
P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
0
2
7

Comparing iterative methods to compute the
overlap Dirac operator at nonzero chemical potential

Jacques Bloch∗, Tobias Breu, and Tilo Wettig
Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
E-mail: jacques.bloch@physik.uni-regensburg.de

The overlap Dirac operator at nonzero quark chemical potential involves the computation of the
sign function of a non-Hermitian matrix. In this talk we present iterative Krylov subspace approx-
imations, with deflation of critical eigenvalues, which we developed to compute the operator on
large lattices. We compare the accuracy and efficiency of two alternative approximations based
on the Arnoldi and on the two-sided Lanczos method. The short recurrences used in the latter
method make it faster and more effective for realistic lattice simulations.
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1. The overlap Dirac operator at nonzero chemical potential

Although chiral symmetry can not be implemented exactly in a space-time discretization of
QCD [1], a lattice version of chiral symmetry can be obtained by a renormalization group blocking
transformation. The ensuing lattice chiral symmetry is embodied by the Ginsparg-Wilson relation
[2], which is solved by the overlap Dirac operator proposed by Narayanan and Neuberger [3, 4].

Astrophysical objects like neutron stars exhibit an abundance of quarks over anti-quarks, and
the study of QCD in such a background necessitates the introduction of a quark chemical potential
µ in the QCD Lagrangian. In this situation chiral symmetry still holds and in Ref. [5] two of the
present authors proposed an extension of the overlap Dirac operator to nonzero chemical potential
which still satisfies the Ginsparg-Wilson relation,

Dov(µ) = 1+ γ5 sgn(γ5Dw(µ)) , (1.1)

where γ5 = γ1γ2γ3γ4 with γ1, . . . ,γ4 the Dirac gamma matrices in Euclidean space, sgn is the matrix
sign function, and

Dw(µ) = 1−κ

3

∑
i=1

(T +
i +T−i )−κ(eµT +

4 + e−µT−4 ) (1.2)

is the Wilson Dirac operator at nonzero chemical potential [6] with (T±ν )yx = (1± γν)Ux,±νδy,x±ν̂ ,
κ = 1/(8 + 2mw), mw ∈ (−2,0) and Ux,±ν ∈ SU(3). The exponential factors e±µ implement the
quark chemical potential on the lattice.

For µ 6= 0 the argument γ5Dw(µ) of the sign function becomes non-Hermitian, and one is
faced with the problem of defining and computing the sign function of a non-Hermitian matrix. If
the matrix A of dimension N is diagonalizable, then A = U diag{λi}U−1 with eigenvalues λi and
eigenvector matrix U , and a function f (A) can be computed using the spectral definition [7]

f (A) = U diag{ f (λi)}U−1 . (1.3)

If A is not diagonalizable one can still apply an extension of the spectral definition using the Jor-
dan canonical form. As the eigenvalues of a general matrix A can be complex, the sign function
computed using Eq. (1.3) requires the sign of a complex number, which can be defined by

sgn(z)≡ z√
z2

= sgn(Rez) , (1.4)

where the branch cut of the square root is chosen along the negative real axis. This definition
ensures that (sgnz)2 = 1 and gives the usual result when z is real. It is straightforward to check that
this definition ensures that (sgnA)2 = 1. Therefore the overlap Dirac operator at µ 6= 0 satisfies the
Ginsparg-Wilson relation, and the operator can have exact zero modes with definite chirality. The
main properties of the operator were discussed in Ref. [8].

Since its introduction the operator has been validated in a number of studies: Its definition is
consistent with that of domain wall fermions at µ 6= 0 when the extension of the fifth dimension
is taken to infinity and its lattice spacing taken to zero [8], its microscopic density and first peak
computed from quenched lattice simulations on a 44 lattice agree with the predictions of non-
Hermitian chiral random matrix theory [5, 9], and the free fermion energy density was shown to
have the correct continuum limit [10, 11].
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2. Arnoldi approximation for a function of a non-Hermitian matrix

The exact computation of sgn(A) using the spectral definition (1.3) is only feasible for small
lattice volumes as the memory requirements to store the full matrix and the computation time
needed to perform a full diagonalization become prohibitively large for realistic lattice volumes.
Therefore it is necessary to develop iterative Krylov subspace methods to compute f (A)b for vec-
tors b. For Hermitian matrices the corresponding methods have already reached a high level of
sophistication and are widely applied, but for non-Hermitian matrices such methods are novel, ex-
cept for the special cases of the inverse and the exponential function. The Arnoldi approximation
discussed below was first introduced in Ref. [12], while the two-sided Lanczos approximation of
Sec. 4 was presented in Ref. [13].

Such iterative methods are based on the observation that the unique polynomial PK(z) of order
K ≤ N−1 which interpolates f (z) at all the eigenvalues of A satisfies the equality

PK(A)b = f (A)b for any vector b , (2.1)

as follows from the definition (1.3). Therefore it is an obvious endeavor to construct a good low-
degree polynomial approximation for y = f (A)b, taking into account the spectrum of A and the
decomposition of b in the eigenvectors of A.

In order to construct such a low order polynomial approximation to f (A)b we consider the
Krylov subspace Kk(A,b) = span(b,Ab,A2b, . . . ,Ak−1b). By definition this subspace contains all
the vectors resulting from the action of an arbitrary polynomial of degree≤ k−1 in A on the source
vector b. One of these vectors, namely the orthogonal projection of f (A)b on the Krylov subspace,
will minimize ||Pk−1(A)b− f (A)b|| over all polynomials of degree ≤ k−1.

The Arnoldi method uses the recursive scheme

AVk = VkHk +βkvk+1eT
k (2.2)

with

V †
k AVk = Hk (2.3)

to build an orthonormal basis Vk = (v1, . . . ,vk) in Kk(A,b), where v1 = b/|b|, βk is the normalization
of vk+1, and ek is the k-th basis vector in Ck. The matrix Hk is a Hessenberg matrix (upper triangular
+ one subdiagonal) of dimension k, whose eigenvalues are called the Ritz values of A w.r.t. Kk(A,b).

Once the Arnoldi basis has been constructed, the projection of y = f (A)b on Kk(A,b) can be
written as

yproj = VkV
†
k f (A)b = VkV

†
k f (A)VkV

†
k b . (2.4)

This formal expression requires the knowledge of the exact solution and is therefore of no practical
use. However, using the Ritz approximation

V †
k f (A)Vk ≈ f (Hk) , (2.5)

which is based on Eq. (2.3), allows us to approximate the projection by

yproj ≈ ỹ = |b|Vk f (Hk)e1 . (2.6)
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By construction this approximation is an element of the Krylov subspace Kk(A,b), and it can be
shown that the implicit polynomial constructed by this approximation interpolates f (x) at the Ritz
values of A w.r.t. Kk(A,b) [14]. Note that only the first column of f (Hk) is needed in Eq. (2.6).

This approximation reduces the problem to the computation of f (Hk) with dimHk � dimA,
which makes it very useful for practical use. The inner sign function f (Hk) will then be computed
with one’s method of choice. This could be an exact spectral decomposition if k is small, or some
suitable approximation method, e.g., Roberts’ matrix-iterative method for the sign function,

Sn+1 =
1
2
[
Sn +(Sn)−1] with S0 = Hk ,

which converges quadratically to sgn(Hk).

3. Sign function and deflation

When computing the sign function of the matrix A an additional problem occurs when the ma-
trix has small eigenvalues, as large Krylov subspaces are then required to achieve a good accuracy.
The reason is that it is not possible to approximate f well by a low-degree polynomial over the
entire spectrum of A if it varies too rapidly in a small subregion. A solution to this problem is to
use the exact value of f for a number of critical eigenvalues of A. Over the remaining part of the
spectrum f should then behave well enough to allow for a low-degree polynomial approximation.

Implementing this so-called deflation is straightforward in the Hermitian case, where it is
based on the fact that any number of eigenvectors span a subspace orthogonal to the remaining
eigenvectors. In the non-Hermitian case the eigenvectors of A are no longer orthogonal, and a more
involved approach is needed. We have previously proposed two alternative deflation variants for
this case [12]. Herein we only present the left-right (LR) deflation and refer to Ref. [12] for the
details of the Schur deflation.

The method needs the left and right eigenvectors belonging to the m critical eigenvectors,

ARm = RmΛm , L†
mA = ΛmL†

m , (3.1)

where Λm is the diagonal eigenvalue matrix for the m critical eigenvalues and Rm = (r1, . . . ,rm) and
Lm = (`1, . . . , `m) are the matrices of right and left eigenvectors, respectively. These matrices can
be made bi-orthonormal, i.e., L†

mRm = Im, such that RmL†
m is an oblique projector on the subspace

Ωm spanned by the right eigenvectors.
If the source vector is decomposed as

b = b‖+b	 , (3.2)

where b‖ = RmL†
mb is an oblique projection of b on Ωm and b	 = b−b‖, then the matrix function

can be written as

f (A)b = f (A)RmL†
mb︸ ︷︷ ︸

exact

+ f (A)b	︸ ︷︷ ︸
approximation

. (3.3)
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The contribution of the first term can be computed exactly, while the second term can be approx-
imated by the Arnoldi method described in Sec. 2 applied to the Krylov subspace Kk(A,b	). The
final approximation is then given by

f (A)b≈ Rm f (Λm)L†
mb+ |b	|Vk f (Hk)e1 . (3.4)

As before the function f (Hk) of the internal matrix should be computed with a suitable method. The
critical eigenvalues with their left and right eigenvectors should be computed once for all source
vectors b.

4. Two-sided Lanczos approximation

The Arnoldi method described in Sec. 2 suffers from the long recurrences used to orthogonal-
ize the Arnoldi basis. As an alternative we now consider the two-sided Lanczos method which uses
short recurrences at the cost of giving up orthogonality for bi-orthogonality.

Consider the two Krylov subspaces Kk(A,b) and Kk(A†,b) and construct two bi-orthogonal
bases Vk and Wk such that W †

k Vk = Ik and the matrix Gk ≡W †
k AVk is tridiagonal with

Gk ≡W †
k AVk =



α1 γ1 0 · · · 0

β1 α2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . γk−1

0 · · · 0 βk−1 αk


. (4.1)

It can be shown that Vk and Wk can be built using the short recurrence relations{
βivi+1 = (A−αi)vi− γi−1vi−1 ,

γ
∗
i wi+1 = (A†−α

∗
i )wi−β

∗
i−1wi−1 ,

(4.2)

where v1 = w1 = b/|b|, αi = w†
i Avi, and βi and γi are determined from the normalization condition

w†
i+1vi+1 = 1.

The matrix VkW
†
k is an oblique projector on Kk(A,b), such that an oblique projection of f (A)b

on Kk(A,b) is obtained using

y≈ yobl = VkW
†
k f (A)VkW

†
k b . (4.3)

In analogy to the Arnoldi method we introduce the approximation W †
k f (A)Vk ≈ f (Gk) such that

yobl ≈ ỹ = |b|Vk f (Gk)e1 . (4.4)

The approximation ỹ ∈ Kk(A,b), and the problem is now reduced to the computation of f (Gk) with
dimGk� dimA.

If the matrix A has small eigenvalues, deflation will again be necessary when computing the
sign function. To implement the LR-deflation in this case one constructs two bi-orthogonal bases Vk

and Wk in Kk(A,bR
	) and Kk(A†,bL

	), where the directions along Rm, respectively Lm, have been fully
deflated from b, i.e., bR

	 = (1−RmL†
m)b and bL

	 = (1−LmR†
m)b. With LR-deflation the function

approximation becomes

f (A)b≈ Rm f (Λm)L†
mb+ |bR

	|Vk f (Gk)e1 . (4.5)
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Figure 1: Comparison of the convergence rate for the Arnoldi and the two-sided Lanczos method for a 44

(left) and 64 (right) lattice, for various deflation sizes.

5. Results

In this section we compare the results obtained with both methods. In an initial deflation
phase the right and left eigenvectors of γ5Dw(µ) corresponding to the eigenvalues with smallest
magnitude are determined using ARPACK.1 With these exact eigenvectors the final approximation
to Dov(µ)b of Eq. (1.1) is computed as described in the previous sections.

In Fig. 1 we compare the convergence rate for both methods, by plotting the accuracy versus
the Krylov subspace size, and observe that the Arnoldi method has a somewhat better accuracy
than the two-sided Lanczos method. To achieve the same accuracy, the Krylov subspace of the
two-sided Lanczos method has to be chosen about 20% larger than in the Arnoldi method.

However, the speed of the short recurrences by far makes up for this as can be seen from
Fig. 2, where we show the accuracy as a function of the required CPU-time. The two-sided Lanczos
method is clearly more efficient than the Arnoldi method, and the advantage gained by the short
recurrences increases as the volume grows. The dotted lines show the time needed to build the
basis in the Krylov subspace, while the full lines represent the total CPU-time used by the iterative
method (without the deflation time). The construction of the basis is much faster for the two-sided
Lanczos method (∼ Nk) than in the Arnoldi case (∼ Nk2). For the Arnoldi method the time needed
to construct the Arnoldi basis is dominating, while for the two-sided Lanczos this time can almost
be neglected compared to that needed to compute the sign function of the inner matrix. Methods to
boost the computation of the sign function of the inner matrix are the subject of a current study. An
additional advantage of the short recurrences is their possible implementation with small memory
footprint if a two-pass procedure is used to compute Eq. (4.5).

To make the method practical for large-scale lattice simulations it will be important to improve
the deflation phase, even though first tests on larger lattices (163× 32) with realistic parameter
values seem to indicate that the number of deflated eigenvalues can be taken much smaller than in
the 44 and 64 lattices investigated herein.

1Typical deflation times on an Intel Core 2 Duo 2.33GHz workstation were t = 27.5s for m = 32 on the 44 lattice
and t = 1713s for m = 128 on the 64 lattice.
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Figure 2: Accuracy versus CPU-time (in seconds), on an Intel Core 2 Duo 2.33GHz workstation, for the
Arnoldi (red) and the two-sided Lanczos method (blue) for a 44 (left) and 64 (right) lattice.

The methods discussed above are also currently being tested to compute eigenvalues of the
overlap operator. First results are encouraging and clearly show the superiority of the two-sided
Lanczos method.
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