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1. Motivation—Beyond the Standard Model

Most interesting theories that go beyond the Standard Medgiire honperturbative informa-
tion in order to demonstrate their relevance to low-enetigysies [1]. Among these are strong-
coupling realizations of the Weinberg—Salam theory; texdiar, in which the Higgs multiplet
arises as bound states of a higher-energy theory; and ¢éisdmsised on extra dimensions, in which
Kaluza—Klein phenomena may depend on strong-couplingighy®oreover, various theories of
unification start with large gauge groups that reduce todémargy theories via tumbling and vac-
uum alignment, phenomena that are inherently nonperiueb&upersymmetry can only apply to
the low-energy world if it is broken by some nonperturbatiwvechanism.

As a first step in what we hope will develop into a broad attatgauge theories beyond QCD,
we have chosen to study the SU(3) gauge theory with two flaafovilson fermions in the sextet
representation [2]. The two-loop beta function of this tiyezrosses zero [3, 4] af ~ 10.4, which
is a strong coupling; a ladder calculation indicates thatgharks condense and chiral symmetry
is spontaneously broken before this coupling is reachethddéed chiral symmetry is broken in
this theory, it becomes a candidate for a theory of walkirgpécolor [5], assuming that a lattice
calculation can confirm the slow evolution of the couplingneTsurvival of the fixed point, on the
other hand, would put the theory in the conformal window aisdwhlify it for technicolor.

A related issue is the possibility of scale separation, wliee confinement scale of the theory
is at a lower energy than the scale of the chiral condenst& s is what initially attracted us to
studying quarks in higher representations than the fundtahe

2. Perturbative renormalization group

Let me begin by reviewing the possibilities raised by the-taap beta function, as described
by Banks and Zaks [4]. The perturbative expansion is

b b
2\ 1 4 2 6 ...

whereb; > 0 andb, < 0. If we truncate at these two terms, the formula give an Retive fixed
point (IRFP) atg = g., as shown in Fig. 1.

If g. is a weak coupling, then the two-loop calculation may bealddi. Flow into the IRFP
implies that the massless theory possesses conformal dymatiarge distances. This means that
there is no confinement, no chiral condensate, and indeedntiolps whatsoevet!

If g, is a strong coupling, on the other hand, the chiral condeng#itform before the IRFP is
reached, so the quarks will become massive and decoupletfi@i® dynamics. The beta function
past that point, returning to that of the pure gauge theailyr@main negative all the way tg=
and there will be no actual zero. The sketch for this casegn Fshows the marginal possibility
that the beta function hovers near zero as this decouplkestalace, which is what underlies the
hypothesis of walking.

1\We refer here to Casher's argument [7] that massless quarkwt form bound states in a vector-coupled gauge
theory unless chiral symmetry is spontaneously brokenc@bir-singlet Green functions will possess only cuts sigrt
atg? =0.
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Figure 1. Sketch of the beta function if the two-loop zegp occurs at weak coupling (left) or at strong
coupling (right). The green arrows on the axis are the dmastof the IR flow. The shape ¢(g) on the
right indicates walking.

The two-loop beta function makespaima faciecase for the existence of an IRFP and thus
places the theory in what is called tbenformal window8]. As reviewed in [8], however, a calcu-
lation with the Bethe-Salpeter equation (the “ladder” agpnation) points toySB; a conjecture
based on supersymmetry [9], on the other hand, puts theytlwagok in the conformal window. A
lattice determination of the beta function can resolve tladten

3. The Schrddinger Functional method

The Schrodinger functional (SF) [10, 11] is a well-known hweet for calculating the beta
function of the theory via imposing a background field. Peilog the method of SF calculations
for QCD, we employ Wilson fermions rather than staggeredhablioundary values), (the back-
ground field) can be set on single time slice$ at0 andt = L on anL* lattice; Wilson fermions
also give us better control over the number of fermion flavdfs add a clover term to remo@a)
discretization errors, and we fix the clover coefficient-selfisistently via tadpole improvement.

Wilson fermions, of course, break chiral symmetry exglicitnd one must fix = k. to have
a massless theory in the continuum limit. We define the quarksnby the axial Ward identity,

_10:(A}) 6°(t' =0,p=0))
2 (PP(t) OP(V=0,=0)) |,

(3.1)

where & is an operator on the boundarytat 0 while A4 andP are the axial and pseudoscalar
densities, measured at zero spatial momentum at the cdrttes fattice. Tuning tang = O fixes
K = K.

As is usual in SF calculations, we give the fermion fields diaptawist. The boundary con-
ditions then serve as an efficient IR cutoff, even stabifjzine fermion inversions at = k. and
allowing us to study the massless theory directly.

In the continuum limit, the background field depends onlylemgizel of the system, so the
method gives the running coupling at the IR scafdL). More precisely, one is to calculate the
potentiall = —logZ and compare it to the classical Yang-Mills acti8h of the background field
configuration, givingg?(L) via

s (3.2)
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In a lattice Monte Carlo calculation, however, one canntdwatel” directly. The trick is to let the
boundary valuedl' depend on a parametgr Then by differentiating Eq. (3.2) we relag(L) to
the expectation value of an operator, viz.,

or | 0Syauge 1 d(DiDE) 1 K oS
- = —tr| = —-—"—r — = —, K=—=377... 3.3
on < on (DL on D g (L) on 89

To summarize: In order to extract the scaling of the runniogpting, we

1. fix the lattice sizé- and the coupling® andk = k¢(B);
2. calculateK /g?(L) via the expectation value (3.3), and also

3. calculatek /g?(2L) on a lattice twice as large. The two lattices have the sameegizaameters
(B,k) and hence the same UV cuteif We thus

4. obtain the discrete beta function (DBF), defined as tHerdifice

B(u,2) = (3.4)

which is a function ot = K /g?(L).

We show the result of this procedure in Fig. 2 (left). The DB, 2), obtained from lattices

Figure 2: Left: Discrete beta functiol(u,2) obtained by comparing lattices of sizé 4nd &. Right:
B(u,4/3) obtained from lattices of size*@nd &. The dashed curves are the two-loop predictions.

of size 4 and &, evidently crosses zero gt ~ 2.0. This is a much weaker coupling thgh~ 10

as found in two-loop perturbation theory. (For comparigbae,two-loop DBF is plotted as a dashed
curve.) On the face of it, this result demonstrates that theshess theory possesses an IRFP and
hence that the IR theory is conformal.

If a lattice of size 4 seems small, we can compare instead lattices of izné &, which
yield the DBFB(u,4/3) for the smaller scale factor/8 (Fig. 2, right). As one might expect, the
result is generally closer to zero th&¢u,2), and hence the error bars are relatively larger. The
crossing of zero is evident nonetheless. We note that tleemtants in each plot are statistically
independent, but the two plots are linked since the sahua@é are used in each.
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4. Caveat cursor

The DBF is, in principle, a continuum quantity that relatesiglings at different IR scalds.

A lattice calculation of the DBF introduces an implicit dapence on the lattice spacing. It goes
without saying that our results contain lattice artifaetdich we cannot estimate since we have
worked so far at a single lattice spacing for each valug ahd for each rescaling factor (2 and
4/3).

Even when a satisfactory continuum limit is reached, howewsre must ask whether the
theory is really described by a single running coupling.eAtill, in the IR regime any theory will
need more than one term in its Lagrangian to describe itdrspe@nd interactions, and these terms
will be generated by RG transformations. Continuum pettion theory automatically limits the
effective Lagrangian to renormalizable couplings, andstbne always speaks of a single beta
function for QCD or other (massless) gauge theories. Ackttheory, on the other hand, can
quickly generate many terms in the effective Lagrangiamsshb physically reasonable truncation
is used in the RG transformation.

One necessary condition that the lattice theory be wellrimst by a single coupling at scale
L is to verify thatL is too small for confinement to have set in. Figure 3 is the plesgram of the
lattice theory. It is clear that on our lattice the IRFP isrfdun the weak-coupling phase, meaning
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Figure 3: Phase diagram in thg3,k) plane. The solid curve igc(f3), where the AWI quark massy
vanishes. The star marks the couplings corresponding ttRtRE of the SF effective coupling. The other
curve denotes the finite-temperature/finite-volume phasesition forL = 8. Presumably the finite-volume
curve intersects the. curve, but we have not gone there. See T. DeGrand'’s talk firahbre information
on the phase diagram.

that the IR scalé = 8a is well within the confinement radius (if any).

If we examine this more closely, the simplicity of a gaugeotiyeat a given scale may be judged
by the behavior theq potential. If the potential is aimost Coulomb, meanifng) = g2(r)/r with
a couplingg that varies only slowly withr, then one may proceed asgfis the only coupling.
Again, we expect that this breaks down at large distancesdBb QvhereV (r) first becomes linear
in r as the confining flux tube forms and then decays exponentallif breaks. It may be seen
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in Fig. 4 that when we measux&r) we find it to be consistent with a Coulomb potential in the
neighborhood of the couplings corresponding to the IRFP.
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Figure 4. Examples of theq potential from our data. On the left, the string tension igéa the Sommer
parameterg/ais measurable and we can obtain a good fi¥ {o). On the right, the string tension shrinks
away as the temporal extent of the Wilson loop grows, and waatgperform a reliable fit t¥/ (r). The plot
on the right represents the situation near the fixed poinign3: The lattice sizes ar€& 12 (left) and 12

(right).

Confirmation of the IRFP will thus come from (1) checking thBPwith more and larger
volumes, (2) further understanding of the phase diagrarhér(f, ) plane, and eventually (3)
understanding of the continuum limit. All this is in progsed hen the challenge will be to measure
properties of the conformal theory at the fixed point. Thid emtail at least the calculation of
operator exponents, which will govern how the fixed pointppraached from the theories in its
basin of attraction and from nearby massive theories.

More work on this model has been presented by Daniel NogtdHisaconference [13]. This
work was supported in part by the Israel Science Foundatidemugrant no. 173/05 and by the US
Department of Energy. Our computer code is based on versafrihe publicly available code of
the MILC collaboration [14].
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