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1. Introduction

Despite the steady progress in developing new machines providing more and more computa-
tional resources, two-flavor dynamical fermion simulations remain challenging. Moving on to large
volume simulations [1] we experienced frequent occurrences of large energy violations within the
hybrid Monte Carlo (HMC) update [2] indicating possible algorithmic instabilities and raising wor-
ries about reversibility violations. In [3] it is pointed out that such instabilities are caused by tiny
eigenvalues of the Dirac-Wilson operator. Therefore we propose a new HMC variant reviving the
idea to reweight observables and approximate the inverse, non-Hermitian Dirac-Wilson operator
by Chebyshev polynomials. Our new variant is demonstrated using Wilson’s lattice action [4]

S(Uµ , ψ̄,ψ) =
1
g0

∑
P

Tr{1−UP}+∑
x,y

ψ̄(x)Mxyψ(y), (1.1)

where the first sum runs over all plaquettes UP(x) = Uµ(x) ·Uν(x + µ̂) ·Uµ(x + ν̂)† ·Uν(x)† of the
gauge field Uµ(x) and the second sum over all lattice sites. g0 is the strong coupling constant and
M is the non-Hermitian Dirac-Wilson operator given in matrix notation. After integrating out the
quark fields (anti-commuting Grassmann variables) ψ̄ and ψ we arrive for the second summand
at the fermion determinant det{M}. Due to the sparse structure of M it is suitable for even-odd
preconditioning, which leads to a factorization of det{M} [5]

det{M}= det{Mee} ·det{M̂A} (1.2)

= det{Mee} ·det{M̂S} ·det{Moo}. (1.3)

The two possibilities are commonly named asymmetric and symmetric with the preconditioned
operator M̂A = Moo−Moe M-1

ee Meo and M̂S = 1I−M-1
oo Moe M-1

ee Meo, respectively.
Setting up an algorithm to simulate two flavor QCD, we consider the determinant of MM†.

The algorithmic concept of our new HMC variant follows the concept of the polynomial hybrid
Monte Carlo (PHMC) by Frezotti and Jansen [6]. They approximate the Hermitian operator by a
root factorization [7] and allow to compensate by a reweighting factor for a possible deviation from
importance sampling. Here we make use of the non-Hermitian, even-odd preconditioned operator
M̂ = M̂S or M̂A, introduce polynomials Pn ≈ M̂−1 and incorporate as well a reweighting factor

det{M̂M̂†}= det{[M̂Pn][M̂Pn]†} · [det{PnP†
n }]−1. (1.4)

In the next section we first motivate our choice of the non-Hermitian Dirac-Wilson opera-
tor and show some of its properties. Our approximation of the inverse Dirac-Wilson operator in
terms of Chebyshev polynomials is presented in Section 3 and in Section 4 we introduce the basic
steps of our Non-Hermitian Polynomial Hybrid Monte Carlo (NPHMC). The dependence on the
polynomial parameters is analyzed in Section 5.

2. Non-Hermitian Dirac-Wilson Operator

Using matrix notation and the hopping parameter representation we can write the Dirac-Wilson
operator as Mxy = δxy−Kxy, where all interactions are contained in

Kxy = κ

(
Hxy−

i
2

cswσµνFµνδxy

)
. (2.1)
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Kxy is thus built up by the hopping operator Hxy and the O(a) improvement, the Sheikholeslami-
Wohlert-term, and is proportional to the hopping parameter κ . In [8] we present spectral properties
of this operator in a set-up with Schrödinger functional (SF) boundary conditions (BC). For our
further considerations the following properties are important:

• M has a complex spectrum lying in the positive half-plane bounded by an ellipse
• M−1 can be approximated recursively by simple and stable polynomials
• We expect a “good” approximation with a lower degree polynomial than if approximating

the Hermitian operator, which is indicated by a lower condition number1

• These properties carry over to the even-odd preconditioned operator M̂

The latter manifests itself in an exact relation between the eigenvalues λ̂ of the preconditioned
operator K̂ and the eigenvalues λ of K if the O(a) improvement is switched off (csw = 0)

λ̂ (K̂) = λ
2(K). (2.2)

Assuming next the spectrum of K and K̂, respectively, to fill perfectly an ellipse we parameterize
the eigenvalues of K by λ = ecosh(ϑ + iφ) with eccentricity e and “angles” ϑ and φ . From (2.2)
follows now for the spectrum of the preconditioned operator

ê = δ̂ = e2/2, (2.3)

where ê is the eccentricity of the ellipse bounding the spectrum of K̂ and δ̂ marks a positive shift
along the real axis. With O(a) improvement turned on, (2.2) as well as the drawn conclusions hold
only approximately.

Computing the spectral boundary numerically by using the complex Lanczos method we can
nicely visualize the shift and the advantage due to even-odd preconditioning (see Fig. 1). Moreover
we see that with Sheikholeslami-Wohlert term the symmetric version of even-odd preconditioning
is superior because it leads to a more compact and round spectrum. In addition one can verify
certain symmetries of the operator (see e.g. [9]): without the clover term and if all dimensions of
the lattice are even, the spectrum exhibits a mirror symmetry under sign flip and has complex pairs
of eigenvalues (γ5 Hermiticity). With clover term the first is not present, but we still find complex
pairs of eigenvalues.

3. Chebyshev Approximation

In order to find a polynomial approximation of the inverse, non-Hermitian Dirac-Wilson oper-
ator M̂ we first introduce a “small quantity” (remainder)

Rn+1(M̂) = 1I−M̂Pn. (3.1)

By construction Rn+1 is small on an elliptical region of the spectrum of M̂ and suitable for an
approximation by scaled and translated Chebyshev polynomials as introduced by Manteuffel [10]

Rn+1(M̂) =
Tn+1(K̂/ê)
Tn+1(d̂/ê)

. (3.2)

1We thank Tony Kennedy for pointing that out.
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Figure 1: Computing the spectral boundary of 1I−M (upper plots) and 1I−M̂ (lower plots) by the Lanczos
method on a set of 50 pure-gauge configurations: 84 lattice at β = 6.0 and κ = 0.13458 in the SF. Left
without / right with clover-term; lower right plot shows in red asymmetric and in blue symmetric even-odd
preconditioning.

Here d̂ = 1+ δ̂ is ideally such that the spectrum of K̂ is origin centered and hence M̂ = d̂− K̂. The
spectral region approximated is bounded by an ellipse with eccentricity ê. Eq. (3.2) together with
the well-known recurrence relation for Chebyshev polynomials,

Tn+1(z) = 2zTn(z)−Tn−1(z) with T1 = z and T0 = 1, (3.3)

provides the key to obtain first a recursive description for the Rn+1 and by (3.1) also for our sought
polynomials Pn [11],

Rn+1 = anK̂Rn +(1− d̂an)Rn−1 with R1 = K̂/d̂ and R0 = 1I, (3.4)

Pn = an(1I+K̂Pn−1)+(1− d̂an)Pn−2 with P1 = a1(1I+K̂/d̂) and P0 = 1I/d̂, (3.5)

The real coefficients an are given by

an = (d̂−an−1ê2/4)−1 with a1 = d̂(d̂2− ê2/2)−1. (3.6)

and converge to limn→∞ an = 2(d̂− ê
√

d̂2/ê2−1)/ê2. Concerning the two recurrence relations
(3.4) and (3.5) we like to emphasize: although given as matrix relations, (3.4) and (3.5) lead to
repeated, numerically cheap matrix times vector multiplications. Furthermore, the inverting poly-
nomial is obtained from numerically stable and simple two-step recursions.[12]
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4. NPHMC update

To generate configurations with the Boltzmann weight exp{−S} by a NPHMC update, we
manipulate the action (1.1) accordingly

S =
1
g0

∑
P

Tr{1−UP}+2[lndet{Mee}+ lndet{Moo}]+φ
†P†

n (M̂)Pn(M̂)φ︸ ︷︷ ︸
Sb

, (4.1)

where from now on we choose M̂ = M̂S since M̂S is superior to M̂A. The first term is the unchanged
contribution from the gauge fields, it follows the determinant contribution due to even-odd precon-
ditioning and the last term gives rise to the bosonic contribution obtained by estimating the second
factor of the right hand side in (1.4) as bosonic integral. We take care of the first factor in (1.4),
det{[M̂Pn][M̂Pn]†}, by calculating a stochastic estimate using random Gaussian fields ηC

C = exp
{

η
†
C[1I−(P†

n M̂†M̂Pn)−1]ηC

}
. (4.2)

This term is only computed when measuring observables. The general procedure of an HMC
update is unchanged. Differences occur in the way the bosonic contribution Sb is treated.

At the beginning of a trajectory the pseudo-fermion fields φ have to be generated with the
correct distribution by inverting Pn on a random Gaussian field η

φ = P−1
n η = (1I−Rn+1)−1M̂η . (4.3)

Here it is important to use the second relation and by that invert a well conditioned matrix needing
only a little number of expensive iteration steps. Next we compute the variation δ{Sb} as it is
required to integrate the equations of motions. Varying each occurrence of K̂ and reorganizing the
expressions we yield

δ{Sb}=
n

∑
l=1

[
ξ

†
2n−lalδ{K̂}χl−1 +H.c.

]
(4.4)

with

χ j = a jφ +a jK̂χ j−1 +(1− d̂a j)χ j−2; χ1 = a1(1I+K̂/d̂)φ ; χ0 = φ/d (4.5)

ξ
†
n+ j = ξ

†
n+ j−1K̂an− j+1 +ξ

†
n+ j−2(1− d̂an− j+2); ξ

†
n+1 = χ

†
n K̂an; ξ

†
n = χ

†
n . (4.6)

Finally, the reweighting factor C is estimated requiring again the inversion of a well-conditioned
matrix. Of course also here we can replace M̂Pn by 1I−Rn+1. For further details see [12].

5. Performance Tests

Testing the proposed new HMC variant we investigate the dependence on the three polynomial
parameters δ̂ , ê and n on an 84 lattice at β = 6.0 and κ = 0.13458. The tests are performed by
keeping two parameters fixed, while varying the third one and monitoring as observables: the mean
value of the correction factor 〈C〉, the relative width of its distribution ςC =

√
〈C2〉−〈C〉2/〈C〉 as
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Figure 2: Dependence of the correction factor C and the width of its distribution ςC on δ̂ (light blue ◦) and
ê (dark blue 4), respectively.
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Figure 3: Dependence of the number of CF iterations on δ̂ (light blue ◦) and ê (dark blue 4), respectively.

well as the number of conjugate gradient (CG) iterations required to compute the correction factor,
#(iterations CG).

As can be seen by looking at Figs. 2 and 3 the two parameters specifying the elliptical region
of the approximating polynomial favor ê≈ δ̂ ≈ 0.36 but do not require a sophisticated fine tuning.
This value is in good agreement with the ones concluded from the bounding ellipse shown in Fig. 1
in case of symmetric even-odd preconditioning.

Turning to the dependence on the polynomial degree n (Fig. 4) we find a much stronger de-
pendence. This parameter is mainly responsible for the quality of our approximation. Hence it
affects the cost as well as the noisiness of the correction factor. For a higher degree polynomial
C approaches one, while ςC and #(iterations CG) go to zero. Using the 4n · #(iterations CG) as a
coarse estimate for the cost, a good choice of the polynomial degree – for this set-up – is n = 50.

6. Conclusion

Employing the scaled and translated Chebyshev polynomials to approximate the inverse, non-
Hermitian Dirac-Wilson operators allows to derive a variant of the HMC update algorithm based
on simple and stable recurrence relations. The approximation does not require a fine tuning of
the parameters specifying the elliptical approximation region, whereas the polynomial degree n is
important for the quality of the approximation and the numerical cost.
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Figure 4: Dependence of C (4), ςC (2) and #(iterations CG) (◦) on the polynomial degree n.

A conclusive comparison between the performance of different HMC-type algorithm has not
been performed yet. However, the first data indicate that the 1-pseudo-fermion NPHMC is slightly
superior than a standard 1-pseudo-fermion HMC, but inferior to an HMC version incorporating
the Hasenbusch-trick [13] and multiple time scale integration [14]. Constructing a NPHMC with
two pseudo-fermions by means of the Hasenbusch-trick is possible. Unfortunately, this forces an
involved tuning of the polynomial degrees and appears to be not too promising.

As a byproduct of our studies of the non-Hermitian Dirac-Wilson operator, we found that the
symmetric even-odd preconditioned operator is advantageous because of a more compact spectrum.
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