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1. Introduction

| describe a strictly local fermion Dirac operat@i{A) with an exact chiral symmetry mani-
fested in anti-commutation withs, i.e. 52 = — 2. By strictly local | mean that only nearest
neighbor terms appear in the fermion action. The operatserdees two fermion flavors, the min-
imum required for chiral symmetry to exist. | develop thisiat as a linear combination of two
“naive” fermion actions, following a line of reasoning slarito that presented by Borici [1].

The theory is not symmetric under the full hyper-cubic groogt the subgroup thereof that
preserves one fixed direction up to a sign. These symmetrdhsdie transformations of both even
and odd parity. On renormalization, interactions can bhtice a lattice anisotropy at finite cutoff.

2. Doubling and chiral symmetry

Spontaneously broken chiral symmetry is fundamental toumglerstanding of low energy
hadronic physics. Pions are elegantly described as quantrhanical waves propagating through
a background quark condensate. In addition, chiral synynmtvides powerful tools enabling
extrapolations to the physical quark masses from the hesmlaes currently practical in lattice
gauge simulations.

These issues are deeply entangled with quantum mechamicaiadies that eliminate one
symmetry of the classical Lagrangian. With flavors of quark, the naive axiél (Ny) is reduced
to U (N¢). With only one flavor, all chiral symmetry is removed; so, tiphé flavors are necessary
for chiral symmetry to be relevant. Nielsen and Ninomiya lji2je given a formal topological
argument that any lattice action with chiral symmetry mestaiibe at least two flavors.

If one ignores the anomaly and writes a simple lattice adtiamis chirally symmetric, some-
thing must go wrong. The usual result is that the fermion faddcribes multiple species, and
the extra species cancel the anomalies. The most naivetizstion, which will play an essential
role below, involves 16 species in four dimensions. Staggiéermions divide out an exagt (4)
symmetry of the naive formulation to reduce the multiplidiv four [3]. The Wilson fermion [4]
approach successfully removes all doublers at the expdrseaking all chiral symmetries. El-
egant newer approaches based on perfect actions [5], damadlsin five dimensions [6], or the
overlap operator [7] do maintain much of the desired chiyalmetry with arbitraryN;, but involve
computationally expensive non-local actions. Also, thegggroaches tend to obscure the anomaly;
for example, with the overlap one introduces a gauge fieleédégnt matrixs, the trace of which
gives the winding number of a given gauge configuration.

The Nielsen-Ninomiya theorem requires any chirally symioéattice action to describe at
least two species. Actions which satisfy the minimal daugplof just two have been known for
some time [8, 9], and have recently stimulated new interesi(, 11, 12]. There are a variety of
compelling reasons to revisit these actions. First is tieréaof the rooting procedure popularly
used to reduce the doubling of staggered fermions [13]. 18k@® the lack of an exact chiral
symmetry for Wilson fermions, complicating extrapolasdo physical fermion masses. And third
is the severe computational demands of the domain-wall sadap approaches.
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Figure 1: Representing momentum space as a product of toroids, agaa$iirac equation can be obtained
from naive fermions by expanding about any point where thegmnents of momentum are either Omr
This gives rise to the 16 doublers of the approach.

Here | construct a minimally doubled fermion action closeljowing Borici’s formalism [1].
| use a linear combination of two unitarily equivalent naigemion actions. This combination will
be crafted so that only two of the original 16 doublers forteaction survive.

3. Naivefermions

The so called “naive fermion” approach plays a crucial rolg¢hie following; so, | begin by
reviewing this action. Work with a conventional hyper-aulgttice with gauge fields implemented
as group elements on the links. The details of the gauge pe action play no role here. When a
fermion hops in a forward direction between neighboring sites, it picks up a factoydfl. Here
yu is the usual Hermitean Dirac matrix whilé represents the gauge field on the corresponding
link. For the reverse, or backward, hop on the same link, tmdribution is—yHUT. The minus
sign makes the fermion operator an anti-Hermitean matrignwiewed as a matrix in the direct
product of the site space with the internal symmetry andspapaces. | work here with the
convention of a unit hopping parameter; for the massless aag other hopping parameter can be
scaled away with a redefinition of the fields. | also work iti¢at units so that all site coordinates
are integers and the lattice spacing does not appear dkplici

As is well known, this action describes the physics of 16 femspecies, frequently referred
to as doublers. The Dirac operat®, anti-commutes withg. This represents an exact chiral
symmetry. Because the doublers use different effectivengmmmatrices, half of them rotate in
each direction under a chiral rotation. Thus this is a noiglst chiral symmetry.

In the free field limit where all the link matrices are the itign this theory is easily solved
in momentum space. The Dirac operator factors into indegrengieces for each momentupy
taking the form

D(p) =2y yusin(py)- (3.1)
o

Expanding about small momentum gives the usual Dirac beh&(p) ~ 2i y , y, py. The dou-
blers appear on expanding not about zero momentum but apmint$ where some components of
p are approximatelyt. Thus, in addition to the excitations aroupgl= 0, there are 15 other points
in momentum space where the action is small. Visualizing erom space as a direct product of
two toroids, the zeros occur as sketched in Fig. (1).
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Figure 2: The points in momentum space furthest from those giving thradDequation are located at
pu = £71/2. Our second naive fermion action will have its zeros atefesnts.

4. A unitary transformation

I now do a transformation on the above action to generate erficiplly different but physi-
cally equivalent naive fermion action. Begin by considgrimaximally distant momenta from the
zeros ofD. There are 16 such points, occurring whenever the compsoéttie momentum satisfy
pu = £1/2. These points are sketched in Fig. (2) for ¥y sub-torus. Arbitrarily select one of
these points; here | considpy, = +11/2 for all u. Here the original action becomes

D(py=1/2) =2i z yu = 4l (4.1)
]

where | define the quantity

1
=50ttt (4.2)
This is a unitary, Hermitean, and traceless four by four matrspinor space.

Now consider a unitary transformation on the original fields
w/ — efiT((X1+X2+)§’3+X4)/2 r LIJ (43)
wl — dmxu+xe+Xa+x4)/2 Pr. (4.4)

Here thex,, are the integer coordinates of the lattice. The phases nh@veedros in momentum
space fromp, = O, T to the maximally distant pointp, = +11/2. The factors of" modify the
gamma matrices for the new action to

Vo=Twl. (4.5)
Note that | can construdt either from the originaly, or the nev%
1 1
F=s0+y+rtn) =sM+v+h+tyn)=T" (4.6)
In the free field limit, momentum space again diagonalizesntw action, call iD,
D(p) =2y y,sin(1/2— py). 4.7)
o
Of course since all | have done is a unitary transformatioa,Rirac operator® andD are physi-
cally equivalent. They also satisfy a complementarity rfemtéd in
D(py = m/2) =D(py =0) = 4il". (4.8)

This property is crucial to the following construction.
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Figure 3: The combination of term§ = D +D — 4il" leaves only two Fermi points in momentum space.
This is the minimal number consistent with the Nielsen-Miryga theorem [2].

5. Theminimally doubled action
I now construct the final action from a linear combinationtwge two equivalent theories
9 =D+D-4il. (5.1)
To see how this works, consider the free theory limit in motuenspace

.@(p)zziz(y“sin(pu)+;/usin(n/2—pu))—4ir. (5.2)
o

Going to the Fermi point of the original theory pf; ~ O, then the # term canceld. On the
other hand, at the Fermi point Bfoccurring atp, ~ 11/2, the 4T term cancel®. The remarkable
feature of this combination is that only these two zeros7g¢p) remain. | give a more detailed
proof in Appendix A, but basically at the other zeroshfD — 4il" is large and at the other zeros
of D, D —4il is large. Fig. (3) shows the two remaining Fermi points.

Note that each term in Eq. (5.1) anti-commutes withmaintaining the exact chiral symmetry
of the naive action. Thus a finite chiral rotation gives

d9% 9% — 9. (5.3)

The construction uses different gamma matrices for the pegies. A particular consequence is
¥t = Iyl = —y. Under the chiral rotation of Eq. (5.3), the two species bet@ppositely. The
symmetry is of a non-singlet nature, as expected.

6. Spacetime symmetries

The above construction utilizes the matfix= 3 5, v, Had | selected another of the max-
imally distant points from the zeros of the initial fermioparator, then this relation would be
modified with minus signs for some directions. This wouldegan equivalent theory, but any such
choice still involves picking a particular diagonal axistbé fundamental hyper-cubic lattice as
special. Here | have chosen the positive major diagonalcéimparison, in Refs. [8, 9] the special
direction is not a diagonal but rathef, as discussed further in Appendix B.

Having picked a specific diagonal of the fundamental hygessuthe action is not symmetric
under the full hyper-cubic group, but only the subgroup thates this direction invariant. This
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subgroup include&s rotations that cycle any three positive axes. For exampheight want to
cyclicly permute thexy, xo, X3 axes. To get the gamma matrices to transform appropriatedgru
such rotations, introduce the matrix (in spinor space)

V= eXp(;—\l/g(Uler O23+ 031)>- (6.1)

Here | definely,, | = 2ioyy. The combinatior\/*ypv cyclicly permutes the first three gamma
matrices. SincgV,l'] = 0, this matrix, along with a corresponding rotation of theigm fields,
realizes a symmetry of the action. Note th&t= —1, indicating that a rotation by an angle af 2
gives a minus sign, as expected for fermions. Combining sotetions using other axes generates
the 12 element tetrahedral subgroup of the hyper-cubicpgrou

The above rotations generate positive parity permutatidrie axes. Introducing negative
parity permutations increases the subgroup to 24 elemEatsexample, the matrix

V= %’Z(l—l—i0'15)(l—|—i0'21)(l—|—i0'52) (62)

generates the fermionic part of a rotation that exchangeg;thndx, axes. This transformation
flips the sign ofys, i.e. VTV = — s, emphasizing that it is a negative parity transformation.

In this formalism the natural direction to represent timthissmain diagonag, + e + €3+ €.
The combination of time reversal and parity can then be ahésdlip the sign of all axes. A
unitarity transformation similar to that relatifg and D restores the action to its original form,
increasing the symmetry group to 48 elements.

Note that charge conjugation symmetry is trivial in thisnfiodation, just being particle hole
symmetry. Both the operato® and the Hermitean combinatiog? have their eigenvalues in
opposite sign pairs.

Because of the special treatment of the main diagonal, fieetefof interactions can distort
lengths along this direction. At each of the Fermi pointss thistortion is associated with the di-
mension five continuum operatopl 02(. Interactions at finite lattice spacing can result in the
gluons and fermions not having the same speed of light. Tdnsbe corrected with a renormal-
ization of the@rl Y term in the action, as emphasized in Ref. [11]. Nevertheld®szeros are
stable under this distortion because they involve a topoddly non-trivial mapping of surfaces of
constant action [2, 10].

Appendix A: Proof that there are only two zeros of Z(p)

From the definition of it is elementary to show theyL =TI —y, and the properties Ty, =
Trryu = 2. Using trivial trigopnometric identities one can deduce

Tr (Yu — W)2(p) ~ sin(py — 1/4) —sin(py — 11/4). (6.3)
This implies that at any zero cgs, — 11/4) = +-cog py — 11/4). But a zero also requires
Trr2(p) =0 = Y cospy —1/4) =2V2>2, (6.4)
[

Thus all these cosines must be positive. Therefore all coemts ofp, are equal and either O or
11/ 2, the two Fermi points of interest.



Local chiral fermions Michael Creutz

Appendix B: Comparison with actions from Karsten and Wilczek

Two other minimally doubled chiral fermion actions havempeesented in Refs. [8, 9]. These
actions are in fact equivalent to each other under a unjitaeinsformationy — e4/2y. For the
free case, that action can be written

N

3

D=5 yusin(py)+Va 21(1— cog(pi)).- (6.5)
g=1 i=

The last term removes all doublers from the naive actiongbit®se app = 0 andps =0, 7T.

The main difference from the action presented here isxh# now chosen as the special
direction. The on site term is proportional ypinstead off . As before the second species with
momentum aroung = 1T uses different effective gamma matricgs= y andy, = —ys. As with
the action from the main text, this givgg = —y. Again the chiral symmetry is flavored. The
symmetry of this system is the subgroup of the hyper-cubiagthat preserves the fourth axis up
to a sign.
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