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This conference saw considerable discussion of strongly interacting models which are candi-
dates for physics beyond the Standard Model, which might be accessible at the LHC. Before this
year, most theoretical studies of these models were based on analytic techniques. However, their
Lagrangians are not that different from those of theories which lattice people have been studying
for years (like QCD). Perhaps lattice simulations can give new insights into the dynamics of these
models.

The Lagrangian we chose to study was an SJ(3) gauge theory coupled to two flavors of
fermions in the sextet (symmetric) representation. Ref. [1], summarized in the companion pre-
sentation in this conference [2], described a Schrodinger functional study of the running coupling
constant. We observed behavior consistent with an infrared attractive fixed point (IRFP). This kind
of study does not give direct evidence of the spectrum and low energy constants of the system. That
is the goal of the project we now describe.

Our lattice theory is defined by the single-plaquette gauge action and a Wilson fermion action
with added clover term [3]. We modify the clover term’s coefficient via tadpole improvement,
Cav =1/ ug. A table of the relevant values is given in Ref. [1]. All simulations used the standard
hybrid Monte Carlo algorithm. The trajectories in various runs were of lengths between 0.5 and
1.0, and the time steps ranged from 0.02 (at heavy quark masses) to 0.005 (for light masses). The
data sets at each of our (3, k) values consist of 300 to 1000 trajectories, with every fifth trajectory
used for spectroscopy.

We want to map out the phase structure of the theory. We did this with a combination of
simulations on large lattice volumes, plus simulations in which one (or more) lattice directions
were small. When these directions become roughly the same size as the scale for some physical
process, they will affect it and give results which differ from what is seen on the large lattice.
Our picture for this description is a finite temperature transition, seen when the size of temporal
direction (in which the fermions obey antiperiodic boundary conditions) is smaller than the sizes
of the other directions. So we simulated volumes

e 8% for quick scans

e 123 x 8, to reveal the critical (B, Kconf) line where deconfinement occurs (the last dimension
is the temporal one)

e (12 x 82) x 8 allows faster runs than 123 x 8 and shows the same finite-temperature physics,
though transitions are rounded by the smaller spatial volume.

e 83 x 12 s a “zero temperature” lattice compared to Ny = 8. We use it to study how the spatial
size L = 8 intrudes on the qq potential and on meson masses.

e 12* has two roles. One is as a “zero temperature” lattice, which we use to determine
zero-temperature quantities as long as all scales are short enough. The other role is as a
rough finite-temperature lattice that permits us to observe directly the movement of transi-
tion curves when N; changes from 8 to 12.

Dimensions of size 12 are where we determine meson masses. If the dimension is temporal, then
the masses are conventional spectroscopic masses; if spatial, then the masses are screening masses,
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Figure 1: Phase diagram in the (3, K) plane. The solid curve is K¢(f3), where mq vanishes; the dashed curves
are Keont(f3), the confinement-deconfinement transition for L = 8 (the curve to the left) and L = 12 (the curve
to the right). The star on the K¢ curve marks the approximate location of the IR fixed point found in Ref. [1].
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Figure 2: Scatter plot of real and imaginary parts of the Polyakov loop from simulations at 8 = 5.7, 123 x 8
lattices. (a) K = 0.115, in the confined phase (b) K = 0.135, in the deconfined phase.

affected by the Matsubara frequencies that create non-zero momentum transverse to the meson
propagation. Lattices where N; = 12 are also where we calculate the (spatial) g potential from
Wilson loops. We used the “P+A trick” [4, 5, 6, 7] to construct propagators for spectroscopy on
our short lattices.

The usual ordering of the Polyakov loop tells us the location of the deconfinement transition.
Fig. 1 shows our result for two values of L, 8 and 12. One interesting feature of the transition
is that the fermions align the Polyakov loop into a vacuum which spontaneously breaks charge
conjugation, Arg P = £271/3. This means that the transition is a real phase transition for all quark
mass, not just a crossover. This behavior is expected from strong-coupling arguments [8].

To describe the chiral properties of the theory requires a little more work: we need a rather full
set of observables, including the condensate, the pseudoscalar decay constant, and masses of the



Exploring the phase diagram of sextet QCD Thomas DeGrand

pseudoscalar meson, as well as the masses of the vector, axial vector, and scalar mesons. It is hard
to measure the condensate reliably for Wilson fermions (without doing something which amounts
to invoking the GMOR relation). It is both additively and multiplicatively renormalized. We have
not used this observable.

A lattice determination of a continuum f; is a little involved. Because we are using a non-
chiral lattice action and a matrix element which does not precisely satisfy a Ward identity, there is
a lattice-to-continuum conversion factor Za between the lattice matrix element, the lattice spacing
a, and a continuum-regulated decay constant f

afom — zaflat, (1)

We are aware of two ways to compute Za. One is nonperturbative, through the RI (regularization
independent) scheme, and the other is through perturbation theory. For our exploratory study, we
believe perturbation theory is adequate. In the context of tadpole-improved perturbation theory [9],
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where W is a numerical factor and the “tadpole (TI) factor” ( — 86—,55) corrects the lattice field
renormalization of lattice Wilson fermions compared to the continuum case. We include the tadpole
factor in our displayed results, but not the perturbative part of Za, which is independent of quark
mass.

If chiral symmetry is broken, we expect to see f extrapolating to a nonzero value in the chiral
limit. If chiral symmetry is restored, f; will fall to zero. In the chirally broken phase, we expect
to see M ~ M. This is not the same as observing (amy)? ~ (amy) along some arbitrary line in
the space of bare parameters, because the lattice spacing itself will change as the bare parameters
change. A more modest expectation is that at small quark mass the pion mass will become small
compared to all other massive quantities, and that all these quantities, including f, will remain
nonzero in the chiral limit.

In a chirally restored phase we do not expect to see this mass hierarchy. Instead, we expect to
see parity doubling: the pseudoscalar and scalar (ag) mesons should become degenerate, as well
as the vector and axial vector (8;) mesons. This effect is seen in ordinary QCD [10], where near
degeneracy of the (scalar, pseudoscalar) and (vector, axial vector) multiplets is also observed. A

naive expectation for a screening mass is that it behaves something like

| ()

where ﬁ is the lowest nonzero Matsubara frequency associated with antiperiodic boundary condi-

3)

tions in a lattice of temporal length N;.
To complete the story, we replace K by the Axial Ward Identity quark mass, defined through

012 (Ap(X,1)X(0)) :quZ (P(x,1)X(0)) . 4

where Ay = Py )5 and P = Qys. We neglect renormalizations and subtractions here as we did
for f;. For consistency with the Schrodinger functional conventions, the derivative is taken to be
the naive nearest-neighbor difference.
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Figure 3: Spectroscopy for 3 = 5.5 on (12 x 82) x 8 volumes. Crosses show f, pions are diamonds, rhos
are squares, axial vector mesons are octagons are and scalar mesons are bursts.

We augment our observation of string tension and Polyakov loop with measurements of these
observables. In the confined phase, amy, amp, and afy are easy to extract, while the ay and a;
signals are poor. The masses of the latter particles are large and the fits are unstable. As we move
into the deconfined phase, the signals in these channels improve and the masses fall.

Everything we see in the deconfined phase is consistent with a picture of chiral symmetry
restoration. afy drops smoothly to zero as amg vanishes. The pseudoscalar and vector meson
screening masses remain nearly degenerate as the quark mass is varied, and the a; and ay masses
approach degeneracy with them. The simplest explanation of what we see is that there is a single
transition line, at which confinement is lost and chiral symmetry is restored.

We show some plots which illustrate this behavior. In all cases the right panel displays a mas-
sive quantity (in lattice units, amy) versus amg, while the left panel displays the squared quantity
versus amy. In all graphs, crosses show the decay constant (with TI factor), diamonds the pion
mass, squares the rho, octagons the a;, and bursts the ay.

We begin with a (12 x 82) x 8 volume at 8 = 5.5, Fig. 3. The two large quark mass points
are confined. The other points are deconfined. Although (amy)? appears to vary linearly with amy
down to small amg, none of the other criteria for chiral symmetry are satisfied. Instead, all states
become degenerate and af; becomes small.

We have also made rough observations of the deconfinement line on our 12* lattices, away
from the K¢ line. It moves to larger 3. Scans of spectroscopy show similar behavior to what we
saw on the smaller lattices. An example is shown in Fig. 4, B = 5.7: The two heaviest mass points
are confined. The next point is on the crossover and the rest are deconfined. These are not screening
masses, but measurements performed in the temporal direction (ordinary spectroscopy). We have
checked screening correlators at several of these points and they produce identical results.

The two-phase structure with a single transition line is reminiscent of what is seen in QCD
with a small number of flavors of fundamental-representation fermions. The motion of the decon-
finement transition line at larger quark mass is to be expected. At larger quark mass (at smaller K)
the quarks decouple and our theory reduces to a pure gauge system. At increasing N; the boundary
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Figure4: Spectroscopy for B = 5.7 on 124 volumes. Crosses show fy, pions are diamonds, rhos are squares,
axial vector mesons are octagons are and scalar mesons are bursts.

between confinement-like behavior and deconfinement will move to larger 3 and its flow along
lines of constant physics (for example, fixed large quark mass) will be governed by asymptotic
scaling for T¢. The behavior of the deconfinement line near K¢ will be different if the zero temper-
ature theory has an infrared fixed point, than if it is everywhere confining, like QCD. In the latter
case the transition line will also move out the K¢ line to ever larger 3. But a theory with an IRFP
must have a basin of attraction in which the gauge coupling flows into the FP. In this basin, the
theory is deconfined and chirally restored, so no transition (or line of transitions) to a confined,
chirally broken phase can intrude. Thus the intersection point of the deconfinement curve with K¢
must come to a halt at sufficiently large N;. Zero temperature simulations might identify this point
with a bulk transition point, which must be present at zero quark mass to separate the (confining)
strongly coupled phase from the IRFP’s basin of attraction.

We notice qualitative similarities between our system and observations of J (2) gauge theory
with Nt = 2 flavors of adjoint fermions, reported at this meeting or near it [11, 12, 13]. In these
systems, at large 3 and near K. the 77/p mass ratio appears to remain near unity while the string
tension a0 becomes small. As far as we know, none of these groups have done finite temperature
simulations as a diagnostic for the location of phase boundaries, nor have they compared f, or the
states whose masses which might parity-double, over a wide parameter range. It would be very
useful to add these tests to those already in use, to further characterize the phase structure of these
theories.

J (2) pure gauge theories possess a second order confinement - deconfinement transition and
adjoint fermions preserve the Z(2) center symmetry, so the pattern of finite temperature transitions
sweeping across the phase diagram is expected to be present here, too.

Finally, we would like to remark: the description of our data that we have presented here is
rather different from the one the speaker (T. D.) gave at the conference. At that time we thought we
were seeing a separate chiral symmetry restoration transition at weaker coupling. Such behavior
would be a true (second order) transition only at amg = 0 and in the continuum limit, and would
only be a crossover at nonzero quark mass (where all our data is taken). It also cannot approach
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the location of the IRFP. The rough linearity of (amy)? vs amg, which describes our data through
much of the parameter space where we are deconfined, fooled us. But, as we have described above,
there is more to chiral symmetry breaking than one mass relation.
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