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1. Introduction: Duality on the lattice

The general notion of duality in lattice gauge theory has been presentria &om since
the inception of the fiefd Abelian dualities possess several generic featdrés [25], including the
interchange of high and low temperature regimes between the original matigsatual, and a
new gauge symmetry possessed by the dual model closely related to thalagaige symmetry
(sometimes referred to as "self-duality"). While the high-low temperaturkitgisaalso present in
non-abelian dual model§ J20], a gauge symmetry of the dual is not dgneresent in the non-
abelian case. Consequently, the known techniques for simulating a geldarg not directly
applicable to the dual theory, and thus novel techniques are requireel mothabelian case. For a
few recent examples of simulations in the dudll) case, the reader is referred o|[[L5, 3,[23, 24,
28].

As we shall see below, there is a framewdrK [L9, 20] within which the fooastruction of
non-abelian duals is straightforward. However, at the level of prdataraputations one is still
faced with both non-trivial amplitudes (particularly in tBe= 4 case) and constraints on allowed
configurations that can make it difficult to find ergodic moves. Thus, astamative means of
simulation, progress in the non-abelian case has been much slower ard tbedaltimate feasi-
bility of this approach remains an open question. Notwithstanding, we believeshlts reviewed
here (some of them quite recent) indicate definite progress towards tavglilee potential for dual
non-abelian simulations.

In the following we review some of the history of the subject and briefly ilessome recent
advances in computational methods for non-abelian dual simulations. Welyedescribing the
form of the duality in the non-abelian case for grog4(N) in any dimension, and a systematic
method for defining the dual amplitude in terms of representation-theoretittitiegs For the
groupSU(2), these methods have recently led to an ergodic algorithm and the derivitioplicit
amplitudes in bottD = 3 andD = 4. Further, the dual degrees of freedom for the pure gauge field
(closed branched surfaces) couple to the dual polymer picture of fiesriri@ geometrically natural
way in the non-abelian case. On a cautionary note, there are featutesrekulting dual models
that present a challenge for practical computations: the dual amplitude énara) not positive
definite, and extending existing methods to weak coupling is complicated by inogarrelation
times. We shall return to these difficulties toward the end of the paper.

2. Construction of the non-abelian duals

One of the first explicit constructions of a dual non-abelian model on ttiedavas reported
in the early 1990’s by Anishettgt al. for theD = 3, SU(2) case [[L[]. While no simulations were
reported in this work, the dual model was explicitly given and its local, disg®ucture clearly
exhibited; the model was in principle computable provided an ergodic algodtuid be found
to sample the dual ensemble. A further theoretical development came invi885 Halliday and
Suranyi [] described the construction@fdimensional non-abelian dual models on the lattice in
which the dual degrees of freedom are local. A few years later, an tamgseries of papers by

1Early forerunners to the dual models discussed below were the swoptjrg expansions used for exampleE [11]
and discussed further iﬂl?] and references therein.



Dual Lattice Algorithms J. Wade Cherrington

Hari Dasset al. [B, §,[19] described the first reported attempts at a full lattice simulation tiseng
dual amplitude presented by Anishettyal. in [fl, [2].

Further theoretical developments came with the work of Oeckl and Pf¢iGlr Here, a
general non-abelian gauge theory is considered and the dual theooyistructed in terms of
representation-theoretic quantities. The degrees of freedom of thiéngsual theory are mani-
festly local, with a local amplitude defined in terms of contractions of invariarstaies that define
face, edge, and vertex amplitudes. Borrowing some terminology from loaptgm gravity, this
structure is sometimes referred to as a lattips foammodel. The reader is also referred fto] [19]
for a clear pedagogical treatment and a generalization of the framewairintiudesy-deformed
and supersymmetric models.

For concreteness, we shall review here the explicit form of the dualiéggalRthat given an
oriented lattice, the action is discretized by forming a sum over plaquéigls= 3 ,cp S(Jp),
where the group elemeagy, is the holonomy around an oriented plaquett®btained by forming
a suitable product of the variablgsand their inverses. The lattice partition function is

QF:/ I_Ldgae*ZpGPS(gp)7 (21)
ec

wherekE is the set of lattice edges. To pass to the dual model, the amplitude at eachtadgu
expanded into the characters@f

es(gp) — z CiXi (gp)7 (2.2)

where the sum is over all unitary irreducible representations (irrepf)eofyroupG; x; is the
character function ofs associated with thih irrep. The next step in moving to a dual model is to
interchange the order of integration and summation:

ff:/<e|61dge> p Zc.x. 9p) SPH%/(FLdge) ) Xs(p) (9p); (2.3)

where the map® — _# are labellings of the plaquettes of the lattice by unitary irreducible rep-
resentations ofs. At this stage, the model can already be viewed as dual (the integrals being
absorbed into the definition of the amplitude). However, this is of limited use ctatipoally as

the integrals are non-local, high dimensional integrals with no obvious cfosad The key insight
made explicit by [20] is that the integrals project onto a basis of invariasbtsr(also referred to
asintertwinerg. Due to space limitations, we won't derive the rest of the duality transfooma

The resulting dual model has the following form:

-3 / <e|ldge> [ ooen (@)= 5[] Ae(f.p)[]Ac(t.0) []Au(fv) @4

where (forD = 3), the amplitudes can be defined as:

If
AV(faV): ) AE(fve):|*i " lis AP(fvjp):pr (25)
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and.7 is the set of all labellings of the plaquettes by irrep&aind the lattice edges by intertwiners
(for any plaquette labelling, these have a discrete basis indexed by a finiteen of irreps). The
arguments to théy, function are as follows: irrep labelling plaquettes incident toe assigned to
edges, and intertwiners associated to incident edges are assigneticesvafrtheA, network. In

the case ofs = SU(2), a powerful diagrammatic calculus exidts][16] for the explicit evaluation of
quantities such a&y (f,v) andAg(f,e). It can further be shown that the non-zero contributions to
the partition function have the geometric interpretation of closed, brancinfstss colored by the
irreps ofG.

We mention in passing that while an explicit formula for the= 3 case has been known
since [1[R], an explicit form for thB = 4 vertex amplitude practical for simulations was not known
until very recently with [}]. This amplitude (a function of 48 half-integer siaibels) takes order
j* time and makes it possible to investigate the possibility of dual simulations the ifoenrsional
case, ultimately the most significant for physical models.

3. An ergodic non-abelian dual algorithm SU(2) case

In [B] the author and collaborators constructed an ergodic algorithrs&ompling the dual
configurations. In the cage = SU(2) andD = 3, we were able to obtain high quality data up to a
B of 2.85. The results of our runs (using&nd 16 lattices) were in statistical agreement with data
obtained by conventional means, which we used as a check on our taleslarhe expectation
value of spin (averaged over the lattice) was used as an observablet ef pur simulations
including residuals is shown in Figure 1. Whil¢ [3] focused onhe 3, SU(2) case, the algorithm
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Figure 1. Conventional and dual results for th&lattice.

developed has a straightforward generalization with respect to graiipliarension. Currently
simulations inD = 4 are being tested.

While our first tests used spin as an observable, it is straightforwardipute Wilson loop
observables in the dual; in fact, a method very much analogous to &dipuised by Panerd [P3]
can be applied to build up the expectation values of Wilson loop observadbldse abelian case,
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this method eliminates exponential decrease in signal to noise, and shoaletlibb same in the
non-abelian case

4. Dynamical fermionsin the dual

Recall that when coupling gauge fields to fermions on the lattice, an exagtatiten of the
fermionic Grassman variables yields an effective action for the gauge {j@iels by the determi-
nant of the quark matrix. This determinant is a non-local function of thggadegrees of freedom
and consequently a considerable challenge to compute [Jith [6]. This degerneian in turn be
expanded into contributions associated to closed polymers on the lattice.ollneep expansion
can be viewed as a duality for pure lattice fermions on the lattice, and indedakka pursued in
that context as an alternative computational framework[[14, 18]. Terikmess of this method is
best established in two dimensions (see, for exaniple[[13, 26]; in threepandimensions, the
presence of an alternating sign in the amplitude presents a challenge).

One can show[][5] that applying the spin foam expansion of the gaugeategf freedom
(B-4) to each term in the polymer expansion results in a configuration spatesed branched
surfaces ending on the one-dimensional closed polymers. Rematk#igyresulting amplitude
that combines factors from the spin foam and polymer expansion is locaéiapim foam and
fermion degrees of freedom. The factoring of the amplitude into plaguetie, add vertex ampli-
tudes remains unchanged, the main difference being that the vertex anmgpétudeztices along the
fermionic loop are maodified by the presence of charge running throughléh@x. As in the pure
gauge theory, the modified vertex amplitude can be defined in terms of a $piorkevaluation;
examples of modified vertex amplitudes are shown in Fifre 2.

+z +z

s X -y -Xx

\/ \/

-z -z

Figure 2: Charged vertex amplitudes arising in dual dynamical femmimdel

5. Challenges and Outlook

The sign problem— If the expectation value of the sign of the amplitude is close to zero then
methods for extracting expectation values (i.e. "sign trick", flee [8]) wigbhon dividing by the
sign of expectation value will exhibit large numerical errors. In the simulatiwerformed in[[B],
the presence of a negative amplitude had to be accounted for, howeeqthctation value of the
sign remained close to unity, decreasing gradually towards weaker couplingeaker coupling
values were used, long auto-correlation times (discussed next) madecitltifii assess the effect

2Note however an analogous construction forlth@) case had been made previouslyE [12].
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of mixed signs in the amplitude. The immediate question under investigation is wsiathe of
the sign problem is in four dimensions, as a function of coupling. Deperaivghether the naive
"sign trick" method is successful at couplings used for practical simukgtioew methods may
need to be developed.

Auto-correlation at weak coupling- As one approaches weaker coupling, the dominant con-
tributions transition from the isolated bubbles characteristic of strong caypbra highly disor-
dered phase of surfaces extending throughout the lattice. This ¢siggasa cluster algorithm
capable of evolving state on larger scales may be a feasible strategyrtiofilaa interest in this
connection is a recent proposal by Wol[ff][27] to apply a worm algorithra @ual setting, which
demonstrates very promising critical behavior fat;adual model.

Outlook— Current computational efforts of the author and his group are fakcoseopti-
mizing theD = 4 algorithm, addressing the sign problem in various dual models, and gewglo
cluster methods to improve auto-correlation times at weak coupling. On thestivabfront, we
are also developing methods for evaluatihig: SU(3) models, in which finding explicit amplitudes
remains an open problem. In the near future, we will be investigating incatipg supersymmetry
using dual methods, as well as dual approaches to chiral fermion simglation

While we remain cautious in light of the remaining questions with regard to the sidphen,
the dual approach continues to provide an intriguing alternative peaigpea the physics of lattice
gauge theory.
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