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1. Introduction

The Highly Improved Staggered Quark (HISQ) action developed in Hgfis[ an O(a?)
Symanzik-improved action for which additional suppression of tasteasgshinteractions is
achieved by replacing the original gauge lirtksn the Dirac operator by

U— X=%% 75U (1.1)
where intermediate sets of links W, X are defined as
e .73 —smearing level 1 (Fat 7Y = .#1U,
e 7/ —reunitarizationW = %V,
e 7, —smearing level 2 (Asq)X = .Z%W.

A new feature of the HISQ action compared with asqtad is the reunitarizatipriretegives
an extra contribution to the fermion force.

2. Fermion force and reunitarization

In molecular dynamics simulations we are sampling an ensemble of gauge catifigs!
weighted by exp—S), where the actio®= §;+ S is split into gauges;, and fermionic St, parts.
As usual, the integration over Grassmann variables is performed and se¢ofpseudo-fermion
fields® is introduced, resulting in the fermionic part of the fo8n~ (®|(MT(U)M(U))~N/4|d).
One can consult the details of the algorithm[ih [2] and recent ideas oreaffievaluation of the
fermion force for HISQ in[[B].

The fermion force is calculated by taking the derivative of the acBowith respect to funda-
mental gauge links) using the chain rule along the lines of Ref3. [B], [4]. Schematically:

0S¢ 0S5t 0X dW oV

U ~ X OW 9V U (21)

The following parts are the same as for the asqtad act@a/dX, dX/0W, 9V /dU, while the
contribution from the reunitarization stefyV/dV is new.

We have experimented with projecting to SU(3) and U(3) groups and fiatgion spectrum
measurements with valence HISQ and sea asqtad quarks show no difeisrone would expect
on physical grounds. Therefore in our dynamical HISQ simulations waya perform projection
to the group U(3). While keeping the physics the same, this has two advantage

1. Different methods of projection, namely polar decomposition and tracémization, give
identical results. (The same is not true in the SU(3) case.)

2. When projecting from U(3) to SU(3) by making the determinant of the mafiakto 1, one
needs to choose among three possibilities for the phase. In dynamical simsiztie needs
to track this phase to make sure it changes smoothly for each link. Othenstsmtinuous
changes lead to rapid changes in the action similar to those we describe below.
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We adopt the following method of U(3) projection. For a complex mafrithe matrixH =
V1V is Hermitian andW = VH~1/2 is unitary. We first calculatéd~1/2 by using the Cayley-
Hamilton theorem in a manner similar to the approach in REfs.[[5], [6]:

HY2 = fol + f1H + foH?, (2.2)

where f; are functions ofc; = Tr(H'*1) /(i +1), i = 0,1,2. To evaluate the derivative ¢f /2
with respect tdH one needs to know the derivative ffwith respect tdH. This can be performed
analytically by applying the chain rule and making use of the coefficients ékpbkalculated in
Ref. [8]. After dH~Y/2/9H is known we have trivially:

AL 57VH—1/2+V‘7H71/207H_

ov oV oH oV
(We write Eq. [2]3) schematically, but in fact each matrix-matrix derivatiersnk 4 tensor with
indices contracted in such a way that the resulting expression on the dghtdide is a rank
4 tensor again. An excellent review on how to deal with such derivatiaesbe found in[]4].)
Thus the entire derivation can be performed analytically. (We also implemariieide difference
scheme and rational function approximation but found them much lessaéethian the procedure
described here.)

To understand the possible behavioud®i /dV qualitatively let us consider the U(1) case for

the moment. TheN =re'® andw =V (VTV) %2 = €9 and the derivative

(2.3)

ow<dw> awVv"h  awyvth are 1

oV \av )y oV T are) a(v,vh 2 24)

is large wherr is small, as might happen when the lindsare locally disordered, and the first
stage of smearing results in a small smearedVinkor the matrix case the derivative is dominated
by the smallest eigenvalue Wf To derive Eq.[(2]4) we applied the method of Jacobians and the
notation is similar to the one used in Thermodynamics.

3. Dynamical HISQ simulations

We run the RHMC algorithm with five pseudofermion fields. The first psérddon im-
plements the ratio of the determinants for two light and one strange quark tetéenthant for
three unphysical heavy quarks (“UHQ”) with mamsyng = 0.2. The next three each implement
the determinant for one UHQ, and the final pseudofermion implements a phgh&rm quark,
including the mass correction to the Naik term to first ordanin

At the time we did our studies, one loop fermion corrections to the gauge actiennet yet
known, so we used the coefficients in our gauge action appropriateef@stjtad fermion action.
(The coefficients of the gauge action with 1-loop corrections due to HES@ been calculated and
are now availabl€[]8].)

Our integration algorithm is the “3G1F” (“three gauge steps, one fermiq¥)sadgorithm,
with the Omelyan integrator used for both gauge and fermion forces. @ueoton for the step
size is that each application of the fermion force is one step. Note that sexGntklyan integrator
shifts the time at which the force is calculated alternately forward and badkttee full period in
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NS x N Conf. | B am |am |am | At a, fm

20° x 64 40| 6.75| 0.010| 0.050| 0.600| 0.04167| 0.127
283 x 96 50| 7.07| 0.007| 0.035| 0.420| 0.03125| 0.093
483 x 144 6| 7.47| 0.004| 0.020| 0.240| 0.01250| 0.060

Table 1: Dynamical HISQ 2+1+1 ensembles.
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Figure 1: The histogram of the change in the action.

simulation time of the integrator is twice what we call the step size. For example wheun
a fifty-step trajectory this means 25 cycles of the Omelyan integrator, invoBfrfgrmion force
calculations and 150 gauge force calculations. The parameters of thetite 1 flavor ensembles
we have run are compiled in Taljle 1. The lattice spacing is calculated by rimepghe ratior;/a
from the static quark potential and using the value- 0.318 fm [].

While most trajectories ran smoothly, we found many trajectories with large jumpgwein
action as the integration proceeded. In [f]g. 1 we show the histogram ofiéinge in the action,
plotted on a logarithmic scale, over several time units foretke0.127 fm ensemble. The long tail
“outliers” indicate instantaneous jumps in the action, which we investigate furthe

Let us denote the norm of a matuxby:

1A= /3 AP
1]

When we calculate the fermion force at each time step as an anti-Hermitian méitmixden each

link, we evaluate its norm and find the maximum value over the lattjE¢[max AlSO, at each time
step we calculate the determinant\o{Fat7 smeared) links and find the minimum value over the
lattice: | detV |min. Time histories of these two quantities are shown in flig. 2. Large values of the
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Figure 2: The time history of detV |min (top) and||F ||max (bottom) for thea = 0.127 fm ensemble during 5
time units & 5 x 24= 120 time steps).

fermion force accompany small values of the determinant (or small eigesjadfi Fat7 smeared
links. Thus, when calculating smeared links by adding different pathsnayeby chance produce
a matrixV with an eigenvalue close to 0, which in turn leads to a large derivdivedV (as in the
U(1) example considered earlier) that results in a large fermion force.inBagration algorithm
has a finite step size, so it is not able to integrate such “spikes” in the foraetkly, leading to
instantaneous jumps in the action that we see as “outliers” in the action hist&igaji

We investigated how this situation changes when we go to finer (smaller latticengpan-
sembles. Since configurations become smoother, spikes in the force blessreevere, as seen in

Fig.[3.
4. Pion splittings on dynamical HISQ configurations

The effect of suppression of the taste-exchange interactions in HE&Qnwestigated in]1]
by measuring the pion spectrum with valence HISQ on sea asqtad cotitigaraHere we report
on similar measurements performed on dynamical HISQ configurations féirgtisvo ensembles
of Table[l.

It is convenient to define a dimensionless quantity which is almost indepeoidguark mass:

A= (MZ—ME)rE, (4.2)

whereMg corresponds to the Goldstone pion avig refers to one of the other seven pion tastes in
Tableq P andl]3. We calculafefor comparable asqtad and HISQ configurations, and then the ratio

JAYN=Ye)

R=
DHiso

4.2)
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Figure 3: Fermion force |F ||max for different ensembles versus time in time units (1 time oairesponds
to 24 steps foa= 0.127, 32 steps foa = 0.093 and 80 steps fa= 0.060 ensemble).

Pion taste|| rq MﬁSQ(GSS) r M#ISQ(4O) AASQ Ay 1SQ R

v 0.2244(02) | 0.1889(07)

oys || 0.2815(11) | 0.2071(27) || 0.029(1)| 0.0072(11)|| 4.0(6)
Vys || 0.2822(05) | 0.2058(10) | 0.029(0)| 0.0067(05)|| 4.4(3)
Wy, 0.3134(20) | 0.2224(33) | 0.048(1)| 0.0138(15)| 3.5(4)
Vo || 0.3126(11) | 0.2188(19) || 0.047(1)| 0.0122(08)| 3.9(3)
v 0.3347(28) | 0.2306(56) | 0.062(2)| 0.0175(26)| 3.5(5)
Yo 0.3373(15) | 0.2311(22) | 0.063(1)| 0.0178(10)| 3.6(2)
T 0.359(5) 0.252(12) || 0.079(4)| 0.0280(61)|| 2.8(6)

Table 2: Pion spectrum oa = 0.127 fm HISQ ensemble.

shows how much the splittings decrease when going from asqgtad to HISQualles ofR for
different pion tastes are shown in the last column of Tgfjles Jand 3. Tiististd errors are rather
large since for HISQ we have about an order of magnitude fewer agafigns than for asqtad.
The number of configurations used for measurements is indicated in pesestim the headers of
the second and third column. The overall trend is however clear and éemgnt with Ref.[[1]:
about a factor of three improvement in taste symmetry for the HISQ actionveetatasqgtad.

5. Conclusions

In dynamical HISQ simulations with typical parameters, we found that smerr@tygproduce
a smeared link/ with a small eigenvalue that dominates the derivative of the reunitarizetMink
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Pion taste|| r1M;>%572) | riM5; °9(50) || Aaso Drisg R

¥ 0.2069(05) | 0.1378(08)

YoVs 0.2177(10) | 0.1420(08) || 0.0046(5)| 0.0012(4)|| 4(1)
" 0.2187(07) | 0.1428(08) || 0.0050(4)| 0.0014(3)|| 3.6(8)
VYi 0.2256(11) | 0.1467(21) || 0.0081(5)| 0.0025(7)| 3.2(8)
VYo 0.2259(07) | 0.1475(11) || 0.0082(4)| 0.0028(4)|| 3.0(4)
y 0.2311(15) | 0.1485(16) || 0.0106(7)| 0.0031(5)|| 3.5(6)
Yo 0.2318(10) | 0.1509(11) || 0.0109(5)| 0.0038(4)|| 2.9(3)
I 0.2398(25) | 0.1522(27) || 0.015(1) | 0.0042(9)|| 3.5(8)

Table 3: Pion spectrum oa = 0.093 fm HISQ ensemble.

dW/dV, and gives a large contribution to the fermion force. Such “spikes” indheefintegrated
with finite time steps give “jumps” in the action that decrease the acceptancef ritiie RHMC
algorithm. This problem was noted in R€f| [6] and is probably related to tgpzbdefects, “dis-
locations” that manifest themselves in plaquettes with low values lying on the tdfiie pfaguette
distribution. We found that going to finer ensembles (smoother gauge aoatfigns) reduces the
number of spikes and partially cures the problem.

On configurations generated with the HISQ action for dynamical quarkeneasured the
staggered pion spectrum and found that pion splittings decrease bypeadathree or more, con-
firming the result of Ref.[J1], where pioneering tests were done with caléfiSQ fermions on
configurations with asqtad sea quarks.
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