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In recent years the more and more powerful GPU’s available onthe PC market have attracted

attention as a cost effective solution for parallel (SIMD) computing. CUDA is a solid evidence of

the attention that the major companies are devoting to the field. CUDA is a hardware and software

architecture developed by Nvidia for computing on the GPU. It qualifies as a friendly alternative

to the approach to GPU computing that has been pioneered in the OpenGL environment. We

discuss the application of both the CUDA and the OpenGL approach to the simulation of 2-d spin

systems (XY model).

The XXVI International Symposium on Lattice Field Theory
July 14 - 19, 2008
Williamsburg, Virginia, USA

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
0
2
4

GPU computing for 2-d spin systems Francesco Di Renzo

1. GPGPU: a cost-effective approach to parallel computing

In recent years a new acronym entered the scene of high performance computing: GPGPU,
which stands for General Purpose computations on Graphics Processing Units [1]. The main point
is easily stated. Since an impressive growth is taking placein the field of GPU (Graphics Processing
Units) technology, it makes sense to try to exploit GPU performances not only for graphics, but
also in other applications. It turns out that graphic processing is a prototype example of parallel
SIMD (Single Instruction on Multiple Data) computing, so that every problem that can be mapped
to a SIMD implementation is a GPGPU candidate. Does it make sense to try this approach? The
bottom line is cost-effectiveness. GPU technology is a typical commodity technology: a huge
market (many PC’s are actually mainly used for games) results in low prices. In view of this, if a
problem can be ported to a GPU environment, then most probably this implementation is going to
be very cost-effective.
One of the fascinating point in computer science is that manyapplications actually start almost as
DIY (Do It Yourself) and then turn into a common interest for abig community: you can learn
the current trends on the web, both from blogs and from specialized web sites. GPGPU is not
an exception with this respect ([2] and [3] are good examples). Scientific applications made their
entrance in the field quite early, and big experts are in the lattice community: [4] is a pioneering
work, quite well known among experts1.
An interesting point to make is that by now GPGPU is regarded as a commercial opportunity by
big companies:CUDA (the Nvidia environment we will refer to) is a very good example.

1.1 The technological scenario

Whenever GPGPU has to be introduced, there is a plot which is most often displayed: we
are talking of the comparison between the raise in GPU computing capabilities (as measured in
GFlops in peak performance) and CPU computing performance.We refer the reader to [5] for an
example2. Roughly speaking, in recent years GPU’s gained an order of magnitude with respect to
CPU’s. What is important as well, also bandwith increased ina similar way. An important caveat
is that all this computing power has up to now been delivered in single precision: while there is
apparently no compelling demand for double precision in graphics, an eye to be kept on other ap-
plications is driving GPU manufactures attentions on double precision as well.
Things are never definitive in the field of computing performances, still it is not so difficult to un-
derstand the trend we have just referred to. In the end, everycomputer is from a logical point of
view made of three basic resources: they are usually referred to as control, data-path and memory.
From this point of view, every computer design is a given choice in resources allocation. Now, re-
sources of modern CPU’s are to a large extent dedicated to control and memory: branch-prediction
technologies and big caches are typical examples of this trend. In the end, the component of the
processor that perform arithmetic operations (datapath) amounts to a minor fraction of resources.
Things are just the other way around in a typical GPU design: the vast majority of resources are put
on ALU’s (Arithmetic Logic Unit). If one takes into account what is the basic structure of graphic
computations this does not come as a surprise.

1It was [4] that actually triggered the interest that eventually resulted in this work
2Needless to say, most of these comparisons are actually GPU manufacturers pride.
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The main issue is that many steps are involved in the process of getting a 2-d bitmap from a 3-d
image: the bottom line is that images have to be mapped onto a monitor screen. These steps are
typically organized in what is called thegraphic pipeline. Getting into this subject in details is
by far out of reach in the context of this presentation. It is enough to mention the basic stages
that are in place. First of all, there is amodelingstage: roughly speaking, the image is mapped
onto geometric primitives. Then there is a bunch of operations which have to do with geometric
elaborations:viewing(mapping of the scene onto a plane as seen from a virtual camera), clipping
(every elements which is not visible should be cut),lighting andshading(quite obvious meaning).
Texturingandrasterizationare the stages at which the image is finally mapped to a bitmap,i.e. a
2-d bunch of pixels, each of a definite color. It is important to keep in mind that a modern GPU
provides a hardware implementation of this pipeline. As usual in a pipeline, the output of a stage
is input for the following one. In any stage of the graphic pipeline, a large amount of data are pro-
cessed at the same time in a SIMD way. Also, memory latencies can be hidden by computations
without the need for big caches. In particular, a very intensive stage of the process is the so-called
fragment shadingstage (which has to do with texturing): because of this, GPGPU application try
to make intensive use of the GPU resources which are allocated to this stage.
A last remark on data formats is in order: key data types aretextures. Basically, they are (2-d) ma-
trices, whose entries are termedtexels. As already pointed out, this is easy to understand: images
should be eventualy mapped to a bunch of pixels on the screen.Vector types are a natural choice in
this context: in particular,RGBA textures(see figure) account for colours (Red, Green, Blue) and
Alpha channel (transparency).

Figure 1: Pictorial representation of aRGBA texture.

1.2 2-d spin systems as a case of study

We decided to perform a simple benchmark computation by implementing a Hybrid Monte-
Carlo [6] simulation of the XY 2-d spin model, with Hamiltonian

H = − ∑
<i, j>

σi ·σ j . (1.1)
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We stress that the model was only taken as a laboratory. We wanted to understand how efficient
a GPGPU implementation could be. In the following we will report on two different implementa-
tions of the same MC simulation. They are representative of two approaches at our disposal.

The first approach to GPGPU has been based onOpenGL (a standard graphics library), and
so we took this as a first option. Basically, onetalks to GPU as if one were performing standard
image processing. In other words, the computation enters the graphic pipeline. In view of what
has already been pointed out, the standard choice is to enterthe so-called fragment stage. Both the
upload of code and data and the collection of results are a bitfunny (again, we are pretending to
perform standard graphics).
The second implementation was in the framework ofCUDA. Nvidia (a major GPU manifacturer)
provides a hw/sw architecture to actually access the GPU as a(parallel) coprocessor. This approach
is relatively novel with respect to pioneering GPGPU applications. Having to devise a numerical
project on a GPU now,CUDA is the most direct approach to start with and this is why we first
investigated it. In view of this, this implementation is also the first we report on in our presentation.

Before proceeding to illustrate the peculiar features and the performance results for the two
approaches, we pin down some common general features.

• As for generation of momenta: flat random numbers were generated on CPU, conversion to
gaussian was performed on GPU.

• Some operations are critical with respect to single/doubleprecision: global sums of the en-
ergy were performed on CPU (as well as Metropolis step). The core of the parallel compu-
tation is the leap-frog integration of equations of motion.

• Results were cross-checked with series expansions in the high temperature regime [7] and
with a reference HMC (this was done also for acceptance). Thereference serial code was
run on anIntel Conroe. In order to get a cheap estimate, the serial code was also taken
as a reference (at fixed HMC parameters) for performance evaluation.

2. The CUDA approach

We have already referred to the interest major GPU manufacturers have been devoting to
GPGPU applications. This does not come as a surprise, as it opens the way to potential commercial
opportunities. A good example is provided by Nvidia. The company (one of the leaders in the
field) offers both what they call a hw/sw architecture (CUDA) enabling GPGPU applications on
commodity hardware, both dedicated products (Tesla).

2.1 An overview

Nvidia callsCUDA [5] a hw/sw architecture which is intended to enable parallel programming
on GPU. The main idea is that no dedicated hardware is requested: the graphic card on your PC
has to be regarded as your (parallel) coprocessor. In the end, they distribute a driver to access the
device (the list of compatible GPU models extends to last three generations) and a toolkit enabling
a programming environment which is basically an extension to C. Users are provided with
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• A nvccC compiler (to code on the device), togheter with debugging and profiling tools.

• A couple of high level basic scientific libraries (worked-out CUDA implementations of FFT
and BLAS).

• Quite extended documentation with a collection of worked-out examples.

Notice that in theCUDA environment there is no explicit reference to what a GPU is mainly
devoted to,e.g.there is no explicit reference to what role each device playsin the above mentioned
graphic pipeline. Basically,CUDA asks the user to regard a recent GPU as a collection of multi-
processors, each made of several processors. In order to understand this point and the following,
the reader is referred to the figures in [5]. One should be aware of the hierarchy of memories at
disposal on the device. In particular, there is aDevice Memoryon which any processor can write
and from which any processor can read. There is on the other hand a much fasterShared Memory,
which is read/write accessible to processors within the same multiprocessor.
BasicCUDA tool is a driver enabling the access the device in a natural way. In particular, the lan-
guage enables the user to upload/download data to/from the device memories. One is then entitled
to make one’s own choice on where data should reside. In the end, resources are limited and all the
game goes back to their allocation.
A process running on CPU (host) can start (several) kernels on GPU (device). Basic organization
is thread-based:blocks of threadscome in agrid of blocks. As already said, there are commands to
upload/download data to/from the device memory. To executea kernel the call will be something
like

My_kernel<<<dimG,dimB>>>(my_arg_1, ... , my_arg_n)

wheredimG is the dimension of the grid of blocks, each of which is of dimensiondimB. Threads
within a block can be synchronized (they are assigned by the system to the same multiprocessor)
and they typically access shared memory. There are limitations to the number of threads within a
block and of blocks within a grid. There are of course also limitations imposed by shared memory
dimension. It is clear that there can be no one-to-one correspondence in beetwen threads and
processors: actual allocation of resources is up to the system. This is performed by executing one
or more blocks on each multiprocessor bytime slicing.

2.2 Our implementation

Allocating the lattice can be really straightforward. Basically, a very direct recipe is to map a
site to a thread: the grid of blocks is the lattice itself and the blocks of threads are sublattices which
are taken care of by the same multiprocessor. The lattice is first allocated to theDevice Memory,
then sublattices can be moved toShared Memorywhen threads (sites) need to communicate,i.e.
during the evolution of momenta, when they have to access nearest neighbors. To do that one can
take advantage fo the standard recipe to duplicate sublattices borders which are not updated, but
can be accessed in the same way of any other site.
We have to keep our own balance optimizing the usage of resources. We have to admit that this
implementation was easy and fast, but, in view of what we learned in the other approach, it is
obvious that one can do better than we did.
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All in all, implementation was very fast, optimization is most probably not complete, but get-
ting substantial gain was easy. Implementation was performed on aNvidia GeForce 8800GTX.
Performances we will report refer to a version which does noteven perform gaussian generation
step on the GPU.

3. The OpenGL approach

As already said, the pioneering GPGPU applications were in the framework of standard graphic
libraries, namelyOpenGL. In particular, usage has been made ofGLSL (Shading Language): an-
other (less direct) extension to C, providing an environment for access to GPU in the OpenGL
framework.

3.1 An overview

• Vector variables are a natural choice (e.g.vec2,vec3, vec4). vec4 are an obvious choice
for RGBA textures.

• Special output variables are present (e.g. vec4gl_FragColor): always keep in mind you
are supposed to process images.

• There is a math library available.

The basicGLSL approach to GPGPU is quite easy to explain: your code will be essentially
devised to enter the graphic pipeline. As already stated:talk to GPU as if you were perform-
ing standard image processing. Once again, without entering the details, a few steps are worth
mentioning in the process:

• The basic computation has to be written down as aGLSL kernel. Basic data format are
textures on which you can copy the variables of your main program (the one which runs on
the CPU).

• GLSL is initialized runtime, while your kernel has to be “prepared” and then enabled to enter
the rendering pipeline.

• Input basically boils down to binding textures to texture units, while output asks for attaching
the target texture to aFBO (FrameBuffer Object). Finally, remember that we need what is
called a filled quad in order to (pretend to) draw.

• In a pipeline output of one stage is regarded as input for nextone. This restricts read/write
access. A standard solution comes from the PING-PONG technique: you read from one
texture and write onto another one.

3.2 Our implementation

Also in this case, there is a natural implementation which boils down to simple recipes:

• Texels can be your spins and texels make a texture like spins make a lattice.
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• A RGBA texture easily accomodates 4 independent replicas of a lattice (maybe at different
temperatures). You only need to be careful on Metropolis acceptance step (easily done:
Y = zYnew +(1−z)Yold wherez is a vector acceptance, with entries 0 or 1).

• Nearest neighbors are also easily accomodated: in 2-d they are 4, so they fit in aRGBA texture
as well. Each spin (4 for each texel) knows the adrress of its own 4 nn, which are theRGBA
entries of a corresponding texture (of the same dimension).

Notice that with respect of such a representation 2-d systems are actually a gold plated appli-
cation. Despite the fact that we used an old GPU (Nvidia series 6), the speedup was im-
pressive, provided the device was “sufficiently filled”: actually, we obtained the best performance
on the largest lattice we could allocate.

4. Results

Work was intended as a benchmark exercise. Results are collected in Table 1 in the form of
gain factors (ratios of execution times) with respect to theserial code (for the very same choice
of parameters). It might well be that one can do better than this. All in all: CUDA environment is
really friendly and it is very easy to get a cost-effective, fairly good performance;OpenGL (via
GLSL) implementation was actually easier than expected and it delivered really good performance
on a cheap device.

Lattice size Gain (CUDA) Gain (OpenGL

128 33 1
256 37 4
512 38 14
1024 30 41
2048 30 n.a.

Table 1: Gain factors (ratios of execution times) with respect to theserial code.
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