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1. Introduction

With the Large Hadron Collider (LHC) about to come online, the bulk of particle theory re-
search is focused on extending the Standard Model to the TeV-scale energies which will soon
become experimentally accessible. A number of the theoretical models considered to describe
LHC physics involve new strong dynamics, i.e. new interactions resembling the only known strong
force, QCD. Models such as technicolor [1, 2], composite Higgs [3] and topcolor [4] are just a few
examples of Standard Model extensions involving new strong interactions.

If another strongly interacting theory does appear in nature, lattice gauge theory will provide
the ideal way to study it. Perturbation theory can provide only a limited understanding of a strongly
coupled theory, and no other non-perturbative method is as mature and broadly applicable as lattice
simulation. Even if no strongly coupled dynamics are revealed at the LHC, the study of more exotic
Yang-Mills theories can be interesting in and of itself. Mapping out the parameter space of general
Yang-Mills theories by varying the number of colors and light flavors would lead to a more solid
theoretical understanding, which might open up new avenues of non-perturbative investigation into
QCD or any strongly-coupled theory that might occur beyond the LHC.

It is also possible that more exotic behavior may arise from strong dynamics. In particular,
it is known that SU(N) gauge theory with enough light fermion flavors N f develops an infrared
conformal fixed point [5, 6]. Although not as directly applicable to LHC physics as the above
examples, these theories are also of interest in the context of research into conformal field theory,
e.g. [7, 8]. Although not truly conformal, these theories do show approximate scale invariance, and
the ability to simulate such a theory on the lattice may offer new ways to study conformal behavior
non-perturbatively. Furthermore, quantities derived from our running coupling measurement, such
as the fixed-point coupling strength and the anomalous scaling dimension at the fixed point, may
be of interest to model builders thinking about conformal behavior.

Two of the most important qualities of QCD (N f = 2 at relatively low energies) are asymp-
totic freedom (the coupling strength vanishes at high energy/short distance) and confinement (the
coupling strength diverges at low energy/long distance, i.e. there are no free states with color
charge.) These properties are strongly dependent on N f ; it is well known that for N f > 16.5, SU(3)
Yang-Mills is no longer asymptotically free [9]. These theories are too exotic for our current pur-
poses. For N f just below this critical value, the short-distance theory still resembles QCD, but in
the infrared the coupling flows to a perturbative fixed point [6] - confinement is lost.

Clearly as we decrease the number of fermions, at some critical point 2 < Nc
f < 16.5 a transi-

tion must take place from a fixed-point theory to a confining theory. Since the theory for N f > Nc
f

shows conformal behavior in the infrared, we refer to the range Nc
f < N f < 16.5 as the confor-

mal window. Although perturbation theory is useful near the top of the conformal window, as we
decrease N f the strength of the fixed-point coupling increases, eventually making the perturba-
tive expansion useless. Nc

f is thus unknown, and non-perturbative study is essential to accurately
determine its value and the nature of the transition into the conformal window.

2. General approach and methods

As noted above, the two phases on either side of the transition at Nc
f are characterized by
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FIG. 2: Cartoon showing the phases inside and outside of the conformal window, in terms of the running coupling. The
β-function (left) vanishes in the ultraviolet in both cases, showing asymptotic freedom. The difference is seen in the infrared: a
QCD-like theory confines, with the β-function appearing to diverge in the IR, while a theory in the conformal window develops
an infrared fixed point at g = g!. This is visible in the running coupling itself (right) as a plateau.

expansion above are independent of renormalization
scheme, and given by

b0 =
2

(4π)2

(
11− 2

3
Nf

)
(5)

b1 =
2

(4π)4

(
102− 38

3
Nf

)
. (6)

Asymptotic freedom is maintained so long as b0 is posi-
tive, which holds for any Nf below 16.5. However, just
below this value of Nf , the second coefficient b1 is neg-
ative. Thus in the two-loop β-function, a zero devel-
ops, which the coupling constant will run towards in the
infrared - an IR fixed point. In two-loop perturbation
theory this occurs for Nf near 8, but the value of the
coupling at the predicted fixed point is very strong; non-
perturbative study is the only way to truly determine N c

f .
The direct non-perturbative measurement of the evolu-
tion of the coupling constant is a simple way to distin-
guish these two phases. A sketch of the β-function and
coupling constant evolution in the above cases is shown
in figure II B.

We choose to employ the Schrödinger Functional (SF)
definition of the running coupling in our measurement.
Dirichlet boundary conditions in Euclidean time will be
used to impose a constant chromoelectric background
field; measuring the response of the system to variations
in the background field will define the coupling strength.
In particular, for the running coupling measurement the
boundary gauge field values are set to be consistent with
the classical solution for a constant chromoelectric back-
ground field, with strength parameterized by a dimen-
sionless value η. The coupling is then measured to be
inversely proportional to the response of the action as
the strength parameter η is varied,

dS

dη
≡ k

g2 . (7)

where k is a constant of proportionality, which is set so
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FIG. 3: Sketch of the Schrödinger Functional setup. Dirichlet
boundary conditions in the Euclidean time direction are set
to impose a constant background chromoelectric field.

that the observable g2 matches onto the perturbative run-
ning coupling. See figure III A for a sketch of the overall
setup.

The SF approach provides an alternative to the stan-
dard Wilson loop method for measuring the running cou-
pling strength, one which is free from finite-size effects
since the coupling is measured at the scale of the box, L.
The presence of the box also lifts the zero modes of the
Dirac operator, making it possible to simulate directly
at zero fermion mass [11]. This is crucial, since non-
zero fermion masses would occlude the infrared behavior
of the theory below that mass scale as the fermions are
screened out.

A given lattice simulation must be performed at a fixed
bare lattice coupling g2

0 , which in turn fixes the scale of
the lattice spacing a. Variation of the box size L/a with
a fixed does not yield enough evolution of scale to get an
accurate picture of the running of the coupling constant;
practically we cannot increase L/a beyond 20 without
the cost of the simulation becoming prohibitive, whereas
we would like to measure the evolution of the coupling
over many e-foldings.

Figure 1: Cartoon showing the phases inside and outside of the conformal window, in terms of the running
coupling. The β -function (left) vanishes in the ultraviolet in both cases, showing asymptotic freedom. The
difference is seen in the infrared: a QCD-like theory confines, with the β -function appearing to diverge in
the IR, while a theory in the conformal window develops an infrared fixed point at g = g?. This is visible in
the running coupling itself (right) as a plateau.

confining and conformal behavior in the infrared; a simple way to distinguish them is thus to
measure the running coupling of the theory, and search for the presence or absence of an infrared
fixed point. This will be the focus of our lattice simulations.

More concretely, we begin with the β -function of the theory,

β (g)≡ L
dg2

dL
= b0g4 +b1g6 +b2g8 + · · · (2.1)

which encapsulates the evolution of the coupling constant. The first two coefficients in the pertur-
bative expansion above are independent of renormalization scheme, and given by

b0 =
2

(4π)2

(
11− 2

3
N f

)
(2.2)

b1 =
2

(4π)4

(
102− 38

3
N f

)
. (2.3)

Asymptotic freedom is maintained so long as b0 is positive, which holds for any N f below 16.5.
However, just below this value of N f , the second coefficient b1 is negative. Thus in the two-loop
β -function, a zero develops, which the coupling constant will run towards in the infrared - an IR
fixed point. In two-loop perturbation theory this occurs for N f near 8, but the value of the coupling
at the predicted fixed point is very strong; non-perturbative study is the only way to truly determine
Nc

f . The direct non-perturbative measurement of the evolution of the coupling constant is a simple
way to distinguish these two phases. A sketch of the β -function and coupling constant evolution in
the above cases is shown in figure 2.

We choose to employ the Schrödinger Functional (SF) definition of the running coupling in
our measurement. We work in a box of size L4; the scale of the box L is thus the only scale in
the system, and our coupling will be defined at this same scale. Periodic boundary conditions are
taken in the spatial directions, while Dirichlet boundary conditions in Euclidean time will be used
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FIG. 2: Cartoon showing the phases inside and outside of the conformal window, in terms of the running coupling. The
β-function (left) vanishes in the ultraviolet in both cases, showing asymptotic freedom. The difference is seen in the infrared: a
QCD-like theory confines, with the β-function appearing to diverge in the IR, while a theory in the conformal window develops
an infrared fixed point at g = g!. This is visible in the running coupling itself (right) as a plateau.

expansion above are independent of renormalization
scheme, and given by

b0 =
2

(4π)2

(
11− 2

3
Nf

)
(5)

b1 =
2

(4π)4

(
102− 38

3
Nf

)
. (6)

Asymptotic freedom is maintained so long as b0 is posi-
tive, which holds for any Nf below 16.5. However, just
below this value of Nf , the second coefficient b1 is neg-
ative. Thus in the two-loop β-function, a zero devel-
ops, which the coupling constant will run towards in the
infrared - an IR fixed point. In two-loop perturbation
theory this occurs for Nf near 8, but the value of the
coupling at the predicted fixed point is very strong; non-
perturbative study is the only way to truly determine N c

f .
The direct non-perturbative measurement of the evolu-
tion of the coupling constant is a simple way to distin-
guish these two phases. A sketch of the β-function and
coupling constant evolution in the above cases is shown
in figure II B.

We choose to employ the Schrödinger Functional (SF)
definition of the running coupling in our measurement.
Dirichlet boundary conditions in Euclidean time will be
used to impose a constant chromoelectric background
field; measuring the response of the system to variations
in the background field will define the coupling strength.
In particular, for the running coupling measurement the
boundary gauge field values are set to be consistent with
the classical solution for a constant chromoelectric back-
ground field, with strength parameterized by a dimen-
sionless value η. The coupling is then measured to be
inversely proportional to the response of the action as
the strength parameter η is varied,

dS

dη
≡ k

g2 . (7)

where k is a constant of proportionality, which is set so

! " # $%& ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?@ABCDEFGH I J K LMNOPQRSTUVWXYZ [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~

Ek(η)

T = 0

T = L
x4

xi

FIG. 3: Sketch of the Schrödinger Functional setup. Dirichlet
boundary conditions in the Euclidean time direction are set
to impose a constant background chromoelectric field.

that the observable g2 matches onto the perturbative run-
ning coupling. See figure III A for a sketch of the overall
setup.

The SF approach provides an alternative to the stan-
dard Wilson loop method for measuring the running cou-
pling strength, one which is free from finite-size effects
since the coupling is measured at the scale of the box, L.
The presence of the box also lifts the zero modes of the
Dirac operator, making it possible to simulate directly
at zero fermion mass [11]. This is crucial, since non-
zero fermion masses would occlude the infrared behavior
of the theory below that mass scale as the fermions are
screened out.

A given lattice simulation must be performed at a fixed
bare lattice coupling g2

0 , which in turn fixes the scale of
the lattice spacing a. Variation of the box size L/a with
a fixed does not yield enough evolution of scale to get an
accurate picture of the running of the coupling constant;
practically we cannot increase L/a beyond 20 without
the cost of the simulation becoming prohibitive, whereas
we would like to measure the evolution of the coupling
over many e-foldings.

Figure 2: Sketch of the Schrödinger Functional setup. Dirichlet boundary conditions in the Euclidean time
direction are set to impose a constant background chromoelectric field.

to impose a constant chromoelectric background field. Measuring the response of the system to
variations in the background field will define the coupling strength. In particular, for the running
coupling measurement the boundary gauge field values are set to be consistent with the classical
solution for a constant chromoelectric background field, with strength parameterized by a dimen-
sionless value η . The coupling is then measured to be inversely proportional to the response of the
action as the strength parameter η is varied,

dS
dη
≡ k

g2 . (2.4)

where k is a constant of proportionality, which is set so that the observable g2 matches onto the
perturbative running coupling. See figure 2 for a sketch of the overall setup.

3. Lattice simulation details

From a lattice simulation point of view, the SF approach provides an attractive alternative to
the standard Wilson loop method for measuring the running coupling strength, one which is free
from finite-size effects since the coupling is measured directly at the scale of the box, L. The
presence of the box also lifts the zero modes of the Dirac operator, making it possible to simulate
directly at zero fermion mass [10]. This is crucial, since non-zero fermion masses would occlude
the infrared behavior of the theory below that mass scale as the fermions are screened out.

Simulations are carried out using the MILC code [11], version 6, with some customiza-
tion. Evolution of the gauge configurations is accomplished using the hybrid molecular dynamics
(HMD) technique, with the R algorithm used to incorporate the fermions [12]. Trajectories are
taken to be unit length, and the step size ∆τ of the MD integrator is varied. This approach is subject
to numerical integration errors of order (∆τ)2, which are generally found to be negligible at small
L/a; on larger lattices, extrapolation to ∆τ = 0 is performed to eliminate these errors.

We use the staggered fermion action [13], which is relatively cheap and simple to simulate with
at zero fermion mass. However, due to the geometry of staggered fermions in combination with

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
0
5
7

The Conformal Window in SU(3) Yang-Mills Ethan T. Neil

the presence of Dirichlet boundary conditions in time instead of periodic, this forces us to simulate
on lattices with even L/a and odd T/a. With T = L±a, an O(a) lattice artifact is introduced when
we attempt to measure the running coupling at the scale L. This artifact is removed explicitly by
simulating at both T = L±a and averaging over the two [13].

Since each gauge configuration yields only a single measurement of the running coupling,
there is no volume self-averaging, and extracting a measurement with a reasonable error requires a
substantial number of configurations. Furthermore, very long autocorrelation times are noted, on
the order of thousands of MD trajectories in the worst cases; as the updating of gauge fields is done
locally while our observable is measured on the scale of the entire box L, it is unsurprising that
many updates are required to create statistically independent measurements of g2(L). We collect
20,000 to 80,000 MD trajectories at each value of β , each box size L/a and integrator each step
size ∆τ , in order to remove statistical bias and extract a good estimate of the running coupling.

A given lattice simulation must be performed at a fixed bare lattice coupling g2
0, which in turn

fixes the scale of the lattice spacing a. Variation of the box size L/a with a fixed does not yield
enough evolution of scale to get an accurate picture of the running of the coupling constant; prac-
tically we cannot increase L/a beyond 20 without the cost of the simulation becoming prohibitive,
whereas we would like to measure the evolution of the coupling over many e-foldings.

To circumvent this problem, we use a systematic procedure known as step scaling to link
together the results of many simulations with various scales a, and extract the correct continuum
running. We define the lattice step scaling function to be

Σ(s,g2(L),a/L) = g2(sL)+O(a/L) (3.1)

We will fix the step size s = 2 from here forward. In practice, after a starting value g2(L)
has been selected, there is a tuning step in which several lattices with different a/L are adjusted
to yield the same measurement g2(L). Keeping a fixed, a/L is then doubled on each lattice, and
the measurement of the coupling on this larger lattice is exactly Σ(2,g2(L),a/L). We can then
extrapolate a/L→ 0 to recover the continuum value of g2(2L). Iterating this procedure allows us
to step from g2(L)→ g2(2L)→ ·· · indefinitely, capturing the evolution of the coupling constant
over very large changes in scale. We determine Σ at four distinct values of a/L, stepping from
4→ 8,6→ 12,8→ 16, and 10→ 20.

Naïvely, staggered fermions possess discretization errors of O(a2), so one would expect a
quadratic extrapolation in a/L to best fit the measured values for Σ(2,u,a/L). However, other
methods can be attempted. In particular, dropping the 4→ 8 step is well-motivated by arguing that
the lattice artifacts on the L/a = 4 lattices are extremely large, to the point of non-analyticity; on
the smallest (43×3) lattice, O(a) boundary artifact operators which “stick out" from the Dirichlet
boundaries will actually overlap. The remaining three values of Σ(2,u,a/L) are well fit by a pure
constant extrapolation, i.e. a weighted average. The difference in choice of extrapolation method
is found to be the dominant source of systematic error in our simulations; therefore these two
extrapolation methods (quadratic to all four values of Σ(2,u,a/L) and constant dropping L/a = 4)
are taken to define the edges of our systematic error band.

Results are depicted in figure 3. The N f = 8 theory looks consistent with the confining phase,
showing no evidence of turnover to an infrared fixed point. The N f = 12 theory, however, shows
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Figure 3: Running coupling at N f = 12 (left) and N f = 8 (right) in SU(3) Yang-Mills, as in [14]. The
systematic error band (grey) is determined by variation of continuum extrapolation method, as described
in the text. The lack of an observed fixed point at N f = 8 indicates that this value of N f lies outside the
conformal window.

clear evidence of an IRFP. Indeed, this theory represents the first non-perturbative measurement of
conformal behavior outside of supersymmetry.

Work is still ongoing to refine these simulations and their analysis. The systematic error bands
shown are quite large, and reducing them would increase confidence in our results. In particular
at N f = 12, a reduced error band should admit a measurement of the anomalous dimension of the
coupling constant as it approaches the fixed point, a quantity which may interest model-builders
working with conformal and near-conformal theories.

4. Conclusion and outlook

In conclusion, we have shown evidence that the lower boundary of the conformal window Nc
f

lies between 8 and 12 flavors. This is in agreement with most perturbative estimates, e.g. [15 – 19],
and in contrast with the previous lattice results of Iwasaki et al. [20].

Furthermore, the results as depicted are consistent with 3-loop perturbation theory, and indeed
the coupling strength of the IR fixed point observed at N f = 12 is quite weak. If this continues to
be the case as the error band is narrowed, it would lend strength to the claim by Gardi et al. that
perturbation theory is valid all the way to the bottom of the conformal window [16].

The logical next step is a similar measurement of the running coupling at N f = 10, which is
ongoing. To continue simulating directly at zero quark mass, we must switch to Wilson fermions;
use of staggered fermions at N f = 10 would require taking a fractional power of the fermion deter-
minant, which can be problematic if the fermion mass is set to zero [21].

Wilson fermions are inherently much more expensive to simulate with than staggered, but this
will be offset in several ways. First of all, simulation at odd L/a is possible with Wilson fermions;
this will allow us to add more values of Σ(2,u,a/L) to the continuum extrapolation, constraining
it better. We will also attempt to reduce a/L dependence by using the clover-improved action, and
perturbative counterterms for boundary O(a) operators. Additionally, we can switch to the Wilson-
oriented Chroma code base, which is very optimized and offers improved algorithms like rational
hybrid Monte Carlo, which should further diminish simulation cost.
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