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We discuss how the integrators used for the Hybrid Monte Carlo (HMC) algorithm not only

approximately conserve some HamiltonianH but exactly conserve a nearby shadow Hamiltonian

H̃, and how the difference∆H ≡ H̃ −H may be expressed as an expansion in Poisson brackets.

By measuring average values of these Poisson brackets over the equilibrium distribution∝ e−H

generated by HMC we can find the optimal integrator parameters from a single simulation. We

show that a good way of doing this in practice is to minimize the variance of∆H rather than its

magnitude, as has been previously suggested. Some details of how to compute Poisson brackets

for gauge and fermion fields, and for nested and force gradient integrators are also presented.
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Tuning HMC using Poisson brackets

1. Introduction and motivation

Hybrid Monte Carlo [1] is the algorithm of choice to generatedynamical configurations for
lattice QCD. This algorithm relies on the introduction of a fictitious momentum for each dynam-
ical degree of freedom, resulting on a Markov chain with a fixed point exp(−H(q, p)) where the
Hamiltonian isH = 1

2 p2+S(q) = T(p)+S(q); ignoring momentap, we get the desired distribution
exp(−S(q)).

The HMC Markov chain alternates two Markov steps:Molecular Dynamics Monte Carlo,
which consists of a reversible volume-preserving approximate Molecular Dynamics trajectory of
τ/δτ steps followed by a Metropolis accept/reject test with acceptance probability min(1,e−δH);
andMomentum refreshmentfrom a Gaussian heatbathP(p) ∝ e−p2/2.

1.1 Symplectic integrators

Symmetric symplectic integrators form a large class of reversible and volume-preserving in-
tegrators. The idea of asymplectic integratoris to write the evolution operator as exp

(

τ d
dt

)

=

exp
(

τ
{

dp
dt

∂
∂ p + dq

dt
∂

∂q

})

≡ eτĤ where theHamiltonian vector field

Ĥ = −
∂H
∂q

∂
∂ p

+
∂H
∂ p

∂
∂q

= −S′(q)
∂

∂ p
+T′(p)

∂
∂q

≡ Ŝ+ T̂.

We now make use of the Baker–Campbell–Hausdorff (BCH) formula, which tells us that the
product of exponentials in any associative algebra can be written as ln(eA/2eBeA/2)− (A+ B) =
1
24

{

[A, [A,B]]−2[B, [A,B]]
}

+ · · · where all the terms on the right hand side are constructed outof
commutators ofA andB with known coefficients. We find that for anSTSintegrator with step size
δτ the evolution operator for a trajectory of lengthτ may be written as

USTS(δτ)τ/δτ =
(

e
1
2δτŜeδτT̂e

1
2δτŜ

)τ/δτ

=
(

exp
[

(T̂ + Ŝ)δτ − 1
24

(

[Ŝ, [Ŝ, T̂]]+2[T̂, [Ŝ, T̂]]
)

δτ3+O(δτ5)
])τ/δτ

= exp
[

τ
(

T̂ + Ŝ− 1
24

(

[Ŝ, [Ŝ, T̂]]+2[T̂, [Ŝ, T̂]]
)

δτ2 +O(δτ4)
)]

.

1.2 Shadow Hamiltonians and integrator tuning

For every symplectic integrator there is ashadow HamiltonianH̃ that is exactly conserved;
this may be obtained by replacing the commutators[Ŝ, T̂] in the BCH expansion with thePois-

son bracket{S,T} ≡
∂S
∂ p

∂T
∂q

−
∂S
∂q

∂T
∂ p

[2]. For example, the integrator above exactly conserves

the shadow HamiltoniañHSTS≡ T + S− 1
24

(

{S,{S,T}}+2{T,{S,T}}
)

δτ2 +O(δτ4). We now
make the simple observation that all symplectic integrators are constructed from the same Pois-
son brackets (which are extensive quantities). We therefore propose to measure the average values
of the Poisson brackets〈{S,{S,T}}〉 and〈{T,{S,T}}〉 over a few equilibrated trajectories at the
parameters of interest and then optimize the integrator (byadjusting the step sizes, order of the
integration scheme, integrator parameters, number of pseudofermion fields, etc. [3, 4, 5] offline) so
as to minimize the cost.
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Tuning HMC using Poisson brackets

As a simple example consider theSTSTSintegrator

USTSTS(δτ)τ/dt =
(

eαŜδτe
1
2 T̂δτe(1−2α)Ŝδτe

1
2 T̂δτeαŜδτ

)τ/dt
whose shadow Hamiltonian is

H̃STSTS= HSTSTS+

(

6α2−6α +1
12

{S,{S,T}}+
1−6α

24
{T,{S,T}}

)

δτ2 +O(δτ4). (1.1)

Here we cannot completely eliminate the coefficient of theO(δτ2) contribution as we only
have one free parameterα , but we can attempt to minimise the cost by adjustingα given the mean
values〈{S,{S,T}}〉 and〈{T,{S,T}}〉. Naïvely we could try to minimize the coefficient ofδτ2 in
(1.1), but we will see below that this is not the best thing to do.

1.3 Force gradient integrators

Let us consider again theSTSTSintegrator, where we setα = 1
6 so that the{T,{S,T}} con-

tribution is eliminated. The remaining leading order Poisson bracket{S,{S,T}} depends only on

q, which means that we can evaluate the integrator stepe
̂{S,{S,T}}δτ3

explicitly,

UFG(δτ) = e
δ τ
6 Ŝe

δ τ
2 T̂e

48δ τŜ− ̂{S,{S,T}}δ τ3

72 e
δ τ
2 T̂e

δ τ
6 Ŝ.

The force for this integrator step involves second derivatives of the action, and therefore they
are called Hessian or force gradient integrators [7, 8]. By putting such an integration step into a
multistep integrator we can eliminate all the leadingO(δτ2) terms in∆H, as we can see from the
corresponding shadow Hamiltonian:

H̃FG = T +S− δτ4

155520

(

41{S,{S,{S,{S,T}}}}+36{{S,T},{S,{S,T}}}

+72{{S,T},{T,{S,T}}}+84{T,{S,{S,{S,T}}}}

+126{T,{T,{S,{S,T}}}}+54{T,{T,{T,{S,T}}}}
)

.

Note that the coefficients of the leading order correction inthe shadow Hamiltonian are ap-
proximately two orders of magnitude smaller than the corresponding coefficients in the Cam-
postrini integrator [3, 9, 10].

1.4 Nested integrators

If it is much cheaper to evaluate the force for one part of the action, such as the pure gauge
part, we can use a nested integrator with a small step size forthe inner cheap part. One might
expect that one could then tune the outer part without reference to the cheap part, but this is not the
case.

Let the Hamiltonian beH = π
2

2 + S1 + S2 with ‖S2‖ ≪ ‖S1‖ and consider a nested integrator

with a composite step of the formU(δτ) = expŜ2δτ
2

(

expŜ1δτ
2m expT̂δτ

m expŜ1δτ
2m

)m
expŜ2δτ

2 . For the

inner integrator the BCH formula tell us that
(

expŜ1δτ
2m expT̂δτ

m expŜ1δτ
2m

)m
may be written as

exp

(

(Ŝ1 + T̂)δτ +
(

α [Ŝ1, [Ŝ1, T̂]]+β [T̂, [Ŝ1, T̂]]
)δτ3

m2 +O(δτ5)

)
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Tuning HMC using Poisson brackets

with α = − 1
24 andβ = 1

12. Applying the BCH formula again leads to the shadow Hamiltonian

H̃ = H +

(

α{Ŝ2,{Ŝ2, T̂}}+ β{Ŝ1,{Ŝ2, T̂}}+ β{T̂,{Ŝ2, T̂}}

+
1

m2

(

α{Ŝ1,{Ŝ1, T̂}}+ β{T̂,{Ŝ1, T̂}}
)

)

δτ2+O(δτ4).

Observe that the Poisson bracket{Ŝ1,{Ŝ2, T̂}} depends on the cheap actionS1 but is not supressed
by any inverse power ofm; it is therefore still necessary to measure this quantity inorder to optimize
the integrator.

2. Computing Poisson brackets

2.1 Gauge fields

We must construct the Poisson brackets for gauge fields, where the field variables are con-
strained to live on a group manifold. To do this we need to use some differential geometry [3]. In
order to construct a Hamiltonian system on such manifold we need not only a Hamiltonian func-
tion but also a fundamental closed 2-formω . On a Lie group manifold this is most easily found
using the globally definedMaurer–Cartanformsθ i that are dual to the generators and satisfy the
relation dθ i = − 1

2c
i
jkθ j ∧ θk, whereci

jk are the structure constants of the group. We choose to
defineω ≡ −d∑i θ i pi = ∑i(θ i ∧ dpi − pidθ i) = ∑i(θ i ∧ dpi + 1

2 pici
jkθ j ∧ θk): using this funda-

mental 2-form we can define a Hamiltonian vector fieldÂ corresponding to any 0-formA through
the relationdA(xxx) = ω(Â,xxx) for all vector fieldsxxx.

For a Hamiltonian of the formH = S+ T we find that the leading Poisson brackets that ap-
pear in the shadow Hamiltonian for a symmetric symplectic integrator are{S,{S,T}} = ei(S)ei(S)

and{T,{S,T}} = −pi p jeiej(S) where thepi are the momentum coordinates and theei are linear
differential operators satisfyingei(U) = TiU for gauge fieldsU ∈ SU(n) with generatorsTi.

2.2 Fermions

Consider the Wilson pseudofermionic actionS= φ†M−1φ , and recall that theei are linear
differential operators, thusei(S) = −φ†M−1ei(M )M−1φ , and

pi p jeiej(S) = pi p jφ†
M

−1[

2ei(M )M−1ej(M )−eiej(M )
]

M
−1φ .

ei(M ) is straightforward to evaluate given the linearity of the Wilson–Dirac operator in the
gauge field: we just use Leibniz rule and then replace the gauge fieldU by TiU .

3. Results

3.1 Shadow Hamiltonian and Poisson brackets

The blue curve in the first plot of figure 1 shows how log10|δH| ≡ log10|H f −Hi| behaves as
a function of MD time, compared with the red curve log10|δ H̃| for the shadow Hamiltonian up
to leading non-trivial order inδτ . The simulation uses theSTSTSintegrator withα = 0.24 and
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(a) Time history of Shadow Hamiltonian.
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(b) Volume scaling of Poisson brackets.

Figure 1: Shadow Hamiltonian and Poisson brackets.

δτ = 0.1 for Wilson gauge and fermion actions. This demonstrates that the shadow Hamiltonian is
indeed conserved.

The second graph on figure 1 shows how several different Poisson brackets and their fluctua-
tions depend on the lattice size. As expected the Poisson brackets are more-or-less extensive (they
grow asL4); the statistical fluctutations in the Poisson brackets arealso shown, and they fall asL−2

relative to the mean values as expected.

3.2 How to tune an integrator?

DH
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Figure 2: Histogram of∆H at the start (blue)
and end (red) of the trajectories.

We are concerned in minimizing the cost of
HMC; in our case, this corresponds to maximiz-
ing the step sizeδτ while maintaining a reason-
able acceptance rate. The first step to this goal
is to find the integrator parameters that maximize
the acceptance rate for a given value ofδτ . Here
we are going to discuss results for theSTSTSinte-
grator described above, trying to find the optimal
value forα .

Omelyanet al. [8] proposed that one should
minimize 〈∆H2〉 ≡

〈

(H̃ −H)2
〉

, as this makes̃H
as close toH as possible. However, the amount by
which∆H varies over the equilibrium distribution
∝ e−H turns out to be considerably smaller than
the values of∆H itself. Therefore, it seems more reasonable to minimize Var(∆H), the variance of
∆H over this equilibrium distribution.

Indeed, figure 2 verifies that〈∆H〉 ≫
√

Var(∆H). If we assume thatH f andHi are selected
independently from their equilibrium distributions, which is a goal of HMC,〈∆H〉 ≫ 〈δH〉 as
figure 2 also verifies. We can also conclude that the initial and final distributions seem to be
equivalent — of course,H f is not distributed according to the equilibrium distribution asHi is, but
its distribution does not differ significantly.
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Figure 3: Tuning plots.

Function αmin

|〈δH〉| 0.16749

〈δH2/2〉 0.17765

Var(∆H) 0.18260

〈1−min(1,e−δH)〉 0.18664

〈∆H2〉 0.24952

Table 1: Optimal values forα.

In figure 3(a), we see plots of several quan-
tities, besides Var(∆H), we could minimize to
optimize the integrator. The curves were com-
puted using the Poisson brackets computed atα =

0.24, whereas the red points are measurements of
〈δH2/2〉 at differentα values. The good agree-
ment between the measured and predicted loca-
tion of the minimum gives us confidence that we
can find the correct behaviour of the quantities
of interest by measuring the Poisson brackets at
a single value of the integrator parameters.

In table 1 we can see the optimalα values for the quantities considered. We see that the
minima for |〈δH〉|, 〈δH2/2〉 and〈1−min(1,e−δH)〉 are close to the minimum of Var(∆H).

Figure 3(b) shows similar results for tuning the parametersfor a dynamical fermion computa-
tion on a 84 lattice with a Wilson gauge action withβ = 5.6 and Wilson fermions withκ = 0.1575.
Here we minimize〈δH2〉. We used a two levelSTSTSintegrator with two gauge steps per fermion
step, and a trajectory length of one. The yellow point shows values of theα parameters at which
the Poisson brackets were measured.

3.3 Force gradient integrators

In this subsection, we show results for the force gradient integrator defined in section 1.3,
obtained with the Wilson gauge action atβ = 5.6 on a 44 volume, comparing with a second order
Omelyan integrator (figure 4). Note that the scaling for the force gradient integrator (black data in
figure 4(b)) is much better than for the Omelyan integrator (green data in figure 4(b) ).
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Figure 4: Results for theSTSTSforce gradient integrator (green data), compared with datafor second
order Omelyan integrator (black data). Note also the data for the shadow Hamiltonian of Omelyan integrator
(red data).

4. Conclusions

We have shown that a good strategy to optimize HMC integrators is to minimize the variance
of ∆H over the equilibrium distributione−H , rather than minimizing|∆H| itself, as was previously
proposed. We have outlined how the Poisson brackets required to compute∆H may be evaluated for
gauge theories and systems with dynamical fermions. We havealso carried out initial investigations
with nested integrators and force gradient integrators. Wehope to present more details of our
results, and data for more realistic computations soon.
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