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We present results of the implementation of one MILC lattice QCD application—simulation 

with dynamical clover fermions using the hybrid-molecular dynamics R algorithm—on the Cell 

Broadband Engine processor.  Fifty-four individual computational kernels responsible for 98.8% 

of the overall execution time were ported to the Cell’s Synergistic Processing Elements (SPEs).  

The remaining application framework, including MPI-based distributed code execution, was left 

to the Cell’s PowerPC processor.  We observe that we only infrequently achieve more than 10 

GFLOPS with any of the kernels, which is just over 4% of the Cell’s peak performance.  At the 

same time, many of the kernels are sustaining a bandwidth close to 20 GB/s, which is 78% of 

the Cell’s peak.  This indicates that the application performance is limited by the bandwidth 

between the main memory and the SPEs.  In spite of this limitation, speedups of 8.7× (for 

8×8×16×16 lattice) and 9.6× (for 16×16×16×16 lattice) were achieved when comparing a 3.2 

GHz Cell processor to a single core of a 2.33 GHz Intel Xeon processor.  When comparing the 

code scaled up to execute on a dual-Cell blade and a quad-core dual-chip Intel Xeon blade, the 

speedups are 1.5× (8×8×16×16 lattice) and 4.1× (16×16×16×16 lattice). 
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1. Introduction 

Lattice Quantum Chromodynamics (QCD) calculations, used to simulate four-dimensional 

SU(3) lattice gauge theory, are very demanding.  As a result, multiple attempts have been made 

to design and build chips and computers specific to QCD applications with a goal of high 

efficiency and high total performance.  Measures of efficiency include CPU utilization, cost and 

power consumption.  Examples of purpose built computers include digital signal processor 

based machines (QCDSP) [1], quantum chromodynamics on chip (QCDOC) [1], the CP-PACS 

computer [2], and the APE family of parallel computers [3].  With recent advances in more 

general-purpose parallel processors, such as dual- and quad-core CPUs, the Cell Broadband 

Engine™ (Cell/B.E.), and graphical processors (GPUs), researchers are also turning their 

attention to systems based on these chips as an alternative to special-purpose computers.  The 

Cell/B.E., in particular, has attracted attention from the QCD community as it has been shown 

in [4] that ―design parameters of the Cell/B.E. processor are remarkably close to the design 

space of the lattice QCD computations.‖  A literature survey reveals, however, that most of the 

work on implementing a lattice QCD code on one of these processors is concerned with either a 

theoretical performance model, as in [4], [5], and [6], or an implementation of a subset of 

operations extensively used in lattice QCD codes, as in [6], [7], [8], [9], and [10]. 

The MILC [11] code is a publicly available lattice QCD code that is part of SPEC MPI 

benchmarks.  In this work, we investigate the advantages and challenges of using the Cell/B.E. 

processor for running an entire MILC application.  While several applications are included in 

the standard MILC distribution, in this initial study we consider simulations with dynamical 

clover fermions (clover_dynamical) using the hybrid-molecular dynamics R algorithm [12] 

(su3_rmd) as implemented in MILC version 7.4. 

2. Target hardware 

The Cell/B.E. system used in this study is a dual-Cell blade running in the IBM 

BladeCenter QS20 server [13] with the Cell/B.E. processor frequency of 3.2 GHz.  The system 

runs Fedora Core 7 Linux OS, kernel 2.6.22, and Cell SDK 3.0 [14]. 

The Cell/B.E. processor is a heterogeneous system consisting of one 64-bit PowerPC® 

core called the Power Processor Element (PPE), eight Synergistic Processor Elements (SPEs), 

system memory, and I/O controller [15].  The processing elements are linked by an internal 

high-speed Element Interconnect Bus (EIB).  The PPE is a 64-bit Power-Architecture-compliant 

core with 32KB first-level (L1) instruction and data caches and a 512-KB second-level (L2) 

cache.  Its design is simplified in comparison with other four-issue out-of-order processors: it is 

a dual-issue, in-order execution design, two-way SMT processor.  It can perform two double-

precision or eight single-precision operations per clock cycle. 

Each SPE consists of a Synergistic Processor Unit (SPU) and a Memory Flow Controller 

(MFC), which includes a DMA controller, a Memory Management Unit (MMU), a bus 

interface, and an atomic unit for synchronization with other SPEs and PPE.  SPE is a Single 

Instruction, Multiple Data (SIMD) processor whose load and store instructions are performed in 
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local address space only.  The local address space is untranslated, unguarded, and non-coherent 

with respect to the system address space and is serviced by Local Storage (LS).  The LS is full-

pipelined, single-ported, 256KB SRAM that supports quadwords (16 bytes) and line (128 bytes) 

access.  SPE cannot access main memory directly, but it can issue DMA operations to bring 

data from system memory to local storage or write data back to the system memory.  SPE can 

perform eight single-precision floating-point operations in a single clock, or can issue four 

double-precision floating-point operations once every seven clock cycles. 

For the 3.2 GHZ Cell/B.E., the EIB is capable of providing peak aggregate bandwidth of 

204.8 GB/s.  The memory interface controller provides 25.6 GB/s to system memory.  The I/O 

controller provides peak bandwidth of 25 GB/s inbound and 35 GB/s outbound.  When 

combining the PPE and eight SPEs, the 3.2 GHz Cell/B.E. has theoretical peak performance of 

230.4 GFLOPS in single precision or 21.03 GFLOPS in double precision. 

3. MILC implementation on Cell/B.E. processor 

The MILC code is structured to enable an efficient parallel execution on multiprocessor 

systems using MPI.  Its body consists of many small compute loops (kernels) that iterate over 

subsets of the 4D space-time lattice, and MPI scatter/gather operations in between.  This 

structure provides the scalability necessary to efficiently execute the application on a large 

distributed memory system.  However, as a result, no single kernel is responsible for more than 

~20% of the overall execution time. 

When porting the code to the Cell processor, our main design goal was to preserve 

MILC’s ability to scale to a large number of compute nodes.  This dictated the overall 

implementation approach: keep the MPI-based distributed execution framework intact (to be 

executed on the Cell’s PPE) while accelerating individual kernels on the Cell’s SPEs. 

The MILC application core consists of 27 major subroutines.  While many of the 

subroutines are responsible for only a small fraction of the overall execution time on the 2.33 

GHz Intel Xeon system, their run time increases on average by about a factor of 2 when 

executed on the Cell’s PPE.  Therefore they all need to be ported to the Cell/B.E. SPEs in order 

to avoid introducing additional computational overhead on the PPE.  Since many of these 

subroutines consist of multiple compute kernels with the MPI scatter/gather operations in 

between, we identified 54 unique kernels for implementation on the SPEs. 

In case of the 8×8×16×16 lattice model, the 54 kernels of interest are called 13,408 times.  

It is impractical to spawn a new SPE thread each time a new kernel is executed because the SPE 

thread execution overhead will have an adverse impact on the overall application performance.  

Fortunately, the kernels are small in terms of the actual lines of code, so they can be bundled in 

a single library of SPE-resident subroutines.  Since individual subroutines residing on the SPE 

cannot be directly accessed from the PPE code, we implemented a thin interface running on the 

SPE as the main SPE thread.  Its only function is to invoke an appropriate SPE-resident library 

subroutine.  Thus, only one thread per SPE is invoked at the start of the application. 

Each compute kernel in the original CPU-based code is replaced with a small wrapper 

subroutine, executed on the PPE, that i) sets up the task structures specific for each individual 

kernel, ii) notifies the SPEs via mailboxes, and iii) waits for the completion message from all 
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the SPEs.  The task structure created by these subroutines is copied to a container padded to a 

multiple of 128 bytes, and the pointer to the container is sent to the SPE as a mailbox message.  

Each SPE upon receiving a mailbox message converts the message to a pointer in the global 

memory space and fetches the first eight bytes via DMA.  The first four bytes provide the 

unique SPE-resident subroutine identifier and the next four bytes indicate the kernel-specific 

task structure size.  The SPE then transfers the entire kernel-specific structure to its LS and 

passes the control to the corresponding SPE-resident subroutine.  Once the calculations are 

done, results are transferred back to the main memory and a mailbox message is sent to the PPE 

indicating the completion of the SPE task. 

Performance of most of the kernels is bound by the memory-to-local store bandwidth, as 

will be shown later.  Therefore, in porting each individual kernel, special care is taken to 

maximize the data transfer bandwidth and overlap the calculations with DMA transfer calls in 

addition to the usual vectorization of the code for SPE’s SIMD engine.  For any given kernel, 

there are three types of input data: elements in a lattice site, elements in contiguous memory 

(usually a temporary memory region created inside MILC for temporary use), and elements in 

the neighboring site (neighbors in term of (x, y, z, t); they are not physically adjacent to each 

other in memory).  There are only two types of output data: elements in a lattice site and 

elements in contiguous memory.  A common DMA engine is written to load input data into 

SPEs’ LS and output data back to the main memory. 

The Cell/B.E. processor delivers the best memory-to-local store bandwidth when both 

source address and destination address are aligned at the 128-bytes boundaries and the amount 

of data to be transferred is a multiple of 128 bytes.  Non-aligned DMA requests run at the half 

of the bandwidth due to the fact that two bus requests instead of one are needed for each cache 

line of data.  We tried several approaches to deal with the data alignment issue and selected the 

memory padding approach.  The lattice is allocated to be aligned at 128 bytes and the most 

commonly used structures are padded to 128 bytes or multiples of that.  Two data structures are 

padded for this reason: su3_matrix is changed from 3x3 matrix to 4x4 matrix, thus changing the 

size of su3_matrix from 72 bytes to 128 bytes, and su3_vector is changed from a vector of three 

complex variables to a vector of four complex variables.  This change also makes one of the 

other commonly used data structures, fwilson_vector, 128 bytes.  The obvious disadvantage of 

this approach is that more bytes of data have to be transferred between the main memory and 

SPEs’ LS.  However, padding helps both to better use the bandwidth between main memory and 

local storage and to make writing SIMD instructions easier since the data structures are already 

aligned at 16-byte boundaries.  For these same reasons, we also pad the lattice site data with a 

few additional bytes to be a multiple of 128 bytes in length.  Data from each site is usually 

accessed in a strided manner, therefore padding it to multiples of 128 bytes helps to ensure 

better bandwidth utilization.  However, simply padding it to multiples of 128 bytes is not 

sufficient to achieve the full memory-to-SPE’s-LS bandwidth.  Main memory attached to each 

Cell/B.E. processor in the Cell blade consists of 16 banks distributed by cacheline address (128 

B) with address 0 in bank 0, address 128 in bank 1, etc.  In aggregate, the banks can sustain a 

data transfer rate of 25.6 GB/s.  However, for strided access, depending on the stride size, all 

banks or only some banks may be used.  Any time the stride size has common factor with 16, 

some banks are not used and the full memory-to-LS bandwidth cannot be achieved.  Thus, with 
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an odd stride size we achieve the maximum bandwidth of 25.38 GB/s, whereas with the stride 

size of 16 we achieve only 2.13 GB/s because only one out of 16 memory banks is used all the 

time.  Therefore, we pad the lattice site data to the nearest odd stride size times 128 bytes, which 

is 21×128 bytes in our case, to ensure the full memory-to-LS bandwidth utilization. 

4. Results and discussion 

The 54 computational kernels that we ported to the Cell/B.E. processor are responsible for 

98.8% of the overall execution time on the 2.3 GHz Intel Xeon chip; only 1.2% of the overall 

execution time is due to the remaining code (Fig. 1).  However, once ported to the Cell/B.E. 

processor, runtime of the remaining code increases to more than 30% of the overall execution 

time.  We observe that i) execution time of the part of the code that remains on the Cell’s PPE 

slows down more than three times as compared to the execution time on the single core of the 

Intel Xeon chip, and ii) the part of the code ported to the eight SPEs speeds up more than 12 

times as compared to the Intel Xeon execution time.  These observations hold true for both 

lattice sizes tested in this work.  It is clear that PPE becomes the bottleneck in achieving any 

substantial performance increase beyond this point.  As we have shown, performance of the 

code executed on the PPE is limited by the main RAM-to-PPE bandwidth. 

The QS20 IBM Cell blade consists of two Cell/B.E. processors mounted on the same 

board with a high-speed coherent interface between the two chips running at 20 GB/s in each 

direction.  We investigate two ways to scale up the application on the dual-chip board: 

1) Run the application on one PPE while offloading the 54 kernels to 16 SPEs (NUMA bar 

in Fig. 1).  Since the performance is largely determined by the bandwidth between main 

memory and the SPEs, we allocate memory alternatively among two Cell processors to 

maximize the bandwidth.  In this case, we observe a slight increase in the time spent on the PPE 

and a small decrease of the time spent on the SPEs, with overall runtime decreasing 18% to 

22% for different lattice size. 

2) Run the application on two PPEs as two MPI processes with each MPI process 

computing half of the full grid size (MPI bar in Fig. 1).  Each process runs on one PPE and 

offloads the computational kernels 

to its own eight SPEs.  The two 

processes communicate using MPI 

built on top of the shared memory.  

While the runtime for the SPE part 

of the code decreases, we observe 

that the runtime of the remaining 

PPE part of the code increases to 

well over 50% of the overall 

execution time.  Further profiling 

shows the added MPI 

communication overhead is over 

70%.  The overall performance of 

this implementation slightly 

Figure 1.  Execution time of the MILC Cell/B.E. implementation on 
the Cell blade for the lattice size of 8x8x16x16.  Single- and multi-
core Intel Xeon performance is provided for reference. 
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increases when comparing to the first execution schema. 

These results are as expected: By going from eight SPEs to 16 SPEs, we increased the 

number of compute engines by a factor of two, allowing the SPE-resident code to run faster by 

making available more memory bandwidth.  However, by spreading data between the memories 

of two Cell/B.E. processors, we did not increase the effective memory-to-SPEs local storage 

bandwidth by a factor of two because in many instances SPEs from one Cell/B.E. chip access 

memory attached to the other Cell/B.E. chip, resulting in a higher latency and a lower 

bandwidth.  An MPI implementation makes a better data localization per Cell/B.E. processor, 

but it is still not ideal.  However, MPI itself runs quite slowly on the PPE, thus reducing the 

overall performance. 

As we mentioned earlier, performance of most of the kernels running on the SPEs is 

bounded by the memory-to-local store bandwidth.  We observe that we only infrequently 

achieve more than 10 GFLOPS with any of the kernels, which is just over 4% of the combined 

Cell PPEs’ peak performance.  At the same time, only five kernels achieve less than 10 GB/s 

memory bandwidth utilization, and many of the kernels are sustaining a bandwidth close to 20 

GB/s, which is 78% of the peak. 

The Cell/B.E. blade system available in our lab consists of two blades interconnected with 

Gigabit Ethernet, and we were able to run the code across two Cell/B.E. blades using MPI.  

While execution time of the Cell/B.E. SPE code increases proportionally to the dataset size, we 

observe a disproportionate increase in the execution time of the PPE code, largely due to the 

MPI-related subroutines.  We also observe that the MPI code execution time varies from one 

run to another by as much as 50%, a phenomenon that we yet have to explain. 

5. Conclusions 

In summary, we took an existing production-grade lattice QCD code, ported it to Cell/B.E. 

processor and achieved speedups of 8.7× (for 8×8×16×16 lattice size) and 9.6× (16×16×16×16 

lattice size) compared to a single-core Intel Xeon processor.  When we scaled up the code to run 

on minimal size compute systems (a quad-core dual-chip Intel Xeon blade and a dual-Cell/B.E. 

blade), the achieved speedups were 1.5× and 4.1×, respectively.  The MILC code runs faster on 

the Cell/B.E. blade and the speedup depends on the lattice size and the number of processor 

elements used.  By changing lattice size from 8×8×16×16 to 16×16×16×16, we effectively 

quadrupled the number of calculations and amount of data to be processed.  As a result, the 

overall execution time increased only by a factor of 3.8.  This superlinear speedup is due to 

better bandwidth utilization by the SPEs for larger datasets.  The overhead associated with 

DMA transfers is better amortized when there is more data to transfer.  Thus, for 16 SPEs it 

takes only 3.6 times longer to process a dataset that is four times larger.  However, the 

remaining PPE code takes four times longer to execute. 

Finally, we note that our results differ from the model predictions reported in some of the 

earlier work referenced in Section 1.  We have not considered modifying the structure of the 

application to suit the Cell/B.E. architecture, as was the case in many of the referenced 

publications.  We considered only accelerating some of its parts and our results clearly show 

that with this approach we can achieve only a limited performance improvement over the 
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multicore platform.  Achieving more substantial performance improvements will require 

significant code redesign.  We are interested in exploring that task. 
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