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We present preliminary results for the electromagnetic form factors of vector mesons in lat-

tice QCD. The analysis is based on two- and three-point functions, calculated with two-flavour

clover-improved configurations for a lattice spacing ofa ∼ 0.08 fm. The pions on these lat-

tices are too heavy (mπ ≥ 400 MeV) to allow for ρ meson decay. We obtain a charge ra-

dius
〈

r2
〉

∼ 0.49(5) fm2, a g-factor gρ ∼ 1.6(1), and a small negative quadrupole moment

µQ = −0.017(2) fm2.
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1. Introduction

Most of our knowledge of the internal structure of hadrons is encodedin (generalised) form
factors. They allow to study quantities like charge radii or multipole moments.

A number of lattice results is available for the nucleon,eg., [1] and the pion [2] electromagnetic
form factors, and a first attempt in the quenched approximation to compute theform factors of
vector mesons can be found in [3]. All these analyses are based on suitable hadron three-point
functions. Another interesting ansatz based on density-density correlators can be found in [4]. A
recent overview of the subject can be found in[5].

In this contribution, we present results for vector meson form factors in unquenched lattice
QCD employing the standard three-point functions, obtained for non-perturbatively clover im-
proved Wilson fermions and Wilson gauge action.

2. Vector meson form factors

We consider the interaction of a vector meson with an electromagnetic currentJα . In this
section, all quantities are expressed in Minkowski space,gµν = diag(−1,1,1,1). The relevant
matrix element〈p′,s′ |Jα | p,s〉 can be parametrised

N
〈

p′,s′ |Jα | p,s
〉

= −G1(Q
2)
(

ε ′∗ · ε
)

Pα

−G2(Q
2)
[(

ε ′∗ ·q
)

εα − (ε ·q)ε ′∗α]

+G3(Q
2)(ε ·q)

(

ε ′∗ ·q
)

Pα/(2mρ)2. (2.1)

Heres(s′) is the spin andp(p′) the momentum of the incoming (outgoing) vector meson,P= p+ p′,
and N = 2

√

Eρ(~p′)Eρ(~p) is a normalisation factor. The meson’s polarisationλ ∈ {0,+,−} is
encoded in the polarisation vectorsε(λ ,~p), which obeypµεµ(~p,λ ) = 0 and the completeness
relation

∑
λ=0,+,−

εi(~p,λ )∗ε j(~p,λ ) = −gi j + pi p j/m2.

The form factorsGi depend on the momentum transferQ2 = −q2 = −(p′ − p)2. They can be
rewritten in terms of the Sachs charge, magnetic and quadrupole form factors:

GC
(

Q2) = G1
(

Q2)+2/3 η GQ
(

Q2)

GM
(

Q2) = G2
(

Q2)

GQ
(

Q2) = G1
(

Q2)−G2
(

Q2)+(1+η)G3
(

Q2) , (2.2)

whereη = Q2/(2mρ)2. The momentum transfer dependence of the electric form factorGC contains
information on the charge radius

〈

r2〉= −6
∂GC

∂ (Q2)

∣

∣

∣

∣

Q2=0
, (2.3)

while GM gives the magnetic moment of theρ meson

µρ =
e

2mρ
GM(Q2 = 0).
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The forward limit ofGM ≡G2 itself is also called theρ meson’sg-factorgρ . In the simulation,
it can be accessed only from an extrapolation inq2 → 0 because theG2 contribution in Eq. (2.1)
vanishes in the forward case. Information about the shape of the vectormeson is encoded in the
quadrupole momentµQ = e/m2

ρGQ(0); for µQ < 0 the meson is oblate, and forµQ > 0 its shape is
prolate. AlsoµQ can only be determined from aq2 → 0 extrapolation.

3. Lattice calculation

On the lattice, the calculation of form factors requires an analysis of suitablethree-point func-
tions. A meson with momentum~p is created at timet = 0, interacts with the electromagnetic
current at intermediate timeτ, and gets annihilated at timet = tsink. Its creation is described by an
interpolating operatorχ†

µ = d̄γµu, which has non-vanishing overlap with a chargedρ meson:

〈

Ω
∣

∣χµ(0)
∣

∣ρ(~p,s)
〉

=
√

2Eρ(~p)
−1

λρ(~p)εµ(p,s).

Here, λρ describes the overlap ofχµ with the ρ meson, andεµ is the polarisation vector. The
corresponding three-point function is given by

Gα
µν(t,τ,~p′,~p) = ∑

~x,~ξ

e−i~p′(~x−~ξ )e−i~p~ξ 〈Ω
∣

∣χµ(x)Jα(ξ )χ†
ν(0)

∣

∣Ω
〉

,

which can be written for large time separations as

lim
τ→∞

t−τ→∞
Gα

µν(t,τ,~p′,~p) =
e−Eρ (~p′)(t−τ)e−Eρ (~p)τ

4Eρ(~p′)Eρ(~p)
λρ(~p′)λ̄ρ(~p)

×

(

gµτ −
p′µ p′τ
m2

ρ

)

Jτασ

(

gσν −
pσ pν

m2
ρ

)

, (3.1)

where we have neglected the exponentially suppressed contributions from excited states, and where
Jτασ is defined viaJα = ε ′∗

τ Jτασ εσ . Two-point functions are defined by

Gµν(t,~p) = ∑
~x

e−i~p~x〈Ω
∣

∣χµ(x)χ†
ν(0)

∣

∣Ω
〉

.

For a sufficiently large separation of source and sink they read

lim
t→∞

Gµν(t,~p) = −
e−Eρ (~p) t

2Eρ(~p)
λρ(~p)λ̄ρ(~p)

(

gµν −
pµ pν

m2
ρ

)

. (3.2)

Consequently, the overlap factorsλρ and the exponentials from Eqs. (3.1) and (3.2) cancel in the
ratio

Rα
µν(τ,~p′,~p) =

Gα
µν(t,τ,~p′,~p)

Gµµ(t,~p′)

√

Gνν(t − τ,~p)Gµµ(τ,~p′)Gµµ(t,~p′)

Gνν(τ,~p)Gµµ(t − τ,~p′)Gνν(t,~p)
, (3.3)

which is independent ofτ for large time separations. Thus, we obtain a system of linear equations

Rα
µν(~p,~p′) = ∑

i

ciGi (3.4)
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Volume β κ mπ [MeV] mρ [ MeV] a[fm] tsink

163 32 5.29 0.13500 929(2) 1228(4) 0.089 14
163 32 5.29 0.13550 784(3) 1090(8) 0.084 14
243 48 5.29 0.13590 591(2) 965(6) 0.080 18
243 48 5.29 0.13620 406(6) 898(10) 0.077 18

Table 1: Compilation of parameters.

with easily computable coefficientsci of theGi for each value ofQ2. This overdetermined system
is solved byχ2 minimisation to finally obtain the form factorsGi .

For our computation, we use QCDSF configurations, generated with two flavours of clover
improved Wilson fermions and the Wilson gauge action. The improvement coefficient cSW was
determined non-perturbatively[6], givingcSW = 1.9192 atβ = 5.29. Parameters, lattice constants
etc. are summarised in Tab. 1. The scale was set using the nucleon mass. Jacobi smearing is applied
(κ = 0.21,N = 60) in order to enhance the ground state overlap of our source and sinkoperators.

We use the sequential source technique for the calculation of the three-point functions. The
sink timetsink is fixed to the values in Tab. 1, where the source for the secondary inversion is con-
structed from the quark propagator. Without further inversions, threepoint functions with insertions
of arbitrary operators on all time slices can be computed.

Because each value of the sink momentum~p′ = 2π/Ls~n′ (Ls being the spatial lattice extent) re-
quires separate secondary inversions and is thus expensive, we useonly three values for~n′, namely
(0,0,0), (−1,0,0), and(0,−1,0). For the source momentum, we take 2π/Ls~n, with ~n assuming
(0,0,0), (1,0,0), (1,1,0), (1,1,1), (2,0,0), (2,1,1), (2,2,1) and all possible permutations of the
vector components.

There is no need to consider the disconnected part of the three-point functions, because their
contributions from a gauge configurationU and its complex conjugateU∗ (which have the same
weight) cancel in the ensemble average.

The physicalρ meson is a resonance and decays predominantly into two pions. In contrast,the
vector mesons on the lattices we consider here are stable, because their mass is too small to create
two pions in a relativeP wave. This means that the quantities we compute here are not directly
accessible to any experiment, and should rather be considered as being exemplary for a generic
spin-1 particle.

4. Results

Fig. 1 shows the Sachs form factors (2.2) for the smallest pion mass we have analysed so far.
On this lattice, the smallest momentum transfer we have isQ2

min ∼ 0.44 GeV2. This is relatively
large, and will be improved in the future by the use of partially twisted boundary conditions [7].

The electric form factor is fitted with the phenomenologically motivated monopole ansatz

GC(Q2) =
GC(0)

1+Q2/m2
C

.

In the forward case,Q2 = 0, this is equal to the electric charge. Because we use the non-conserved
local vector currentγµ , then measured electric form factor in the forward caseGunren

C (0) gives us
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Figure 1: Example plot of form factors, together with fits described inSec. 4.

the renormalisation factorZV = 1/Gunren
C (0), that has to be applied to all three-point functions.

However, we do not fixGC(0) in the monopole fit. The charge radius is computed according to
Eq. (2.3).

For the magnetic form factor, a monopole ansatz would be inadequate, because this would lead
to divergencies in the magnetisation density one obtains after Fourier transforming to coordinate
space. Thus, we use a dipole ansatz

GM(Q2) =
GM(0)

(

1+Q2/m2
M

)2 . (4.1)

The quadrupole form factor shows relatively large error bars, and isfor all but the smallest
non-vanishing momentum transfer compatible with zero. To get a first idea about the quadrupole
moment, we use an ansatz linear inQ2 to extrapolate the lattice data toQ2 = 0. An analysis
with partially twisted boundary conditions will be helpful here, too, in order todecide about the
magnitude of the quadrupole moment.

The results for charge radii, magnetic and quadrupole moment for all analysed lattices are
summarised in table 2. In Fig. 2 we plot these results as functions ofm2

π and attempt a linear
extrapolation to the chiral limit. The (squared) charge radius

〈

r2
〉

behaves as one would expect
from the pion cloud picture, showing the growth of the pion cloud with decreasing quark mass.
The value of the charge radius is similar to the value known from the nucleon,and larger than
the pion charge radius. This would also be the expectation from quark models, that attribute the
larger size of a vector meson to the repulsive hyperfine interaction of the aligned spins, whereas
the anti-aligned spins in the pion experience hyperfine attraction. Our linearextrapolation gives a
charge radius of

〈

r2
〉

= 0.49(5) fm2.
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κ volume
〈

r2
〉

[ fm2] µM µQ[ fm2]

0.13500 16332 0.33(5) 2.1(3) 0.002(5)

0.13550 16332 0.42(8) 1.7(3) −0.004(2)

0.13590 24348 0.38(3) 1.8(2) −0.007(3)

0.13620 24348 0.49(4) 1.7(3) −0.015(4)

Table 2: Charge radii, magnetic and quadrupole moments on the analysed lattices.
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Figure 2: Chiral extrapolation for charge radius,g-factor and quadrupole moment.

For theg-factor we obtaingρ = 1.6(1). This is compatible with expectations based on sum rule
calculations,gρ = 2.0(3)[8]. The quark model calculation in [9] givesgρ = 1.92, and [10] obtain
gρ = 2.01, based on Dyson-Schwinger equations. It is considerably smaller than the quenched
lattice resultgρ ∼ 2.3 of [3]. Their result, however, was not based on an extrapolation inQ2, but
on an estimate assumingGC ∝ GM, using only one non-zero value of the momentum transfer.

A phenomenologically interesting quantity is the quadrupole moment. For large quark masses,
and for large momentum transfers, the quadrupole form factor is hardly distinguishable from zero.
For small quark masses, however, we see a trend ofGQ becoming increasingly negative, being
clearly different from zero for our lightest pion and small values of the momentum transfer. The
linear extrapolation gives a value ofµQ = −0.017(2) fm2. The negative sign is interpreted as the
ρ meson having oblate shape, an observation also found in [3], and [4]. The statistical uncertainty,
and the systematic uncertainties from the extrapolations to the forward limit are still rather large.
Our results should therefore be considered as preliminary. Calculations at smaller quark masses
and smaller values of the momentum transfer using, e.g., partially twisted boundary conditions, are
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clearly desirable to reach firm conclusions.

5. Summary

We have computed the electromagnetic vector meson form factors in a dynamical two-flavour
lattice simulation. We determined the charge radius of theρ meson from a monopole fit of theq2

dependence of the electric form factor, obtaining
〈

r2
〉

= 0.49(5) fm2 from a linear extrapolation
to vanishing quark mass. From a dipole extrapolation of the magnetic form factor, we obtained a
g-factor ofgρ = 1.6(1) as forward limit of the magnetic form factor. The result for the quadrupole
form factor implies an oblate shape of theρ meson, manifesting itself in a quadrupole moment of
µQ = −0.017(2) fm2. We are currently improving our study by repeating the analysis for more
ensembles and by employing partially twisted boundary conditions.
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