
P
o
S
(
L
A
T
T
I
C
E

2
0
0
8
)
0
4
0

Writing Efficient QCD Code Made Simpler: QA0

Andrew Pochinsky ∗

Massachusett Institute of Technology
E-mail: avp@mit.edu

A new tool for writing platform-independent optimized QCD code,QA0, is described. Perfor-

mance of a Möbius Domain Wall Fermion inverter written with qa0 on several platforms is pre-

sented.

The XXVI International Symposium on Lattice Field Theory
July 14-19 2008
Williamsburg, Virginia, USA

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

P
o
S
(
L
A
T
T
I
C
E

2
0
0
8
)
0
4
0

QA0 for LQCD Andrew Pochinsky

1. Introduction

Presently there are many different computer architecturesavailable for Lattice QCD caclula-
tions. The June 2008 Top 500 list[1] contains four differentarchitectures amongst a hundred fastest
computers in the world. It is likely that while some architectures will move out of the list, the sit-
uation will likely remain fundamentally the same as new players enter the field, especially as the
race to petaflops scale processes.

The above observation makes it attractive to be able to run LQCD code on many different
architectures. However, there is a catch. While the most general C code could be ran unmodified
on a new machine, in practice its performance will be not veryimpressive; to harvest as many
compute cycles as possible, one has to tweak the code, sometimes to a considerable degree, for a
new machine.

Code tuning is expensive in human time and is notoriously prone to errors. At the one extreme
one would have to write the core algorithms in the machine lanugage at the price of staying locked
to a particular architecture. On the other hand, modern compilers are getting better over time,
but they require help from an application programmer to generate efficient code. Unfortunately,
this approach does not completely solves the problem. One ends with a set of application codes
that should solve the same physics problem on different architectures. Code maintenance quickly
becomes a major challenge.

This work addresses the issue of writing high performance easily portable code for LQCD for
modern computer architectures.

2. QA0, a QCD register transfer language

2.1 The Problem

At the heart of every QCD code is computing a gauge-fermion product

φ [x]← (1+ γµ)Uµ [x]ψ [x+ µ̂]

One would expect that this is small enough piece of code that could not not possibly create a
portability problem. However, in any QCD application variations on the above theme are required.
The variations quickly lead to a combinatorial explosion: e.g., the QLA library [2] has more than
2500 routines for each value ofNc and precision.

Another issue that needs to be addressed is a mismatch between a data-parallel structure of
QCD applications and the nature of modern computer designs.The problem is that modern pro-
cessors do not work very well with the data-parallel paradigm, because speed of memory access
relative to computational speed keeps decreasing. Instead, one should try exploit data caches by
reusing recently access data as much as possible. For example, instead of writing a sequence of
QDP/C calls, a better performing code would invert the loops—do all operations in the sequence
on one lattice site before going to the next. This approach will win big if it could be work for
routines like a Dirac operator and a preconditioned CG matrix. Unfortunatelly this is not possible
to do within the QDP library framework.

2

P
o
S
(
L
A
T
T
I
C
E

2
0
0
8
)
0
4
0

QA0 for LQCD Andrew Pochinsky

2.2 A solution

QA0 is a tool that empowers a QCD programmer to quickly write codethat is “missing” in
QDP/C. E.g., the following snippet of QDP

a0 = QDP_create_D();

QDP_D_veq_spproj_M_times_D(a0, U0, s0, 1, +1);

QDP_D_vpeq_spproj_Ma_times_D(a1, a0, U1, s1, 2, -1);

QDP_destroy(a0);

could be written inQA0 as follows

loop (s = 0 ..< site) {

tmp = $pointer.copy(a1);

loop (d = 0 ..< Ls) {

(tmp2,s0) = $qcd.mul.spproj.1.plus(tmp, U0, s0);

}

loop (d = 0 ..< Ls) {

(a1,s1) = $qcd.madd.spproj.2.minus(a1, U1, s1);

}

}

TheQA0 compiler produces efficient code from the same input on all supported architectures.

2.3 QA0 language

The goal ofQAo is to provide an abstraction layer between HLL and machine code. It is
achieved by defining a QCD RISC-like abstract machine as follows:

• All memory accesses are explicit. There are only two operations on memory:load and
store. All other operations take inputs from registers and place results into registers.

• Non-memory operations have no effects other than producingresults.

• Control flow is explicit. There are loops, forward branches and returns in the present version.
Only leaf procedures are supported.

• In addition to integer, pointer and floating point registers, there are “registers” for com-
mon QCD data: gauge matrices, Dirac fermions, staggered fermions, projected fermions and
complex numbers.

• Both single and double precision is supported.

• Instruction set is extensible with user level macros to simplify coding.

• Like HLL, the same input language is used to generate code fordifferent backends.

In fact, all QCD operations are defined as macros which are transformed into the underlying
machine instructions by theQAo compiler. Presently the following backends are implemented:

3

P
o
S
(
L
A
T
T
I
C
E

2
0
0
8
)
0
4
0

QA0 for LQCD Andrew Pochinsky

C99–32 Standard C with built-in complex types on 32-bit machines.

C99–64 Standard C with built-in complex types on 64-bit machines.

Cee–32Traditional C (complex operations expanded into floats) on 32-bit machines.

Cee–64Traditional C (complex operations expanded into floats) on 64-bit machines.

xlc–BG/X BG/L and BG/P with the Double Hummer support using IBM XLC as abackend.

3. Application Example: MDWF

The QA0 approach to code generation was tested on Möbius Domain WallFermion code.
Results are encouraging: all platforms run quite well in theinitial C-backend implementation of
QA0 while there is no platform-dependent code outside theQA0 compiler. The code is organized
as a Level III library for the SciDAC LQCD infrastructure.

The MDWF code follows previous Domain Wall Fermion code in using SciDAC LQCD li-
braries [2] for communication. The code itself is organizedinto a library of operators and inverters
(a Dirac CG solver, preconditioned CG, and shifted CG are provided), as well as helper routines
to do linear algebra operations on fermion fields. For optimization purposes the code uses its own
data layout, therefore, the interface provides import and export routines.

Both single and double precision versions are implemented and could be used in the same
application. On platforms where there is a significant difference in performance this allows one to
get an approximate solution of the Dirac equation in single precision and then quicky “polish” the
result into double.

The code consists of two parts:

• Top level functions provide the user’s interface. All routines are written in C. Code consists
of 5000 lines of portable C.

• Low level functions implements all floating point operations. This code consists of 2500
lines ofQA0.

Currently all supported platforms shareQA0 code. SameQA0 code is used to generate both
double and single precision variants of the MDWF.

4. Performance comparison

We compare performance of the MDWF inverter on different parallel systems. In case of Blue
Gene (both /P and /L) [4], IBM’s XLC compiler was used as a back-end forQA0. Though it does
not produce the most optimal code, it is sufficiently good forour purposes. In all cases QMP
over MPI was used for communication. For the SiCortex machine [5] we also used the vendor’s
compiler. In both cases it is possible to generate a better code for QCD than the current compilers
are capable of, however, the required effort may be justifiedif significant time is available on a
respective machine.

We show both weak scaling behavior and strong scaling on 323
×64×16 lattice.

4

P
o
S
(
L
A
T
T
I
C
E

2
0
0
8
)
0
4
0

QA0 for LQCD Andrew Pochinsky

4.1 Strong Scaling

For a given problem size strong scaling shows how far a job could be stratched accross multiple
processors. We used our production lattice size, 323

×64×16, in this study.

BlueGene/L is used in the virtual node mode. The machine peakis 2800MFlops/cpu. One can
clearly see that double precision performance is limited bythe memory bandwidth.

#cpu float, MFlops/cpu double, MFlops/cpu

256 678 463
1024 734 505
2048 657 429

BlueGene/P is also used in virtual node mode. The machine peak is 3400MFlops/cpu. It uses
a different version of XLC; the architecture is sufficientlydifferent from BG/L to merit a careful
study.

#cpu float, MFlops/cpu double, MFlops/cpu

256 814 626
512 808 620

1024 755 561
2048 802 609
4096 813 622

Initial tests were run on the SiCortex series of machines. The machine peak is 1000MFlops/cpu.
The vendor’s C compiler was used as well as the original MPI implementation.

#cpu float, MFlops/cpu double, MFlops/cpu

128 195 181
256 193 176
512 191 173

4.2 Weak Scaling

For weak scaling studies we keep the local lattice size fixed and change the machine size. A
single node performance shows how well the processor is utilized, while various machine sizes
show effects of the network on the perfomance.

5

P
o
S
(
L
A
T
T
I
C
E

2
0
0
8
)
0
4
0

QA0 for LQCD Andrew Pochinsky

On the BG/L one sees a drop in performance for 16 and 256 cores due to lack of torus in the
network for these block sizes. Memory bandwidth limitations result in performance difference
between single and double precision.

On BG/P small blocks do not show perculiar behavior, likely because of changes in the network
hardware. It is worth noticing that the share of the peak is somewhat lower than on BG/L.

6

P
o
S
(
L
A
T
T
I
C
E

2
0
0
8
)
0
4
0

QA0 for LQCD Andrew Pochinsky

On Sicortex, performance is also remarkably flat. Relative low share of peak achived is caused by
a lack of hardware prefetch capabilities in the processor.

5. Conclusions

QA0 is a valuable tool for writing Level III LQCD routines. By combining platform indepen-
dence and exposing a low level processor abstraction to the application programmer,QA0 makes it
possible to achieve performance of hand crafted code without writing in the assembly language.

The system is being extended to include target architectures of interest to the lattice QCD
community, including the SSE and the CBE.

Overall design ofQA0 makes is suitable for other application domains. This direction is being
exploited as well.

6. Acknowledgements

This work was supported in part by the DOE Office of Nuclear Physics under grant DEFG02-
94ER40818. This research used resources under the INCITE and ESP programs of the Argonne
Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office
of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357, resources
provided by the DOE through its support of the MIT Blue Gene/L. IBM has provided early access
to BG/P. Sicortex Inc. has graciously provided access to itshardware for scaling studies.

References

[1] http://www.top500.org/

[2] http://www.usqcd.org/

[3] http://www.mit.edu/~avp/mdwf/

[4] http://www.ibm.com/

[5] http://www.sicortex.com/

7

