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1. Introduction

A fundamental part of lattice QCD calculations is the solution of a discretized Dirac equation

(D+m) x = b (1.1)

for some source field b. Here D is the Dirac matrix (for some choice of discretization), m is the
quark mass (times the identity) and x is the desired solution. This is typically solved with methods
such as Conjugate Gradient (CG), that find a solution among the Krylov space {b,(D+m)b,(D+
m)2b, ...}.

Often it is necessary to solve this equation for several masses against the same source. This
can be done efficiently with a class of Krylov methods that solve for all shifts at the same time [1].
These methods are made possible because the Krylov spaces for different shifts still span the same
linear space, and the solutions can all be obtained in a single pass of the algorithm. The number
of iterations required for the solution of all equations is then just the number needed for the worst
conditioned equation (lightest mass).

Since solving the Dirac equation can make up a large part of lattice QCD calculations, it
becomes very important to find ways to reduce the time needed to get a solution. Often one can use
some prior knowledge about similar systems to the one being solved to obtain initial guesses which,
in the case of a single shift, can easily be used to reduce the number of iterations needed. The prior
knowledge can be from previous solutions at a lower precision, projection of low eigenmodes (or
approximate ones), or solutions of similar systems with small changes in either the source or the
matrix (such as in the chronological inverter [2]).

Unfortunately for systems with multiple shifts the use of the prior information is not as simple.
This is due to the residuals obtained from the guesses not being the same in general. Here we will
present a method that can use this information to produce initial guesses with a common right
hand side so that standard multi-shift Krylov methods can still be used. The problem of initial
guesses is related to the more general problem of solving systems with multiple shifts each with a
different source, which we will also provide an algorithm for. While the method of initial guesses
does provide an improvement in some cases, a straightforward implementation may in other cases
produce initial residuals that are too large to be useful. We will show examples that demonstrate
this breakdown and discuss some possible methods to alleviate it.

2. Multiple shift solvers and initial guesses

Here we are interested in solving the system of N linear equations

(A+σi) xi = b (1≤ i≤ N) (2.1)

where A is matrix and σi are shifts of a constant times the identity. As mentioned in the introduction,
these equations can be solved simultaneously by using multi-shift Krylov methods that exploit their
common Krylov space. These multi-shift methods form the solutions from the common Krylov
space {b,Ab,A2b, ...}. If one wanted to make use of some initial guesses, yi, for the solutions to
reduce the number of iterations, the typical thing to do is construct

ri = b− (A+σi) yi (2.2)
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and then solve

(A+σi) zi = ri . (2.3)

The solutions would be then given by xi = yi + zi. However, in general, the new right hand sides,
ri, are not collinear, and hence they won’t share the same Krylov space, preventing the use of
multi-shift Krylov methods which would solve them all at the same time.

There is a simple form for the guesses that will make the ri the same. Take

yi =

[
∏
j 6=i

(A+σ j)

]
w (2.4)

for any vector w, then one can easily see that the new right hand sides are all equal to

ri = b−

[
∏

j
(A+σ j)

]
w . (2.5)

The system can then be solved with standard multi-shift Krylov methods.
The problem now is just to find the best choice for w. Consider first the case of N = 2 shifts.

Given approximate solutions

v1 ≈ (A+σ1)−1 b

v2 ≈ (A+σ2)−1 b (2.6)

with corresponding residuals

R1 = b− (A+σ1) v1

R2 = b− (A+σ2) v2 (2.7)

then a good choice for w could be

w = (v1− v2)/(σ2−σ1) ≈ [(A+σ1)(A+σ2)]−1 b (2.8)

giving

r1 = r2 = [(A+σ2)R1− (A+σ1)R2]/(σ2−σ1) . (2.9)

Note that if v1 and v2 were exact solutions then starting residual would be zero.
For general N the corresponding choice for w would be

w = ∑
i

ci vi (2.10)

with

ci = ∏
j 6=i

1
σ j−σi

. (2.11)

Note that the coefficients ci can become large as one goes to more shifts with smaller differences.
As we will see later, this can lead to a breakdown of the algorithm if care is not taken to keep the
common residual (2.5) from growing too large.
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3. Multiple shifts with multiple sources

It turns out that the problem of initial guesses is a special case of the more general case of
multiple shifts each with a different source, which can also be solved. The two-source two-shift
method was worked out in [3]. Consider the system

(A+σ1) x1 = b1

(A+σ2) x2 = b2 . (3.1)

Now choose guesses yk such that the residuals are equal

b1− (A+σ1) y1 = b2− (A+σ2) y2 . (3.2)

By equating powers of A we find

y1 = y2 = (b2−b1)/(σ2−σ1) (3.3)

which gives a common starting right hand side of

bi− (A+σi) yi = [(A+σ2) b1− (A+σ1) b2]/(σ2−σ1) (3.4)

which is just (2.9) with the bi replaced by Ri.
To extend this to arbitrary N we need to find a set of yi that give a common residual r

bi− (A+σi) yi = r (1≤ i≤ N) . (3.5)

This can be solved by setting

yi =
N−2

∑
j=0

A j si, j ≡ pi(A) (3.6)

then equating powers of A and solving for the vectors si, j. One can also solve this by considering
the polynomials qi(A) = (A + σi)pi(A) at the special cases of A = −σk where the residual r = bk.
This gives the N equations (for fixed i)

qi(−σk) = bi−bk . (3.7)

Since qi(A) is a polynomial of order N−1 in A the system is uniquely determined. The polynomial
satisfying these equations is

qi(A) = ∑
k

[
∏
j 6=k

A+σ j

σ j−σk

]
(bi−bk) (3.8)

which gives

yi = ∑
k 6=i

[
∏
j 6=i,k

A+σ j

σ j−σk

]
bi−bk

σi−σk
. (3.9)
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m1 d no guess N = 1 N = 2 N = 3 N = 4 N = 5 N = 6
0.010 2 683 334 (−3.0) 445 (4.6) 488 (11.0) 509 (16.3) 518 (20.4) 523 (23.3)
0.010

√
2 683 334 (−3.0) 489 (5.4) 575 (13.1) 635 (20.3) 677 (26.8) 985 (32.7)

0.005 2 1365 666 (−3.0) 892 (5.8) 978 (13.5) 1018 (19.9) 1039 (25.3) 1214 (29.4)
0.005

√
2 1365 666 (−3.0) 977 (6.6) 1151 (15.6) 1272 (23.9) 1761 (31.7) 3066 (38.8)

0.002 2 3417 1668 (−3.0) 2228 (7.4) 2445 (16.6) 2554 (24.7) 3965 (31.6) 6723 (37.3)
0.002

√
2 3417 1668 (−3.0) 2445 (8.2) 2885 (18.8) 3246 (28.7) 7210 (38.0) 10000 (46.8)

0.001 2 6830 3353 (−3.0) 4464 (8.6) 4903 (19.0) 5328 (28.3) 10000 (36.4) 10000 (43.3)
0.001

√
2 6830 3353 (−3.0) 4886 (9.4) 5764 (21.1) 8949 (32.3) 10000 (42.8) 10000 (52.7)

Figure 1: Iterations (initial log10 |ri|2) for guesses formed from approximate solutions.

4. Initial tests

To demonstrate the strengths and weaknesses of this method, we have performed some simple
tests. For all tests we are using an even-odd preconditioned “asqtad” staggered Dirac matrix so that
we are solving the Hermitian positive definite system

(m2
k−DeoDoe) xk = b (4.1)

where Deo and Doe are the even-odd and odd-even blocks of the Dirac matrix and the shift is now the
square of the masses. The source vector b is taken to be a point source. For simplicity in all tests we
used a random gauge field with an average plaquette value of around 0.39 (normalized to 1). The
masses are set to be geometrically spaced, mk = m1dk−1, with m1 ∈ {0.01,0.005,0.002,0.001} and
d ∈ {2,

√
2}. The final stopping criterion for the residual is |r|2 < 10−6 (the source is normalized

to 1). While this is a fairly relaxed criterion, it was chosen to keep the number of iterations from
growing too large at the lightest mass. There are many factors that can effect the performance of
this algorithm, so these tests only serve to show the qualitative behavior as more and lighter masses
are used. All work was done in double precision.

The first tests are with initial guesses made from approximate solutions on a 324 lattice. The
approximate solutions were obtained from running multi-shift CG until |r|2 < 10−3. These solu-
tions were then used to generate the initial guesses from (2.10) and (2.4). This example is done
purely for testing purposes since the residuals |ri|2 for i≥ 3 had already converged to the final pre-
cision. Also since the guesses came from another multi-shift CG, their residuals could have already
been collinear, which we could have taken advantage of as discussed later.

In figure 1 we show the results for the approximate solutions. The “no guess” column gives
the number of iterations necessary when starting with zero guess. The N value is the number of
equations (shifts) solved simultaneously. In those columns are the number of iterations needed
before the accumulated residual from the CG reached the stopping criterion (with a maximum of
10,000 iterations) along with the value of log10(|ri|2) for the initial common residual (2.5) used for
the new right hand side. After the CG stopped, the true residual was calculated for all shifts. The
numbers in orange and red indicate that the true residuals had actually not converged, with orange
for 10−6 < |r|2 < 10−5 and red for 10−5 < |r|2.
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m1 d no guess N = 1 N = 2 N = 3 N = 4 N = 5 N = 6
0.010 2 665 626 (0.1) 650 (6.7) 677 (13.0) 693 (18.3) 705 (22.4) 708 (25.3)
0.010

√
2 665 626 (0.1) 657 (7.1) 700 (14.5) 740 (21.5) 772 (28.0) 1078 (33.9)

0.005 2 1328 1136 (0.3) 1185 (8.1) 1241 (15.6) 1280 (22.1) 1303 (27.4) 1605 (31.5)
0.005

√
2 1328 1136 (0.3) 1200 (8.5) 1288 (17.1) 1369 (25.3) 1946 (32.9) 3263 (40.0)

0.002 2 3309 2157 (0.4) 2268 (9.5) 2402 (18.5) 2539 (26.5) 4776 (33.4) 7549 (39.1)
0.002

√
2 3309 2157 (0.4) 2291 (9.7) 2479 (19.6) 3339 (29.2) 7274 (38.4) 10000 (47.0)

0.001 2 6563 3627 (0.5) 3800 (10.1) 4028 (20.1) 5969 (29.3) 10000 (37.4) 10000 (44.3)
0.001

√
2 6563 3627 (0.5) 3805 (10.3) 4099 (21.3) 8618 (32.2) 10000 (42.6) 10000 (52.5)

Figure 2: Iterations (initial log10 |ri|2) for guesses formed from approximate eigenmodes.

For all cases that converged, the number of iterations was less with the guess than without.
Remarkably even for a starting residual of |ri|2 ≈ 1021 the residual could be reduced to the final
precision in fewer iterations. However as one moves toward more or smaller masses, the initial
residual grows very large until it is no longer possible to reduce it all the way back to the final goal
in double precision.

In the second set of tests the guesses were obtained by projection of approximate eigenmodes
of the preconditioned Dirac matrix. Here the lattice size was 164. The low modes were obtained
simply by repeated inversions on random vectors with occasional Rayleigh-Ritz diagonalization.
The final vectors were still far from the lowest eigenmodes since the smallest approximate eigen-
value (Ritz value) was still at least 4 times larger than the lowest true eigenvalue. This was done
to give a more difficult test of the algorithm since with exact eigenvalues the deflation can be done
exactly and the starting residuals are automatically equal.

In figure 2 we show the results for the approximate eigenmodes with the same conventions as
the previous table. Again we see the same pattern of improved convergence up to the point that
the initial residual becomes too large to reduce in double precision. The only exception is at the
heaviest mass where the low mode projection is no longer effective anyway. Clearly the method is
providing good guesses for the low modes of the system. The main difficulty then is keeping the
initial residual under control so that the solver can converge. Next we will discuss some possible
strategies for this.

5. Variations

For the problem of choosing initial guesses with the same right hand side, there are several
possible strategies for choosing the vector w used in (2.10). One possibility is to globally optimize
for w from r = b− (A + σ1) . . .(A + σN)w among some given search space of vectors. This can
be done by either minimizing the norm of the residual or by projecting out the search space from
the residual. An alternative is to individually optimize each equation separately, Rk = b− (A +
σk)vk, then apply the multi-source multi-shift algorithm to get the initial guesses. In practice the
latter seems to give better guesses, though global minimizations control the residual better. By
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interpolating between the two one can then find the best compromise that still leads to a solution.
Of course at some point this will be no better than an initial guess of zero.

Another variation is given by the observation that the starting residuals don’t have to be equal,
but merely collinear. Thus we can add arbitrary scale factors to the bi in (3.9). This is especially
useful if the trial guesses are obtained from another run using, e.g., CG. Here the residuals would
be collinear in exact precision, and in finite precision may be close, but not exact. Restarting with
the appropriate scale factors could give a large improvement in this case.

6. Conclusions

We have presented a method for solving systems with multiple sources each with a different
shift. The main motivation was to provide initial guesses to multi-shift solvers, though it could be
useful in other contexts as well. When used for initial guesses we found that even though the initial
residuals may be large, the convergence is still typically faster as long as convergence can still be
reached. The method breaks down at some point when going to more and/or smaller shifts. This
can be remedied at the expense of using a worse initial guess, which may still reduce the number
of iterations overall in some cases. A better solution to this problem may require projecting out the
high eigenmodes of the residual while preserving the low modes of the guesses.
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