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The Mobius domain wall actior[l[l] is a generalization of Skr&aaction, which gives exactly
the same overlap fermion lattice action as the separatighl{ietween the domain walls is taken
to infinity. The performance advantages of the algorithmpaesented for small ensembles of
quenched, full QCD domain wall and Gap domain wall Iatti@]s [n particular, it is shown that
at the larger lattice spacings relevant to current dynansicaulations Mébius fermions work
well together with GapDWF, reducirlg; by more than a factor of two. It is noted that there is a
precise map between the domain wall and effective overldpraat finite quark mass including
finite L chiral violations so that the Ward-Takahashi identitiestfe axial and vector currents
are exactly equivalent in the two formulations.
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1. Introduction

Domain wall fermions provide an efficient and rigorous implementation of kéyrametry in
lattice field theory at finite lattice spacing. Following the original ideas of KaptethShamir one
introduces two 4-d domain walls (or 3 branes) separated;lbgttice sites in a 5th dimension. The
5-d domain wall action,

Sow = [Wxs(Dow(M)W)xs+ Pxs(Dow (1)P)xs] , (1.1)
XS
contains 5-d Wilson fermion¥y s) and Pauli-Villars pseudo-fermiord s) fields which enjoy a
“kinematical” super symmetry broken only by the boundary conditions on-tir@Bes (see Fif] 1).
The result is an effective 4-d action with low mass states below the cutgréigenting a left(right)

q-=P-W; R =P W,

1 2 3 S — Ls—1 Ls

Figure 1: Domain wall convention with left/right chiral mode &= 1 ands = L respectively approximated
by 3-branes separated by a distaagle;. The Pauli Villars (n= 1) and the zero mass Diram& 0) operators
obey anti-periodic and Dirichlet boundary conditions egjvely.

chiral fermion on each wall & = 1(Ls) respectively in the limit of infinite separation between
the walls. After a long and interesting history of competing methods, it is nolizeéathat the
effective 4-d theory ats = « is equivalent to one based on Neuberger’s overlap operator, with

1 1-
Sv= Z(,UxDov,xy(m)LlJyE Yy %n‘FJVSS[H] Y (1.2)
Xy

2
and an appropriate Dirac “Hamiltonian” in the sign functigdhi]. The two actions lead to equiva-
lent matrix elementﬁ)g\,}xy(m) = (UxPy)ov = (axTy)pw, Where the fields},q, shown in Fig[]L, are
mathematically defined in Selg. 4.
For zero mass quarkB,,(0) obeys the Ginsparg-Wilson relation,

¥5Dov(0) + Dov(0) y5 = 2Dov(0) 5Dov(0) | (1.3)

or equivalently the anti-commutatdrys, D5} (0)} = 2y, which guarantees exact chiral symmetry
at finite lattice spacing and zero quark masg,= m/(1—m). Since all implementations give
solutions to the GW relation, the debate on the virtues of overlap vs. domairfesaliions is
essentially algorithmic in nature. For domain wall algorithms, practical coregidas demand that
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theLs — oo limit be approximated by modest valuds:= O(10). This is not a trivial requirement.
Finite Ls causes a residual breaking to the GW relation as measured by the differeerator,

2y5A [H] = ¥5Dov(0) + Doy(0) y5 — 2Dov(0) y5Doy(0) . (1.4)

The conventional criterion for estimating this violation of chiral symmetry is to Gmehe
magnitude of “residual mass”,
Tr[Dg* AL [H] Dyl
Tr[Dév Do

Myes = (1.5)
relative to the explicit quark mass; = m/(1—m). As emphasized by Shard¢ [3], at current lattices
spacings a residual ma€%10~3) is adequate but some quantities require an order of magnitude
smaller residual mass. Moreover recent applications to finite temperatlitd’aa 1 SUSY QCD
have required much larger valueslof= O(100). Better methods are needed to reduge; at
reasonable values tf.

Within this framework there still remains a large space of options for the latticiqa

function,
Z[U] = /@qj@w eBTr[UP] + Smprove({u] "‘wDov(m) [U}L,U (1.6)

by improving the gauge action and/or the approximation to the overlap operdere we re-
examine the Mobius formulation of the domain wall algoritHin [1], verifying theyvsubstantial
improvements can be made in the convergence rate to the exact chiral fatinienc. In addition
there is a strong feedback between improved gauge and fermionic algorithpasticular we point
out when the so called “Gap domain wall” modification of the gauge action comhicely with
the Mobius fermion action to give multiplicative improvements — each reducinggidual mass
by separate orders of magnitude.

2. M0obius Recipe

The simplest kernel for the overlap algorithm is the Wilson Hamiltonian opetaterysDV1Son(Ms),
where

) 1
D\Q"SOH(MS) = (44+Ms)dy — > [(1 — Y )Usxp Oy + (1+ Vu)U;r,xw Ocy+u | » (2.)

with a negative mass parametdg < [—1, —2]. However for the domain wall algorithm, the sim-
plest implementation is the Shamir fork,= yDSMaMI(Ms),

DShamir(Ms) . a5DWi|SOn(M5)

= . . 2.2
2+ a5DW"S°”(M5) ( )

The Mdbius form is a real 3 parameter Mdbius transform of the Wilsondtenterpolating be-
tween both of these,
(b5—|—C5)DW”S°n(|\/|5)

Moebi — Shami
DY Ms) = 5 by o) DWTEoMg) — P AMi(Ms) . (2.3)
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Relative to Shamir's kernel this introduces 1 new “scaling” parameter (bs + cs)/as at fixed
as = bs — cs. Due to the scale invariance of the sign functiefgA] = €[A], this does not change
the Ls = oo chiral lattice action.Consequently at fixedas, M5 the Mdbius rescaling should be
regarded as an improved algorithm for the same chiral action, optinized by choosinga (Ls)
to minimize myeg at finite Ls.

Why is this freedom to rescalé desirable? The difficulty with the domain wall approach is
that the resultant polar approximation to the sign function,

(L4+H)s— (1-H)bs

éLHl = (I+H)+ (1-H)ks

=tanh—(Ls/2)logT], (2.4)

is exponentially convergent only for eigenvaluesf H inside the interval: logA|) € [1/Ls, Lg].
So the advantage of rescaling at finitgis to use this interval more efficiently by shifting the
spectrum logh ) — log(a) 4 log(A ). Other approaches to improving the polar approximation that
have been suggested include explicit projection of a finite set of eigas/alusmalld and/or
suppressing the number of small eigenvalues by changing the gauge dcterd these may be
combined together with Mdbius fermions to gain additional advantage as illustiate by the
Mobius rescaling of the GapDW lattices. Next we explain how the domain wall imgaigéation of
this rescaling naturally involves the two parametbgscs.

The Mdbius generalization of Shamir merely requires that the Wilson kemaldiuded in
the 5th dimensional hopping term,

D™(m)sg = DY P, &g41+DY &y +DIP &y 4 (2.5)
- m D(,l) P; 310y, —M D(,LS) P_ 051061

with P, = 1(1+ y5) and DY = bs(s)DWIS*(Ms) + 1, D' = c5(s)DWISOYMg) — 1 with 5,8 =
1,2,---LsorinLsx Ls matrix notation. For the rescaling example discussed weldgleg+ c5(s) =
aas, bs(s) — cs(s) = as, so the s-dependence fBlEf) can be dropped, however we have included
it so that the Mobius class includes other approaches such as the Zolapam®ximation or the
variable fields suggested by Béar, Narayanan, Neuberger and Viizéh [matrix notation:

[ p¥ pPp. 0 .. —mDYp,]
p®p, D® DPp ... 0
DPY(m) = 0 p®, D¥ ... 0 (2.6)
—mD™P. 0 o .. b |

3. Performance Measures

Fortunately the new off diagonal Wilson operators in the Mébius domain wabracan be
implemented with essentially no additional algorithmic complexity. The first stepestied in
Ref A1, is to replace 5-d red/black preconditioning by a 4-d checkerdwith no alternation of
color along the 5th axis. The new form of the Schur complement solvestiadllyall interaction
in the fifth dimension. The performance of 4-d versus 5-d red/blaclopditioning, if anything,
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favors this construction. Then with a simple gather operation for the thieerspn thefi direc-
tion, the number of Wilson Dirac application per CG iteration is identical. A full cangon of
performance on a range of lattices is impossible in this short talk. So we eortiside examples
with more to be presented in a future publication.

' Shamir, M5=1.8, a5=i.0 —A—
0.001 | a=20
L=12
8 L:=16
E 0.0001 1
L=24 ﬁ
Ls=32
1le-05 : : : :
0 10000 20000 30000 40000 50000

Number of Dirac applications

Figure 2: The M6bius algorithm on pure gauge lattices compared witm8h(a = 1).

Quenched Lattices:As demonstrated in the original propodal [1], the M&bius formulation has
the potential of an order of magnitude reduction of the explicit chiral symnie&gking at fixed
computational cost. A comparison of the residual masses is given ifij Fig32-06.0 quenched
lattices witha~! ~ 2.1GeV. For these lattices the optimal rescaling satisfies the empirical form,
a(Ls) ~ 14 Ls/8. Note that for small residual masses the advantage of scaling is huge.

01 T T T T T T
Shamir (a =1) on DW +——f——
Moebius (a=2) on DW
Moebius (0=3) on DW ——K—
0.01 f B
+
S
0.001 | % n 1
+
X
0.0001 |- N
0 10 20 30 40 50 60 70

Figure 3: The M6bius algorithm on full QCD domain wall lattices comgaito Shamirg = 1).

Domain Wall Lattices: Test were also carried out on full domain wall lattices which generally
exhibit worse convergence to smailes. However as an example in Fig. 3 the same comparison is
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made on a set of DWN; = 2+ 1 Iwasaki lattices[]5] aB = 2.13 withms = 0.04,m /ms = 1/4,
a1~ 1.7GeV. Even without carefully tuning the rescaling parameter the advantagarsgpebe
nearly as dramatic as for the quenched lattices. More thorough studias af¢runderway.

Ol T T T T
Shamir on Gauge: 3 =5.85 —+—
Moebius on Gauge: 3 = 5.85
Shamir on Gap: B=4.6 ——
001 b * Moebius on Gap: B=4.6 + |
+
g X+
3¢ +
+
0.001 |
E
0.0001
X
le-05 |
o
le-06 . : . .
0 10 20 30 40 50

Figure 4: The Mobius algorithmd = 2) on pure gauge and Gap lattices vs Shami=(1).

Gapped Lattices: A more radical suggestion to suppress small eigenvaluét was sug-
gested by Vranad][2] which by adding a pair of Wilson fermions with nMss< 0 induces an
improvement term,

SaplUp (X)] = Trllog(D™'**Y(Ms) DV Ms) )], (3.1)

for the effective gauge action. To test the locality of this action one sheulwbnize that the bilocal
dependence on the gauge field is measured by “axial correlator”

80,900y ) SoaplU] = {iap(X) i8ap(y)) ~ expi—[x—Y|/&x] (3.2)

whose long distance tail is the would be “pion” propagator for the Gap fersniRef. [R] demon-
strated that this correlation is O(1) in lattice units as you approach the contilimitmmoughly the

same degree of locality in the overlap action itself. [fig. 4 compares ) vs Shamir ¢ = 1) at

Ms = —1.8, m= 0.02 for pure gauge and Gapped lattices both with= 1.4Gev.

4. Discussion

Figs.[2{% point to a general rule that a Mébius scaling transformationah@tby a factor of
a > 1 allows one to redudes and therefore the cost by a factor gfclat fixedmyes. Thisis a natural
consequence of the scaling relatidh, [aA] = Aq1[A], for small eigenvaluesA| < O(1/Ls).
Tuninga > 2 for largeLs gives additional savings. There appears to be an additional computationa
cost fora > 2 on the order of 10% due to increased condition number. Alternativelyoie at
fixed Ls = O(10), the MObius algorithm can reduoges by an order of magnitude or more at fixed
cost. The combined improvement in the Mobius algorithm on Gapped lattices is maliy#ico
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here one might contemplate exploratory studies in beyond the standardstrodgldynamics with
Ls in the range of 4 to 8. For high precision studimss can be reduced below 1Bfor Ls = 32.
Both of these are attractive options.

In a subsequent publication more details on the efficiency and formagpiregof the Mobius
algorithm will be provided. We simply note here that a straight forward ggriermalism exists
that allows all correlators as well as the Ward-Takahashi identities to fressed independent
of the detailed form of the Mdbius domain wall action. For example the applicafidtDU
decomposition leads to the basic identity,

Do (m) 0 0---0
1 (1-m)ARDGIm) 1 0 --- 0
7" oD (D= | (1-maiDgm) 0 10| L @)
[(1-mARDGHmM) 0 0 - 1],

where Py s = P_dy s+ P} Oy 541 rotates the Right fermion to the Left wall in Fi. 1. It follows
from this that

Dav,lxy(m) = (UPy)ov = (axTy) oW (4.2)
defining the appropriate chiral domain wall fields on the boundegy:- [Q’TW]X; and T, =

[(WDpw (1) Z]x1 . All the matrix elements are directly related to the transfer maffix; (1—
H)/(1+H), through the partial left and right produéts\s = T-S/(1+T 1) andAR ;, =TS Ls/(1+
T-L). Together they give the GW chiral breaking operafar,[H] = ASAR, ;, defined above in
Eq.[L.4. Similar arguments leads to a general map betat@verlap and domain wall correla-
tors, with only implicit reference to the Mobius operaf@sy (m). From this map, the vector and
axial Ward-Takahashi identities must be identical for both overlap anshadowall actions at finite
Ls, lattice spacing and finite volume.

In summary little change in the formalism or software is required to use the Méalgjasthm,
while providing a substantial improvement in performance. A very efficede for the BlueGene
has been written by Andrew Polchinski under the SciDAC software prajetis readily available
at the software links for USQCHDhttp://usqgcd.org
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