated
hadrons. Unfortunately, lattice QCD calculations of nacland neutron matter or even few-body
systems beyond two nucleons are presently not possible.miiseé significant challenge in such
simulations would be to overcome the exponentially smghal-to-noise ratio caused by the sign
and complex phase oscillations for simulations at largelgnamber.

Nuclear lattice simulations based on EFT provide an altermanethod to describe few- and
many-body systems at low energy without losing connectio@E€D. The lattice EFT approach
addresses the few- and many-body problem in nuclear phlygiapplying non-perturbative lattice
methods to low-energy nucleons and pions. The effectivedragan is formulated on a spacetime
lattice and the path integral is evaluated by Monte Carlomimg. Pions and nucleons are treated
as point-like particles on the lattice sites. By using hatraegrees of freedom and concentrating
on low-energy physics, itis possible to probe large voluar@sgreater number of nucleons than in
lattice QCD. After a brief overview what has been done in figkl so far we present some results
of our recent studies of the two nucleon system [1][2] andnoeumatter [3] at subleading order.
Accurate description of two-nucleon phase-shifts and ggiostate energy ratio of dilute neutron
matter up to corrections of higher orders show that lattied i a promising tool for quantitative
studies of low-energy few- and many-body systems.

2. Lattice EFT: previous achievements

Lattice EFT is a rather new and fast developing field. Here wwe g brief overview on what
has been done in this field so far. For a comprehensive discuee reader is referred to [4]. The
first lattice study of nuclear matter was carried out in thdyeaneties by Brockman and Frank [5]
using a momentum lattice and based on the hadrodynamicsl widtalecka [6]. The first nuclear
lattice calculation based on EFT was carried out by Milled gf7]. They looked at infinite nuclear
and neutron matter at nonzero density and temperaturer aateries of analytical studies were
carried out: Chen and Kaplan [8] showed the absence of sigilat®n for nonzero chemical
potential in the Hubbard model. Non-linear realization lofal symmetry with static nucleons on
the lattice was discussed by Chandrasekharan et al. [99. @i T within the lattice regularization
was considered by several groups [10, 11, 12]. This waswelibby the first many-body lattice
calculation using chiral EFT [13]. Since that time a humbieiatiice calculations for cold atoms
and low-energy nuclear physics were carried out. See [4hfaview article. It is important to
note that in the low-energy sector the phase region acdegsibattice EFT is much broader than
in lattice QCD. Severe sign oscillation problem limits theessibility of finite density lattice QCD
simulations. In contrast, sign oscillations in nucleati¢etEFT are strongly suppressed due to the
approximate S\4)-symmetry in the two-nucleon sector. One can show expljciteat SU4)-
symmetric nuclear EFT does not have a sign problem(4s8ymmetry breaking leads to small
sign oscillations which, however, turns out to be not severe
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NLO N2LO N3LO Exp
Eq[MeV] | —2.171...-2.186| —2.189... —2.202 | —2.216... — 2.223 || —2.224575(9)
N 0.0256...0.0257 | 0.0255...0.0256 | 0.0254...0.0255 | 0.0256(4)
As[fm~¥2] | 0.868...0.873 0.874...0.879 0.882...0.883 0.8846(9)

Table 1: Deuteron properties at NLO,4MO and N'LO compared to the data. HerEq is the binding
energy,ng the asymptoti®/Sratio andAs the strength of the asymptotic S—wave normalization. Tha da
for Eq are from [23], forng from [24] and forAs from [25].

3. Nuclear EFT

Let us now give a brief introduction to the basic foundatiohsur approach. The low-energy
properties of hadronic systems are, in principle, acckssildattice QCD. This method is, however,
very expensive, especially if one wants to consider few-raady-nucleon systems. Alternatively,
we can exploit the spontaneously broken approximate chyaimetry of QCD which implies
the existence of light weakly interacting Goldstone bosdnsthe SU2) sector, we identify the
Goldstone bosons with pions. Since the interaction betwkerGoldstone bosons is weak one
can apply perturbation theory, where the expansion pagrishot a coupling constant but small
momenta and masses of the Goldstone bosons divided by tta¢ sjimmetry breaking scakg, .
This systematic procedure is called chiral perturbatiaoti [14] and reproduces (as explicitely
proved by Leutwyler [15] in mesonic sector) order by order dhiginal QCD Green-functions.

ChPT has been extended to one nucleon sector. In the two ardmadeon sector additional
problems appear. Due to the existence of nuclear boundssthte strict perturbative procedure
breaks down. As shown by Weinberg [16], the power countingiotated by nucleon-nucleon
(NN) cuts. He suggested to construct perturbatively a feecahiral effective potential which,
per construction, excludes the NN cuts and, for this reasas ahot violate the power counting
of ChPT. To describe nuclear observables in the two-, thveeiore-nucleon sectors one should
numerically solve the Lippmann-Schwinger, Faddeev or Eaddlakubowsky equations, respec-
tively, with the chiral effective potential as an input.

Chiral effective potential has been extensively studietthénlast decade up to next-to-next-to-
next-to-leading order (RLO) in chiral expansion (for extensive discussion see [1&})this order
two leading-order (LO), seven subleading order (NLO) anigdii N\LO unknown low energy
constants have been fitted to low energy nucleon data [1820]9, At this order in the chiral
expansion, one observes an accurate description of all Ndeteergy observables, see Figs. 1, 2
and Table 1.

4. Nuclear EFT on thelattice

Once the chiral nuclear forces are determined and the lovggmenstants appearing in the
nuclear forces are fitted (in the two and three-nucleon sectee can make predictions in the
four- and more-nucleon sectors based on chiral EFT. Howexglicit numerical treatment of the
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Figure 1. S—, P— and D—wavesp phase shifts. The dashed, light shaded and dark shaded blamds
the NLO, N°LO and N’LO [18] results, respectively. The dashed line is i ® result of Ref. [19]. The
filled circles (open triangles) depict the results from thgégen multi-energy PWA [20, 21] (Virginia
Tech single—energy PWA [22]).

Jakubowsky equations for more than four nucleons is a vdfigcwt task. To solve the many-

body problem we propose to put the chiral effective poténtiethe lattice and apply the powerful
Monte-Carlo techniques which are already developed to téglree. In this framework, nucleons
are represented as point-like Grassman-fields and pionsiaslfge instantaneous (in order to
reproduce the chiral potential) pseudoscalar fields. Blyicour calculations are carried out using
the lattice lengthL ~ 20 fm and the lattice spacing~ 2 fm which corresponds to the cutoff
A\ = rt/a~ 300MeV. The correlation function fok nucleons in the Euclidean space is defined by

ZA(t) = (Walexp(—tH)[Wa), (4.1)

where the stateg¥,) refer to the slater determinants fArfree nucleonsH is the Hamiltonian
of the system antlthe Euclidean time. The ground state energy ofAhsucleon system can be
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Figure 2: np differential cross section and vector analyzing powe;g = 50 MeV. The Nijmegen PWA
result is taken from [21].

derived from the asymptotic behavior of the correlationction for larget.

d
O _ .
ER=—lim = InZa(t). (4.2)

Expectation value of a normal ordered operatocan be derived in a similar way by

<wg|ﬁ|wg>:tlm%8, Z{ (t) = (Walexp(—tH /2) O exp(—tH /2)|Wa >,  (4.3)

where the state§#Q) denote the ground states Afnucleons system. It is convenient to de-
scribe NN contact interactions by standard bilinear nucl@ensity operators using the Hubbard-
Stratonovich transformation. Using the relation

exp(p?/2) ~ / dsexp(—s2/2—sp) (4.4)

one can express terms quadratic in the nucleon density topgraas terms linear irp in the
presence of auxiliary background fields. In this represemtathe full correlation function is
related to the path integral over pions and auxiliary fields,

Za(t) ~/||1'L3Dm []Ds exp(—Smr— S (WaAM b (71,5)---MO(71,5)|Wa).  (4.5)

Here S and S;s are free actions for pions and auxiliary fiel§gsand M is a transfer matrix
defined as am'th step in the temporal direction. Note since we only hamedir nucleon density
operators in the action the amplitude

(WaMEY(7g,5)--- MO (17, 5)|Wa) (4.6)
is just a slater determinant of single nucleon matrix elese# ; withi, j =1,... A
5. Lattice EFT at leading order

To be specific, we give here the leading order action stavtittig the free theory. The presen-
tation here is somewhat sketchy. For an extensive disaussie [26]. The free auxiliary fields and
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pion actions are given by

3
ss):%;s(ﬁ %Z;

whereM is the physical pion mask,denotes isospin indices ag = & /a. For nucleons we use
O(a*) improved free lattice Hamiltonian defined by

r\>|Q
HMw

z —A+MY (),  (5.1)
1ln

3
Hmz%Z z., [ ﬁs)(aj(ﬁs+kl)+a,j(ﬁs—kfs))], (5.2)

wherem s the nucleon mass, the operataﬁ(ﬁs) anda j(fs) are the nucleon creation and anni-
hilation operatorsfis are spatial coordinatek, are spatial unit vectors, the indiceand j stay for
spin and isospin indices, respectively, and the coeffisintead:

49 3 3 1
2’ 440" 180
To define the interactions we introduce the nucleon-dertgigrators with different spin/isospin
polarizations

fo123= (5.3)

ZaIJ (fs)a, j (As), Pﬁt’a(ﬁs) = Z a1Jr,jf(ﬁs)[Tl]j’,jai,j(ﬁs)> (5.4)
1) i,1,)

Pls (M) = Z 31 (fs)[osliri[Ti]j ;& (Ms). (5.5)

The transfer matrix fong-th step has, besides the free part, two important conimifostt

a U
M = eXp{—Hfreeat - % ; Z Os7g (s, nt)pgfa(ﬁs)
T ﬁs

+\/Tatz

S(Fis, Iy a a (fs) +i+/Ciay ZS' fis, N, ﬁs)] } T, (5.6)

Here :: denotes normal ordering. The first long-range coution includes the instantaneous pion-
nucleon interaction and describes the one-pion-exchamgjeei leading-order effective potential.
The second short-range contribution corresponds to the ditact interactions. The low-energy
constant<C andC, fitted to Nijmegen PWA appear to have different signs:

C<0, C >0 (5.7)

With these signs the pion-less theory appears to have neosigjtiations if the number of protons
and neutrons are equal and they stay pair-wise in isospgiedistates. In this case the multipli-
cation with 7, of the single-nucleon matrix element#” from left and right is well defined and
gives

To M Ty=M". (5.8)

For this reason, the determinant.&f appears to be real:

det7* =det#. (5.9)
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SinceTty is antisymmetric, the eigenvalues .@f are doubly degenerate. This leads to a positive
slater determinant [8, 27]
det# > 0. (5.10)

The introduction of pions causes small sign-oscillatiofscly, however, are not severe and appear
to be suppressed.

To perform our simulations in a most efficient way we, in aiddit exploit the approximate
SU(4)-Wigner [28] symmetry in the NN system. The symmetry transiation is given by inde-
pendent rotation of spin and isospin degrees of freedom.

ON =auyoH1’N with ot=(1,0) and T =(1T). (5.11)

One can show that in the limit where the NN S-wave scattegngths approach infinity the two-
nucleon system becomes invariant under thé43itransformation [29]. The S(4)-breaking cor-
rections come from the finite scattering length and highdeoterms in the chiral expansion:

. 1 1 q
SU(4) — breakingtermsv —— — ——, —. 5.12
@ IS 2Es)  als) Ay 532
Since the NN scattering lengths
a(lS) = (—23758+0.010fm a(®S;) = (5.424-+0.004)fm (5.13)

are very large, the S4)-breaking corrections appear to be small. This fact can bé tssimprove
the performance of our lattice simulations. The(8)symmetric transfer matrix is given by

M(™ =: exp —Hfreeat+\/—CatZs(ﬁs,nt)paT’a(ﬁs) - (5.14)
M

In this case there are no sign-oscillations for even numbeaudeons [30] and we do have only
one auxiliary field such that the simulations are much cheapéhough there is no positivity
theorem for odd numbers of nucleons, sign oscillations apfebe suppressed also in systems
with odd number of nucleons because it is only one particlayafrom an even system with no
sign-oscillation. Since the final result is closed to the preeluced by S\(4)-symmetric simulation
we divide our simulations in three parts. To simulate an etgi®mn value of some observable we
use SU4)-symmetric transfer matrices in the first and the laststeps in order to filter the low-
energy signal and after filtering start the simulation wehlistic transfer matrices. A schematic
overview of the transfer matrix calculation is shown in Fg.

For our nuclear lattice simulations we use the hybrid Mdd&lo (HMC) method [31]. We
introduce the conjugate fielgs;, ps, ps and use molecular dynamics trajectories to generate new
configurations for the fieldpy, ps, Ps, 78, S, S which keep the HMC Hamiltonian

1
Huve = 5 > (Z (% () + 5 (7)] + pﬁ(ﬁ)> +V(7,s9), (5.15)
A
constant, where the HMC potential is defined by
V(75,8,8) = Sur+ Sss— log| det.7|. (5.16)

Upon completion of each molecular dynamics trajectory, pgyaMetropolis accept or reject step
for the new configuration according to the probability disition exgd—Humc). This process of
molecular dynamics trajectory and Metropolis step is regmbaany times.
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Figure 3: Overview of the various pieces of the transfer matrix caltah.

E3H[MGV] I'3H [fm] E4He[MeV] r4He[fm]

Simulation | —89(2) | 227(7) | —21509) | 1.50(14)
Experiment| —8482 | 17559) | —28296 | 1.673(1)

Table 2: Experimental and nuclear lattice simulation results fardioig energies and root-mean-square
radius of triton and helium-4.

6. Leading-order results

With the presented method we performed nuclear lattice lations on JUBL/JUGENE su-
percomputer at Forschungszentrum Jilich. Already atmgadider we get promising results for
binding energies, radii and density correlations for thetelen, triton and helium-4 [26]. Numer-
ical results on a$lattice for triton and helium-4 are shown in Table 2. Theotibinding energy
agrees with experiment within 5% and the triton root-meguase radius is accurate to 30%. The
binding energy for helium-4 is within 25% of the experiméntalue while the root-mean-square
radius agrees within 10%. Our results for the triton nucldensity correlations are shown in
Fig. 4. We also studied the feasibility of simulations fghli nuclei with up to eight nucleons and
observed that foA < 8 the CPU time scales approximately linear with A.

7. Next-to-leading-order results

At NLO there appear 9 low energy constants (LECs) which weditb the Nijmegen NN
scattering data. Elastic scattering phase-shifts on ttiedaare related by Lischer’s [32, 33, 34]
formula to the energy levels of two-body states in a finitgdavolume cubic box with periodic
boundary conditions. While this method is very useful at imomenta, it is not so useful for
determining phase shifts on the lattice at higher energidshayher orbital angular momenta. Fur-
thermore, spin-orbit coupling and partial-wave mixing difficult to measure accurately using
Lischer's method due to multiple-scattering artifactsdpiced by the periodic cubic boundary
conditions. In [1] we proposed a more robust approach to umegshase shifts for two nonrela-
tivistic point particles on the lattice using a sphericallv@undary. The basic idea is to impose
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Figure4: The nucleon density correlation for the tritonxipplane.

a hard spherical wall boundary on the relative separatidwdmn the two interacting particles at
some chosen radius. The reason for this spherical wall istmve copies of the two-patrticle in-
teractions due to the periodic boundaries on the latticés adiditional boundary condition allows
for a direct extraction of the phase-shifts and mixing asditem the finite-volume spectrum. For
more details see [1].

Using the spherical wall method we determined the valuesIdE@s by matching three S-
wave, four P-wave scattering data points, as well as daut@raling energy and quadrupole mo-
ment. In Fig. 5 we show NN S-wave phase-shifts and mixingesfglr two different actions, called
LO; and LG. The action LQ is the one presented in Eq. 5.6. In the actionp [tk contact inter-
actions are smeared by a Gaussian. The two actions areciaeatileading order and differ only
by higher-order terms. The main motivation to introducttbe Gaussian smearing was to cure a
multi-particle clustering instability at coarse lattigeaging present in simulations with L@nd to
estimate a systematic error coming from higher-order ctimes see [26] for extended discussion.
As can be seen from Fig. 5, our lattice simulation resultsraeegood agreement with the partial
wave results for momenta smaller than 80 MeV. Deviationsveen the two results for different
actions appear merely at larger momenta and are consisitbnihe expected higher order effects.

8. Dilute neutron matter

As a first application at NLO we simulate dilute neutron nraitea periodic box [3]. We
probe the density range from 2% to 8% of normal nuclear mdeesity. Neutron-rich matter at
this density is likely to be present in the inner crust of nemitstars. The Pauli suppression of
three-body forces in dilute neutron matter makes it a gostintg ground for chiral EFT applied to
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Figure5: NN S-wave phase shifts and mixing angles versus centerasmomentum with actions 130
and LG.

many-nucleon systems. Neutron mattekat- 80 MeV, where
1
ke = E(3n2N)1/3 (8.1)

is Fermi momentum, is close to the so-called idealized gnitianit. In this limit the S-wave
scattering length is infinite and the range of the interads@ero such that the scattering amplitude
is as strong as possible. At lower densities correctionstaltlee finite scattering length become
more important while at higher densities corrections dusfftective range start to dominate. In the
unitary limit the ground state has no dimensionful paransatéher than the particle density and so
the ground state energy of the system should obey a simlgorel

Eo = EETee (8.2)

whereé is a dimensionless measurable constant. Due to its univeagae, the unitary limit can be
studied in atomic systems. Ultracditli and “°K atoms e.g. can be tuned into the unitary limit by
using a magnetic-field Feshbach resonance. Recently negbegalues forf scatter considerably
and have large error bars:

& = 0.51(4)[35,0.46'12[36],0.3213[37. (8.3)

10
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Figure 6: Results forEo/E{)ree versus Fermi momenturk=. For comparison we show the results for
FP 1981 [39], APR 1998 [40], CMP® andv8’ 2003 [41], SP 2005 [42] and GC 2007 [43]

Earlier experiments tend to yield larger value fpiindicating the need of further experimental
studies.

There have been numerous analytic calculationg,afee [38] for a recent review. The ob-
tained values fo€ vary roughly from 02 to 0.6. To get a nuclear lattice EFT picture of the neutron
matter in the unitary regime we simulate the ground state, ®2 &nd 16 neutrons in a box of
lengthL = 10,12 and 14 fm using Monte Carlo. In Fig. 6 we show ground eneatjp Eo/E[e®
in dependence of Fermi momentup. For comparison we also show earlier phenomenological
calculations. Our predictions seem to be consistent withetirlier results. We find a good fit to
the lattice data using

Eo/Efee~ £ — &1 +0.16 kg refr — (0.51fm3)k3. (8.4)
Ke ascatt
The results from the fit are
£~031 and & ~0.81 (8.5)

9. N2LO three-body forces

At N2LO three-body forces start to show up which depend on twoteots We fit these
LECs from neutron-deuteron scattering data in the spRdoublet channel and the triton binding
energy. To describe the neutron-deuteron scattering wetasdard Lischer formula [32, 33, 34].
Finite volume spectrum was generated with Lanczos diag@t@n method. In Fig. 7 we show the
S-wave phase-shift in spinf2 doublet channel versus the square of the relative momeaaithe
triton binding energy versus the length of the lattice bore@bserves a very natural convergence
pattern in our simulations with increasing chiral orderoling the triton binding energy we see

11
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Figure7: Inthe left panel: neutron-deuteron S-wave scattering@isasits in the spin-12 doublet channel
versus the square of relative momentum. For completenesshaw@ experimental data [44] for proton-
deuteron and neutron-deuteron scattering. In the rightlpariton binding energy versus the length of the
lattice box.

from Fig. 7 that at the box lengtk 15 fm the volume dependence already becomes very small
and the binding energy approaches its physical value. §hisisistent with our expectation that
the volume dependence in nuclear lattice EFT simulationslghbecome weak fdr ~ 20 fm. In
Fig. 8 we show the S-wave phase-shifts in the spiB-Quartet channel versus the square of relative
momentum. This channel was not taken into account in thedtgmure. Again we observe a very
nice convergence with increasing chiral order. Our premhst are located between the proton-
deuteron and neutron-deuteron experimental data. Simcsdlspin-breaking was not taken into
account in our simulations the results are very satisfactor

As a first Monte-Carlo simulation of NLO lattice EFT we studied the binding energy“fe.
The length of the box was chosen= 16 fm. In Fig. 9 we show the resulting binding energy of the
“He system
(Walexp(—tH/2)H exp(—tH /2)|W,)

(Walexp(—tH)|Ws)

versus Euclidean time& Our Monte-Carlo simulations overpredict the physicaldoigy energy
with subtracted Coulomb-effects by 5%. This is consisteith the expected theoretical accuracy
of our simulations.

(Eane) = (9.1)

10. Summary and outlook

The results of our studies demonstrate that lattice EFT imiging tool for a quantitative
description of light nuclei. At leading order binding eniesyand radii of nuclei up t6He are
reproduced with the accuracy .530%. At NLO, 9 LECs were fitted to the NN scattering phase-
shift using the spherical wall method which is best suitednasure phase shifts and mixing

12
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Figure8: Neutron-deuteronscattering S-wave phase-shifts in tine3{2 quartet channel versus the square
of relative momentum. The data for proton-deuteron androatdeuteron scattering are taken from [44].
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Figure9: Binding energy expectation value tie versus Euclidean tinte Plot produced by Monte-Carlo
simulation with the box length = 16 fm.

angles for nonrelativistic point particles on the lattitdith the NLO EFT action, we studied dilute
neutron matter close to the unitary limit. We performed Ms@iarlo simulation witiN = 8,12
and 16 neutrons in a box of length= 10,12 and 14 fm. Our simulation results are consistent with
earlier phenomenological determinations. We also presethe first analysis of NLO lattice EFT.

At this order, the two LECs entering the three-body forceengted to neutron-deuteron scattering
data and the triton binding energy. In our firstlXD Monte-Carlo simulation we calculated the
binding energy ofHe. Our simulations overpredict the physical binding epefy*He by ~ 5%
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which is within the expected accuracy of our lattice simolat.
In the future, we plan to perform O Monte-Carlo simulations of light nuclei and probe
neutron matter with larger number of neutrons in a box.
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