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1. Introduction

With the existing evidence for the triviality of the Higgs sector of the electroweak Standard
Model, rendering the removal of the cutoffΛ from the theory impossible, physical quantities in this
sector will, in general, depend on the cutoff. Though this restriction strongly limits the predictive
power of any calculation performed in the Higgs sector, it opens up the possibility of drawing
conclusions on the energy scaleΛ at which new physics has to set in, once, for example, the Higgs
mass has been determined experimentally.

The main target of lattice studies of the Higgs-Yukawa sector of the electroweak Standard
Model has therefore been the non-perturbative determination of the cutoff-dependence of the upper
and lower bounds of the Higgs boson mass [1, 2] as well as its decay properties. There are two
main developments which warrant to reconsider these questions: firstly, with the advent of the
LHC, we are to expect that properties of the Standard Model Higgs boson, such as the mass and
the decay width, will be revealed experimentally. Secondly, there is, in contrast to the situation
of earlier investigations of lattice Higgs-Yukawa models [3, 4, 5, 6], a consistent formulation of
a Higgs-Yukawa model with an exact lattice chiral symmetry [7] based on the Ginsparg-Wilson
relation [8], which allows to emulate the chiral character of the Higgs-fermion coupling structure
of the Standard Model on the lattice while lifting the unwanted fermion doublers at the same time.

Before addressing the questions of the Higgs mass bounds anddecay properties, we started
with an analytical [9] and a numerical [10] investigation ofthe phase structure of the model in order
to localize the region in (bare) parameter space where eventual simulations of phenomenological
interest should be performed. First results on Higgs mass bounds from chirally invariant lattice
Higgs-Yukawa models have already been presented in [11, 12].

In the present paper we study the dependence of the Higgs masson the model parameters. We
check that the smallest and largest Higgs masses are indeed obtained at vanishing quartic Higgs
self-coupling and at infinite quartic coupling, respectively, as expected from perturbation theory.
We then present our preliminary results on the cutoff-dependence of the lower Higgs mass bound
and check the strength of the finite volume effects. Since theaforementioned results were obtained
in the mass degenerate case,i.e. with equal top and bottom quark masses, we also investigate the
effect of the top-bottom mass splitting on the Higgs mass, allowing ultimately to extrapolate to the
- numerically extremely demanding - physical situation, where the bottom quark is approximately
40 times lighter than the top quark. We then end with a brief outlook towards the upper Higgs mass
bound.

2. The SU(2)L×U(1)R lattice Higgs-Yukawa model

The model, we consider here, is a four-dimensional, chirally invariant SU(2)L ×U(1)R lat-
tice Higgs-Yukawa model [7], aiming at the implementation of the chiral Higgs-fermion coupling
structure of the pure Higgs-Yukawa sector of the Standard Model reading

LY = −yb
(

t̄, b̄
)

L ϕbR−yt
(

t̄, b̄
)

L ϕ̃tR+c.c, (2.1)

with yt,b denoting the top and bottom Yukawa coupling constants. Herewe have restricted ourselves
to the consideration of the top-bottom doublet(t,b) interacting with the complex Higgs doubletϕ
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(ϕ̃ = iτ2ϕ∗, τi : Pauli-matrices), since the Higgs dynamics is dominated bythe coupling to the
heaviest fermions. For the same reason we alsoneglect any gauge fieldsin this approach.

The fields considered in this model are one four-component, real Higgs fieldΦ, being equiva-
lent to the complex doubletϕ of the Standard Model, andNf top-bottom doublets represented by
eight-component spinors̄ψ(i) ≡ (t̄(i), b̄(i)), i = 1, ...,Nf .

The chiral character of the targeted coupling structure (2.1) is preserved on the lattice by
constructing the fermionic actionSF from the Neuberger overlap operator [13] according to

SF =
Nf

∑
i=1

ψ̄(i)
M ψ(i), (2.2)

M = D
(ov) +P+φ† diag(ŷt , ŷb) P̂+ +P− diag(ŷt , ŷb)φ P̂−, (2.3)

where the Higgs fieldΦn was rewritten as a quaternionic, 2× 2 matrix φn = Φ0
n1− iΦ j

nτ j , with
n denoting the site index of theL3

s × Lt-lattice and~τ the vector of Pauli matrices, acting on the
flavour index of the fermionic doublets. The left- and right-handed projection operatorsP± and the
modified projectorsP̂± are given as

P± =
1± γ5

2
, P̂± = 1±γ̂5

2 , γ̂5 = γ5

(1− 1
ρ

D
(ov)
)

, (2.4)

with ρ being the radius of the circle of eigenvalues in the complex plane of the free Neuberger
overlap operator [13]. This action now obeys an exact SU(2)L ×U(1)R lattice chiral symmetry.
For ΩL ∈ SU(2) andUR ∈U(1) the action is invariant under the transformation

ψ →URP̂+ψ + ΩLP̂−ψ , ψ̄ → ψ̄P+Ω†
L + ψ̄P−U†

R, (2.5)

φ →URφΩ†
L, φ† → ΩLφ†U†

R. (2.6)

Note that in the mass-degenerate case,i.e. yt = yb, this symmetry is extended to SU(2)L ×SU(2)R.
In the continuum limit the symmetry (2.5,2.6) recovers the continuum SU(2)L ×UR(1) chiral sym-
metry and the lattice Higgs-Yukawa coupling becomes equivalent to (2.1) when identifying

ϕn = −C ·
(

Φ2
n + iΦ1

n

Φ0
n− iΦ3

n

)

, ϕ̃n = iτ2ϕ∗
n = −C ·

(

Φ0
n + iΦ3

n

−Φ2
n + iΦ1

n

)

, and yt,b =
ŷt,b

C
(2.7)

for some real, non-zero constantC. Note that in absence of gauge fields the Neuberger Dirac
operator can be trivially constructed in momentum space, since its eigenvalues and eigenvectors
are explicitly known. This will be exploited in the numerical construction of the overlap operator.

Finally, the lattice Higgs actionSΦ is given by the usual latticeΦ4-action

SΦ = −κ̂ ∑
n,µ

Φ†
n

[

Φn+µ̂ + Φn−µ̂
]

+∑
n

Φ†
nΦn + λ̂ ∑

n

(

Φ†
nΦn−1

)2
, (2.8)

which is equivalent to the continuum notation

Sϕ = ∑
n

{

1
2

(

∇ f
µϕ
)†

n
∇ f

µϕn+
1
2

m2ϕ†
nϕn +

λ
4!

(

ϕ†
nϕn
)2
}

, (2.9)

with the bare massm and the bare quartic coupling constantλ . The connection is established
through a rescaling of the Higgs field and the involved coupling constants according to

ϕn = −
√

2κ̂

(

Φ2
n + iΦ1

n

Φ0
n− iΦ3

n

)

, λ =
λ̂ ·4!
4κ̂2 , m2 =

1−2Nf λ̂ −8κ̂
κ̂

, yt,b =
ŷt,b√
2κ̂

. (2.10)
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3. Numerical results

The general method we apply to determine the lower and upper Higgs mass bounds is the
numerical evaluation of the whole range of Higgs masses thatare producible within our model in
consistency with phenomenology. The latter requirement restricts the freedom in the choice of the
model parameterŝκ , ŷt,b, λ̂ due to the phenomenological knowledge of the top and bottom masses,
i.e. mt ≈ 175GeV andmb ≈ 4.2GeV, respectively, thus fixing the renormalized Yukawa coupling
constants for the top and bottom quark. Furthermore, the model has to be evaluated in the broken
phase,i.e. at non-vanishing vacuum expectation value of the Higgs fieldvev6= 0, close to the phase
transition to the symmetric phase. We use the phenomenologically known valuevev= 246GeV to
determine the lattice spacinga and thus the physical cutoffΛ according to

246GeV=

√
2κ̂ · 〈v̂〉√
ZG ·a , Λ = a−1, Ĝ−1

G (p̂2) =
2κ̂ · p̂2

ZG
(3.1)

where〈v̂〉 denotes the bare lattice vev and the Goldstone renormalization constantZG is obtained
from the lattice Goldstone propagatorĜ−1

G (p̂2) measured in the simulation with ˆp2 denoting the
squared lattice momenta. For the numerical evaluation of the model we have implemented a
PHMC-algorithm, allowing to access the physical situationof oddNf . All results in the following
are preliminary and have been obtained atNf = 1 with degenerate Yukawa coupling constants,
i.e. yt = yb (unless otherwise stated), tuned to reproduce the phenomenologically known top quark
mass. However, we are currently working also on theNf = 3 results to account for the colour index
(even though gauge fields are absent here).
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Figure 1: (a) The dependence of the Higgs massmH on the quartic self-coupling constantλ atΛ = 400GeV
on a 163× 32-lattice for constant Yukawa couplings. The dashed line indicates theλ = 0 result. (b) The
corresponding Higgs mass shiftsδm2

H versus the quartic coupling constantλ . The dashed line is a linear fit
through the data points.

3.1 λ -dependence of Higgs mass atλ ≪ 1

For a given cutoffΛ these requirements still leave open an one-dimensional freedom, which
can be parametrized in terms of the quartic self-coupling constantλ . However, this remaining
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freedom can be fixed, since it is expected from perturbation theory that the lightest Higgs masses
are obtained at vanishing self-couplingλ = 0, and the heaviest masses at infinite couplingλ = ∞,
according to the one-loop perturbation theory result for the Higgs mass shift [14]

δm2
H = m2

H −m2 ∝
(

λ −y2
t −y2

b

)

·Λ2. (3.2)

One should remark here that this argument is not complete, since the phase transition line changes
for varying λ , thus making the bare Higgs massm a function ofλ for fixed cutoff Λ and constant
Yukawa coupling. In fact, the bare mass decreases with increasing self-coupling [9] (in the weak
coupling regime), contributing to theλ -dependence ofmH with opposite sign as compared to (3.2).
In Fig. 1a we therefore check that the lightest Higgs masses are - despite the latter effect - never-
theless obtained at vanishing self-coupling, thus allowing to restrict the search for the lower Higgs
mass bounds to the settingλ = 0 in the following. The expected linear behaviour in the massshift
with increasingλ is clearly observed in Fig. 1b.
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Figure 2: (a) The lower Higgs mass boundmlow
H versus the cutoffΛ determined on several lattice sizes. To

illustrate finite volume effects, simulations have been rerun with identical parameter sets but different lattice
sizes. Runs with same parameter sets are connected via dashed lines to guide the eye. (b) Dependence of
lattice Higgs masses ˆmH on the lattice sizeLs at Λ = 400GeV andΛ ≈ 1000GeV.

3.2 Cutoff-dependence of lower Higgs mass bound and finite volume effects

For the determination of the cutoff-dependence of the lowerHiggs mass bound we evaluate the
Higgs mass atλ = 0 for several values ofΛ. Two restrictions limit the range of accessible energy
scales: on the one side all particle masses have to be small compared toΛ, to avoid cutoff-effects,
on the other side all masses have to be large compared to the inverse lattice size to avoid finite
volume effects. As a minimal requirement we demand here thatall particle masses ˆm in lattice
units fulfill m̂ < 0.5 andm̂· Ls,t > 2. For a lattice with side lengthsLs = Lt = 32, a degenerate
top/bottom quark mass of 175GeV, and Higgs masses ranging from 40 to 70 GeV one can access
energy scalesΛ from 350GeV to approximately 1100 GeV. In Fig. 2a we show the obtained Higgs
masses versus the cutoffΛ. To illustrate the influence of the finite lattice volume we have rerun
some of the simulations with exactly the same parameter settings but different lattice sizes. Those
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data points belonging to the same parameter sets are connected by lines to guide the eye. While the
finite volume effects are mild atΛ = 400GeV withm̂H ·Ls,t > 3.2 on the 324-lattice, the vev, and
thus the associated cutoffΛ, as well as the Higgs mass itself vary strongly with increasing lattice
sizeLs at Λ ≈ 1000GeV as can be seen in Fig. 2b. Larger lattices are required here to determine
the Higgs mass reliably also at this energy scale.

3.3 Dependence of lower Higgs mass bound on top-bottom mass-splitting

So far, the presented results have been determined in the mass degenerate case,i.e. yt = yb,
which is numerically easier accessible, opening up the question how the results are influenced
when bringing the top-bottom mass split to its physical value, i.e. mb/mt ≈ 0.024. From (3.2)
one expects the Higgs mass shiftδm2

H to grow quadratically with decreasingyb and that is exactly
what is observed in Fig. 3b. Here the top quark mass, the quartic coupling, and the cutoff are held
constant, while loweringmb to its physical value. However, the Higgs mass itself does not increase
but decreasewith decreasingyb as shown in Fig. 3a. This is because the first effect in the mass
shift is over-compensated by the shift in the phase transition line, which is moved towards smaller
bare Higgs massesm [9].
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Figure 3: (a) The Higgs mass versus the squared ratio of the top and bottom Yukawa coupling constants
[yb/yt ]

2 on a 123×32-lattice for constant cutoffΛ = 400GeV,λ = 0, andmt = 175GeV. (b) The corre-
sponding Higgs mass shifts versus[yb/yt ]

2. The dashed line is a linear fit through the data points.

3.4 Outlook towards upper Higgs mass bounds

Finally, we turn towards the determination of the upper Higgs mass boundmup
H (Λ). First, we

check that the largest Higgs masses are indeed obtained atλ = ∞. This can be clearly observed in
Fig. 4b where we plot the Higgs massmH versus the quartic self-coupling constant. We therefore
derive the upper Higgs mass bounds in the following from simulations with infinite self-coupling.
In Fig. 4a we present the corresponding results for the cutoff-dependence ofmup

H (Λ). As expected
the obtained upper mass bounds fall quickly with increasingcutoff Λ. Note, however, that the
presented results are only preliminary, since the considered volumes are rather small and no finite
volume effects have been studied in this scenario so far.
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Figure 4: (a) The upper Higgs mass boundmup
H versus the cutoffΛ as determined on a 163×32-lattice at

infinite quartic self-couplingλ = ∞. (b) The dependence of the Higgs mass on the quartic couplingconstant
λ in the strong quartic coupling regime on a 123×32-lattice. The dashed line represents theλ = ∞ result.
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