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In this contribution, I summarise the studies of the properties of Bose-Einstein condensed systems
composed of up to twelve pions or kaons carried out by the NPLQCD collaboration. These
investigations have provided precise determination the I=2 ππ and I=1 KK scattering lengths
and the first determination of three-hadron interactions fromm QCD, finding a repulsive three-
pion interaction of size consistent with naive dimensional analysis and a three kaon interaction
consistent with zero. We have also determined the isospin (strangeness) density dependence of
the isospin(strangeness) chemical potential, finding results in surprisingly good agreement with
chiral perturbation theory.
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1. Many body lattice QCD

Lattice QCD has had major impact in many aspects of particle physics phenomenology and
in describing the spectra and structure of single hadrons. Computing resources and lattice algo-
rithms have reached a stage where it is now worthwhile to consider the more complicated hadronic
observables such as those in the baryon number, B > 1 sector — the realm of nuclear physics.
Here there are many observables that are phenomenologically important to nuclear structure and
interactions and nuclear astrophysics about which very little (or nothing) is known experimentally
or theoretically. Systems containing n > 2 mesons are also of interest in a number of areas from
RHIC to neutron stars. These systems present a significant opportunity for contributions from lat-
tice QCD. Recently, the first attempts to study systems of more than two hadrons have been made
by the NPLQCD collaboration [1, 2, 3]. The results of these studies are summarised herein.

2. Multi-meson systems

It has long been known how to exploit the volume dependence of the eigen-energies of two
hadron systems to extract infinite volume scattering phase shifts [4] provided that the effective
range of the interaction, r is small compared to the box size L (since r∼m−1

π for most interactions,
this constraint is mπ L � 1). In recent works, this has been extended to systems involving n > 2
bosons [5, 6, 7]and n = 3 fermions [8] in the case when the relevant scattering length, a, is also
small compared to the box size. The resulting shift in energy of n particles of mass M due to their
interactions is

∆En =
4π a
M L3

nC2

{
1−
(

a
π L

)
I +

(
a

π L

)2 [
I 2 +(2n−5)J

]
−
(

a
π L

)3 [
I 3 +(2n−7)I J +

(
5n2−41n+63

)
K
]

+
(

a
π L

)4 [
I 4−6I 2J +(4+n−n2)J 2 +4(27−15n+n2)I K

+(14n3−227n2 +919n−1043)L
]}

+ nC3

[
192 a5

Mπ3L7 (T0 + T1 n) +
6πa3

M3L7 (n+3) I

]
+ nC3

1
L6 η

L
3 + O

(
L−8) , (2.1)

where the parameter a is related to the scattering length, a, and the effective range, r, by

a = a − 2π

L3 a3r
(

1 −
(

a
πL

)
I

)
. (2.2)

The geometric constants that enter into eq. (2.1) are

I = −8.9136329 , J = 16.532316 , K = 8.4019240 ,

L = 6.9458079 , T0 =−4116.2338 , T1 = 450.6392 ,
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and nCm = n!/m!/(n−m)!. The three-body contribution to the energy-shift given in eq. (2.1) is
represented by the parameter η

L
3 , which is a combination of the volume-dependent, renormalization

group invariant quantity, η
L
3 , and contributions from the two-body scattering length and effective

range,

η
L
3 = η

L
3

(
1 − 6

(
a

πL

)
I

)
+

72πa4r
ML

I , (2.3)

where

η
L
3 = η3(µ) + 64πa4

M

(
3
√

3−4π
)

log(µL) − 96a4

π2M SMS .

The quantity η3(µ) is the coefficient of the three-π+ interaction that appears in the effective Hamil-
tonian density describing the system [7]. It is renormalization scale, µ , dependent. The quantity
S is renormalization scheme dependent and we give its value in the minimal subtraction (MS)
scheme, SMS = −185.12506.

Lattice QCD measurements of these energy shifts allow one to extract the parameters a and
η

L
3 . To determine the energy shifts, we study the correlators (specifying to the multi-pion system)

Cn(t) ∝ 〈
(

∑
x

π
−(x, t)

)n(
π

+(0,0)
)n

〉 , (2.4)

where π+(x, t) = u(x, t)γ5d(x, t). On a lattice of infinite temporal extent,1 the combination

Gn(t) ≡
Cn(t)

[ C1(t) ]n
t→∞−→ B

(n)
0 e−∆En t , (2.5)

where ∆En is the energy shift appearing in Eq. (2.1).
To compute the (n!)2 Wick contractions in Eq. (2.4), we note that this correlation function can

be written as

Cn(t) ∝ 〈 ( ηΠη )n 〉 , (2.6)

where

Π = ∑
x

S(x, t;0,0) S†(x, t;0,0) , (2.7)

and S(x, t;0,0) is a light-quark propagator. The object (block) Π is a 12×12 (4-spin and 3 color)
bosonic time-dependent matrix, and ηα is a twelve component Grassmann variable. Using

〈ηα1η
α2 ...ηαnηβ1ηβ2 ...ηβn〉 ∝ ε

α1α2..αnξ1..ξ12−n εβ1β2..βnξ1..ξ12−n
, (2.8)

leads to correlation functions

Cn(t) = ε
α1α2..αnξ1..ξ12−n εβ1β2..βnξ1..ξ12−n

(Π)β1
α1

(Π)β2
α2

..(Π)βn
αn

. (2.9)

1Effects of temporal (anti-)periodicity are discussed in Ref. [3].
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For an arbitrary 12×12 matrix, A,

det(1+λA) =
1

12!
ε

α1α2..α12 εβ1β2..β12 (1+λA)β1
α1

(1+λA)β2
α2

. . .(1+λA)β12
α12

=
1

12!

[
ε

α1α2..α12 εα1α2..α12 + λ
12C1 ε

α1α2..α12 εβ1α2..α12 ( A )β1
α1

+ . . .

+ λ
n 12Cn ε

α1α2..αnξ1..ξ12−n εβ1β2..βnξ1..ξ12−n
( A )β1

α1
( A )β2

α2
. . .( A )βn

αn

. . . + λ
12

ε
α1α2..α12 εβ1β2..β12 ( A )β1

α1
. . .( A )β12

α12

]
=

1
12!

12

∑
j=1

12C j λ
j C j(t) , (2.10)

where in the last line we identify the matrix A with Π. Further,

det(1+λA) = exp(Tr [log [ 1+λA] ] ) = exp

(
Tr

[
∑
p=1

(−)p−1

p
λ

pAp

] )

= 1 + λ Tr [ A ] +
λ 2

2

(
(Tr [ A ])2 − Tr

[
A2 ])

+
λ 3

6

(
2Tr
[

A3 ] − 3Tr [ A ]Tr
[

A2 ] + ( Tr [ A ])3
)

+ . . . . (2.11)

Therefore, by equating terms of the same order in the expansion parameter λ in Eq. (2.10) and
Eq. (2.11), one can recover the n-π+ correlation functions in Eq. (2.9). As an example, the con-
tractions for the 3-π+ system are

C3(t) ∝ trC,S [Π]3 − 3 trC,S
[
Π

2] trC,S [Π] + 2 trC,S
[
Π

3] , (2.12)

where the traces, trC,S, are over color and spin indices. Contractions for n ≤ 12 mesons are given
explicitly in Ref. [2].

3. Two- and three- body interactions

The NPLQCD collaboration have computed the n pion and kaon correlators in the previous
section using domain wall fermion [9, 10] propagators on various ensembles of MILC 2+1 flavour
rooted staggered gauge configurations [11] (parameters are shown in Table 1 and further details
are given in Refs. [1, 2, 3]). In order to correctly calculate these correlators for large n, very high
numerical precision is necessary (our calculations use the arprec library [12]). By performing
a correlated fit to the effective energy differences extracted from these measurements, we have
determined the two- and three-body interactions. The two body interactions extracted from this
analysis agree with those extracted from the two-body sector alone [13]. The resulting three body
interactions are displayed in Fig. 1. The three pion interaction is found to be repulsive with a
magnitude consistent with the expectation from naive dimensional analysis. In contrast, the three
K+ interaction is consistent with zero within somewhat larger uncertainties.
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Table 1: The parameters of the MILC gauge configurations and domain-wall quark propagators used in
these calculations. The subscript l denotes light quark (up and down), and s denotes the strange quark. The
superscript dw f denotes the bare-quark mass for the domain-wall fermion propagator calculation. The last
column is the number of configurations times the number of sources per configuration. For the ensembles
labeled with “P±A”, propagators that were periodic in the temporal direction were computed in addition to
those with anti-periodic temporal boundary conditions.

Ensemble bml bms bmdw f
l bmdw f

s # of propagators
2064f21b676m007m050 0.007 0.050 0.0081 0.081 1038 × 24
2064f21b676m010m050 0.010 0.050 0.0138 0.081 768 × 24
2064f21b679m020m050 0.020 0.050 0.0313 0.081 486 × 24
2064f21b681m030m050 0.030 0.050 0.0478 0.081 564 × 20
2896f2b709m0062m031 0.0062 0.031 0.0080 0.0423 1001 × 7

2896f2b709m0062m031 P±A 0.0062 0.031 0.0080 0.0423 1001 × (1+1)
2864f2b676m010m050 0.010 0.050 0.0138 0.081 137 × 8

2864f2b676m010m050 P±A 0.010 0.050 0.0138 0.081 274 × (2+2)

4. Pion and kaon condensation

The ground state of the n meson systems that are being studied is a Bose-Einstein condensate
of fixed z component of isospin (and strangeness in the case of kaons). It is of great interest to
investigate the properties of such systems. Theoretical efforts have used leading order chiral per-
turbation theory to investigate the phase diagram at low chemical potential [14] and it is important
to assess the extent to which these results agree with QCD. Our numerical calculations allow us to
probe the dependence of the energy on the pion (kaon) density, and thereby extract the chemical
potential via a finite difference. The results using the coarse MILC lattice are shown for the pion
and kaon systems in Figs. 2 and 3. Also shown is the prediction from tree-level chiral perturbation
theory, with which we find surprisingly good agreement. This is encouraging for studies of kaon
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Figure 1: Three pion (left) and kaon (right) interactions determined from the MILC coarse (blue) and fine
(magenta) lattices plotted .
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Figure 2: Dependence of the isospin chemical potential on the isospin density, calculated on the coarse
MILC ensembles. The curves correspond to the predictions of tree level chiral perturbation theory (dashed)
[14], the energy shift of Eq. (solid) and with the three-body interaction removed (dotted).

condensation in neutron stars where, typically, tree level chiral perturbation theory interactions are
assumed amongst kaons and between kaons and baryons

5. Summary

Multi-meson systems (and in general multi-hadron systems) have been investigated using lat-
tice QCD. The calculations presented here provide a first insight into the nature of these systems,
but much remains to be studied. Recently, we have started to explore the effects of these condensed
systems on other observables, looking at how the pion condensate screens the potential between a
static quark–anti-quark pair [16].
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