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The Möbius domain wall action [1] is a generalization of Shamir’s action, which gives exactly

the same overlap fermion lattice action as the separation (Ls ) between the domain walls is taken

to infinity. The performance advantages of the algorithm arepresented for small ensembles of

quenched, full QCD domain wall and Gap domain wall lattices [2]. In particular, it is shown that

at the larger lattice spacings relevant to current dynamical simulations Möbius fermions work

well together with GapDWF, reducingLs by more than a factor of two. It is noted that there is a

precise map between the domain wall and effective overlap action at finite quark mass including

finite Ls chiral violations so that the Ward-Takahashi identities for the axial and vector currents

are exactly equivalent in the two formulations.

The XXVI International Symposium on Lattice Field Theory
July 14 - 19, 2008
Williamsburg, Virginia, USA

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:brower@bu.edu
mailto:rbabich@bu.edu
mailto:kostas@wm.edu
mailto:rebbi@bu.edu
mailto:schaich@bu.edu
mailto:vranas2@llnl.gov


P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
0
3
4

Möbius Algorithm for Domain Wall and GapDW Fermions Richard C. Brower

1. Introduction

Domain wall fermions provide an efficient and rigorous implementation of chiral symmetry in
lattice field theory at finite lattice spacing. Following the original ideas of Kaplanand Shamir one
introduces two 4-d domain walls (or 3 branes) separated byLs lattice sites in a 5th dimension. The
5-d domain wall action,

SDW = ∑
x,s

[Ψx,s(DDW(m)Ψ)x,s+Φx,s(DDW(1)Φ)x,s] , (1.1)

contains 5-d Wilson fermion (Ψx,s) and Pauli-Villars pseudo-fermion (Φx,s) fields which enjoy a
“kinematical” super symmetry broken only by the boundary conditions on the 3-branes (see Fig. 1).
The result is an effective 4-d action with low mass states below the cut-off representing a left(right)

-

qR = P+ΨLsqL = P−Ψ1

1 2 3 s → Ls−1 Ls

Figure 1: Domain wall convention with left/right chiral mode ats= 1 ands= Ls respectively approximated
by 3-branes separated by a distancea5Ls. The Pauli Villars (m= 1) and the zero mass Dirac (m= 0) operators
obey anti-periodic and Dirichlet boundary conditions respectively.

chiral fermion on each wall ats = 1(Ls) respectively in the limit of infinite separation between
the walls. After a long and interesting history of competing methods, it is now realized that the
effective 4-d theory atLs = ∞ is equivalent to one based on Neuberger’s overlap operator, with

Sov = ∑
xy

ψxDov,xy(m)ψy ≡ ψ
[1+m

2
+

1−m
2

γ5ε[H]
]

ψ (1.2)

and an appropriate Dirac “Hamiltonian” in the sign functionε[H]. The two actions lead to equiva-
lent matrix elementsD−1

ov,xy(m) ≡ 〈ψxψy〉ov = 〈qxqy〉DW, where the fieldsq, q̄, shown in Fig. 1, are
mathematically defined in Sec. 4.

For zero mass quarks,Dov(0) obeys the Ginsparg-Wilson relation,

γ5Dov(0)+Dov(0)γ5 = 2Dov(0)γ5Dov(0) , (1.3)

or equivalently the anti-commutator,{γ5,D−1
ov (0)} = 2γ5, which guarantees exact chiral symmetry

at finite lattice spacing and zero quark mass,mf = m/(1−m). Since all implementations give
solutions to the GW relation, the debate on the virtues of overlap vs. domain wallfermions is
essentially algorithmic in nature. For domain wall algorithms, practical considerations demand that

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
0
3
4

Möbius Algorithm for Domain Wall and GapDW Fermions Richard C. Brower

theLs → ∞ limit be approximated by modest values:Ls = O(10). This is not a trivial requirement.
FiniteLs causes a residual breaking to the GW relation as measured by the difference operator,

2γ5∆Ls[H] = γ5Dov(0)+Dov(0)γ5−2Dov(0)γ5Dov(0) . (1.4)

The conventional criterion for estimating this violation of chiral symmetry is to compare the
magnitude of “residual mass”,

mres =
Tr[D†−1

ov ∆Ls[H] D−1
ov ]

Tr[D†−1
ov D−1

ov ]
(1.5)

relative to the explicit quark massmf = m/(1−m). As emphasized by Sharpe [3], at current lattices
spacings a residual massO(10−3) is adequate but some quantities require an order of magnitude
smaller residual mass. Moreover recent applications to finite temperature and N = 1 SUSY QCD
have required much larger values ofLs = O(100). Better methods are needed to reducemres at
reasonable values ofLs.

Within this framework there still remains a large space of options for the lattice partition
function,

Z[U ] =
∫

DψDψ eβTr[UP]+Simproved[U ]+ψDov(m)[U ]ψ (1.6)

by improving the gauge action and/or the approximation to the overlap operator. Here we re-
examine the Möbius formulation of the domain wall algorithm [1], verifying that very substantial
improvements can be made in the convergence rate to the exact chiral fermionatLs = ∞. In addition
there is a strong feedback between improved gauge and fermionic algorithms. In particular we point
out when the so called “Gap domain wall” modification of the gauge action combines nicely with
the Möbius fermion action to give multiplicative improvements — each reducing the residual mass
by separate orders of magnitude.

2. Möbius Recipe

The simplest kernel for the overlap algorithm is the Wilson Hamiltonian operator, H = γ5DWilson(M5),
where

DWilson
xy (M5) = (4+M5)δx,y−

1
2

[

(1− γµ)Ux,x+µδx+µ,y +(1+ γµ)U†
x,x+µδx,y+µ

]

, (2.1)

with a negative mass parameterM5 ∈ [−1,−2]. However for the domain wall algorithm, the sim-
plest implementation is the Shamir form,H = γ5DShamir(M5),

DShamir(M5) =
a5DWilson(M5)

2+a5DWilson(M5)
. (2.2)

The Möbius form is a real 3 parameter Möbius transform of the Wilson kernel interpolating be-
tween both of these,

DMoebius(M5) =
(b5 +c5)DWilson(M5)

2+(b5−c5)DWilson(M5)
≡ αDShamir(M5) . (2.3)
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Relative to Shamir’s kernel this introduces 1 new “scaling” parameterα = (b5 + c5)/a5 at fixed
a5 = b5−c5. Due to the scale invariance of the sign function,ε[αλ ] = ε[λ ], this does not change
the Ls = ∞ chiral lattice action.Consequently at fixeda5,M5 the Möbius rescaling should be
regarded as an improved algorithm for the same chiral action, optimized by choosingα(Ls)

to minimize mres at finite Ls.
Why is this freedom to rescaleH desirable? The difficulty with the domain wall approach is

that the resultant polar approximation to the sign function,

εLs[H] =
(1+H)Ls − (1−H)Ls

(1+H)Ls +(1−H)Ls
= tanh[−(Ls/2) logT] , (2.4)

is exponentially convergent only for eigenvaluesλ of H inside the interval: log(|λ |) ∈ [1/Ls,Ls].
So the advantage of rescaling at finiteLs is to use this interval more efficiently by shifting the
spectrum log(λ ) → log(α)+ log(λ ). Other approaches to improving the polar approximation that
have been suggested include explicit projection of a finite set of eigenvalues at smallλ and/or
suppressing the number of small eigenvalues by changing the gauge action. Indeed these may be
combined together with Möbius fermions to gain additional advantage as illustrated here by the
Möbius rescaling of the GapDW lattices. Next we explain how the domain wall implementation of
this rescaling naturally involves the two parameters,b5,c5.

The Möbius generalization of Shamir merely requires that the Wilson kernel be included in
the 5th dimensional hopping term,

DDW(m)s,s′ = D(s)
− P+ δs,s′+1 +D(s)

+ δs,s′ +D(s)
− P− δs,s′−1 (2.5)

− mD(1)
− P+ δs,1δs′,Ls −mD(Ls)

− P− δs,Lsδs′,1

with P± = 1
2(1± γ5) and D(s)

+ = b5(s)DWilson(M5) + 1, D(s)
− = c5(s)DWilson(M5)− 1 with s,s′ =

1,2, · · ·Ls or in Ls×Ls matrix notation. For the rescaling example discussed we takeb5(s)+c5(s) =

αa5 , b5(s)−c5(s) = a5, so the s-dependence forD(s)
± can be dropped, however we have included

it so that the Möbius class includes other approaches such as the Zolotarev approximation or the
variable fields suggested by Bär, Narayanan, Neuberger and Witzel [4]. In matrix notation:

DDW(m) =

















D(1)
+ D(1)

− P− 0 · · · −mD(1)
− P+

D(2)
− P+ D(2)

+ D(2)
− P− · · · 0

0 D(3)
− P+ D(3)

+ · · · 0
· · · · · · · · · · · · · · ·

−mD(Ls)
− P− 0 0 · · · D(Ls)

+

















(2.6)

3. Performance Measures

Fortunately the new off diagonal Wilson operators in the Möbius domain wall action can be
implemented with essentially no additional algorithmic complexity. The first step, suggested in
Ref [1], is to replace 5-d red/black preconditioning by a 4-d checker board with no alternation of
color along the 5th axis. The new form of the Schur complement solves analytically all interaction
in the fifth dimension. The performance of 4-d versus 5-d red/black preconditioning, if anything,
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favors this construction. Then with a simple gather operation for the three spinors in theµ̂ direc-
tion, the number of Wilson Dirac application per CG iteration is identical. A full comparison of
performance on a range of lattices is impossible in this short talk. So we consider three examples
with more to be presented in a future publication.
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Figure 2: The Möbius algorithm on pure gauge lattices compared with Shamir (α = 1).

Quenched Lattices:As demonstrated in the original proposal [1], the Möbius formulation has
the potential of an order of magnitude reduction of the explicit chiral symmetrybreaking at fixed
computational cost. A comparison of the residual masses is given in Fig. 2 onβ = 6.0 quenched
lattices witha−1 ≃ 2.1GeV. For these lattices the optimal rescaling satisfies the empirical form,
α(Ls) ≃ 1+Ls/8. Note that for small residual masses the advantage of scaling is huge.
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Figure 3: The Möbius algorithm on full QCD domain wall lattices compared to Shamir (α = 1).

Domain Wall Lattices: Test were also carried out on full domain wall lattices which generally
exhibit worse convergence to smallmres. However as an example in Fig. 3 the same comparison is
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made on a set of DWFNf = 2+1 Iwasaki lattices [5] atβ = 2.13 with ms = 0.04,ml/ms = 1/4,
a−1 ≃ 1.7GeV. Even without carefully tuning the rescaling parameter the advantage appears to be
nearly as dramatic as for the quenched lattices. More thorough studies of this are underway.
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Figure 4: The Möbius algorithm (α = 2) on pure gauge and Gap lattices vs Shamir (α = 1).

Gapped Lattices: A more radical suggestion to suppress small eigenvalues inH was sug-
gested by Vranas [2] which by adding a pair of Wilson fermions with massM5 < 0 induces an
improvement term,

SGap[Uµ(x)] = Tr[log(D†Wilson(M5)D
Wilson(M5))] , (3.1)

for the effective gauge action. To test the locality of this action one should recognize that the bilocal
dependence on the gauge field is measured by “axial correlator”

δUµ (x)δUν (y)SGap[U ] = 〈 j5µ
Gap(x) j5ν

Gap(y)〉 ∼ exp[−|x−y|/ξπ ] (3.2)

whose long distance tail is the would be “pion” propagator for the Gap fermions. Ref. [2] demon-
strated that this correlation is O(1) in lattice units as you approach the continuumlimit, roughly the
same degree of locality in the overlap action itself. Fig. 4 compares (α = 2) vs Shamir (α = 1) at
M5 = −1.8, m= 0.02 for pure gauge and Gapped lattices both witha−1 = 1.4Gev.

4. Discussion

Figs. 2- 4 point to a general rule that a Möbius scaling transformation of Shamir by a factor of
α > 1 allows one to reduceLs and therefore the cost by a factor of 1/α at fixedmres. This is a natural
consequence of the scaling relation,∆Ls[αλ ] = ∆αLs[λ ], for small eigenvalues,|λ | ≤ O(1/Ls).
Tuningα > 2 for largeLs gives additional savings. There appears to be an additional computational
cost forα ≥ 2 on the order of 10% due to increased condition number. Alternatively we note at
fixedLs = O(10), the Möbius algorithm can reducemres by an order of magnitude or more at fixed
cost. The combined improvement in the Möbius algorithm on Gapped lattices is multiplicative so
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here one might contemplate exploratory studies in beyond the standard modelstrong dynamics with
Ls in the range of 4 to 8. For high precision studiesmres can be reduced below 10−5 for Ls = 32.
Both of these are attractive options.

In a subsequent publication more details on the efficiency and formal properties of the Möbius
algorithm will be provided. We simply note here that a straight forward general formalism exists
that allows all correlators as well as the Ward-Takahashi identities to be expressed independent
of the detailed form of the Möbius domain wall action. For example the applicationof LDU
decomposition leads to the basic identity,

[P† 1
DDW(m)

DDW(1)P]s′s =















D−1
ov (m) 0 0 · · · 0

(1−m)∆R
2D−1

ov (m) 1 0 · · · 0
(1−m)∆R

3D−1
ov (m) 0 1 · · · 0

· · · · · · · · · · · · · · ·

(1−m)∆R
Ls

D−1
ov (m) 0 0 · · · 1















s′s

, (4.1)

wherePs′,s = P−δs′,s+ P+δs′,s+1 rotates the Right fermion to the Left wall in Fig. 1. It follows
from this that

D−1
ov,xy(m) ≡ 〈ψxψy〉ov = 〈qxqy〉DW , (4.2)

defining the appropriate chiral domain wall fields on the boundary:qx = [P†Ψ]x,1 and qx =

[ΨDDW(1)P]x,1 . All the matrix elements are directly related to the transfer matrix,T = (1−
H)/(1+H), through the partial left and right products1, ∆L

s = T−s/(1+T−Ls) and∆R
s+1 = Ts−Ls/(1+

T−Ls). Together they give the GW chiral breaking operator,∆Ls[H] = ∆L
s∆R

s+1, defined above in
Eq. 1.4. Similar arguments leads to a general map betweenall overlap and domain wall correla-
tors, with only implicit reference to the Möbius operatorDDW(m). From this map, the vector and
axial Ward-Takahashi identities must be identical for both overlap and domain wall actions at finite
Ls, lattice spacing and finite volume.

In summary little change in the formalism or software is required to use the Möbiusalgorithm,
while providing a substantial improvement in performance. A very efficientcode for the BlueGene
has been written by Andrew Polchinski under the SciDAC software project and is readily available
at the software links for USQCD:http://usqcd.org.

This work was supported in part by US DOE grant DE-FG02-91ER40676, NSF grant DGE-
0221680, NSF CCF-0728915, and the Jeffress Memorial Trust grant J-813.
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