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1. Introduction

Simulations in thee regime are complementary to standard large volume siroakti They
allow to extract low energy constants of the chiral Lagrangin some cases with less contamina-
tions from chiral logs coming from higher order correctiof®r a long time it has been thought
that simulations in the regime are restricted to chirally invariant lattice for@idns. In ref. [1] we
have argued that actually this is not the case, and that ations in thee regime can be performed
also with not chiral invariant lattice actions, as Wilsakelfermions.

In particular in [1] we suggested that a combination of athamic and theoretical understand-
ing of Wilson twisted mass makes possible to think and algtymrform simulations in the
regime with Wilson twisted mass fermions.

Recently it has been shown that with suitable and relateafitthgnic ideas [2] it possible to
reach or get close to theeregime also with improved Wilson fermions. At this lattioenference
further results in this directions have been presented [3].

In this proceeding we extend to a second lattice spacing@NLO the analysis performed
in [1]. Our setup is 4.3 x T Euclidean lattice with spacing The lattice action

SX,X,U] = Ss[U]+ S [x, X, U], (1.1)

is a combination the so called tree-level improved Symagaikge action [4]

SVl =3 Z{bo S Re Tr[]l PO (x 1, v) +b1 ; Re Tr[ﬂ P (x; , v)]}, (1.2)

v

with

1
bp=1-8b;, b= 1> (1.3)
and Wilson twisted mass [5]
S X.U] = a* 3 X() | Dw + ikigsT® | X (), (1.4)
X
where 1

The basic idea of [1] is that sampling all topological sestior the ensemble generation, it
is not needed to have an unambiguous definition of topolodinié¢ lattice spacing. To achieve
this goal it was suggested [1] to use a PHMC algorithm [6]tingathe low modes exactly and
reweighting the observables. This could allow to performudations at very low quark masses
without encountering instabilities or metastabilities.

2. € expansion

Lowering the quark mass at finite lattice spacing with Wildiga fermions requires a detailed
understanding of the interplay between genuine chiral\dgebrainduced by the ’pion’ dynamics
and the one generated by cutoff effects. A review on the pHasgam and cutoff effects with
Wilson twisted mass (Wtm) can be found in ref. [7]. In theegime this is equivalent to say that
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it is necessary to understand the coupling of the zero modbsive relevant operators describing
the effect of the lattice artifacts. The actual values ofl#tce spacing, the physical volume and
the quark mass determine the appropriate power countirigotiydnt to be used to perform com-
putations using chiral effective theories. In the contimuthe exact integration over the constant
zero modes can be achieved in the chiral effective theonyifind the p regime power counting,
resulting in the so called expansion where the would-be pion mass is small comparée tanear
size of the box

2=0(), {=0(), Mi=0(e?). (2.1)
As a result of the exact integration the order parameteh@etuivalent ratidk = {99 \anishes

BoF?2
in the chiral limit at fixed finite volume [8], obtaining restdion of chiral symmetry. One possible

way to include the effects of the lattice artifacts in thislgsis is to include with an appropriate
power counting the lattice spacing. Here we modify the saashgpower counting in the following
way [9]

1 1
M=0(&*), +=0(e), —==0() a=0(, (2.2)
whereM indicates generically a quark mass. The partition funcéibleading order reads
7= [ DU T T T )] @3)
where the scaling variables are
F2wVe?

n=cV=BFmMV, z=cV=-— z3=0C3V =BoF2uRrV.  (2.4)

4 )
To argue that this a proper power counting for actual nuraksenulations we list here some
values

M ~5MeV, a~0.1fm, L~15fm (2.5)
F ~90MeV, By~55GeV, |wW|~ (570MeV)*. (2.6)
Using these values to estimate the relevant scaling vagablthis regime one obtains
MBg

MF?BgV ~ 0.75, a?F2|w/|V ~ 0.75, (2.7)

—~1
alw|
which seems to indicate that this is an appropriate powentauy® The chiral condensate can be
computed in the standard way

10
N oz
and fig. 1 shows the quark mass (left plot) and lattice spagight plot) dependence of the chiral
condensate. We can certainly conclude that the dependenteeajuark mass is, as expected,
smooth, and the cutoff effects are under control. Extensfahis computation to NLO including
standard two-point functions is currently in progress [Hje power counting introduced is general
and valid also for plain Wilson fermiongy= 0). The same power counting could be used to
develop an expansion with staggered fermions and to cheathinal properties of the spectrum in
the presence of roots of the staggered determinant.

R log Z, 71 =0, (2.8)

1if the lattice spacing is much smaller a different power dmmought to be used where the lattice artifacts only
appear at NNLO.
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Figure 1: Quark mass (left plot) and lattice spacing (right plot) degence for the single flavour chiral
condensate normalized with its LO value in the continuumiafidite volume.

B K L/a T/a aply
4.05| 0.157010| 20 40 0.00039

Niraj Nana Tint(P) Tint(MpcAc)
2500 | 421 ~ 05 ~ 0.5

ro/a a[fm| L[fm] ampcac
6.61(3) | 0.065611) | 1.31 0.0004512)

Table 1: Summary of the simulation setup and of the basic ensembéarpers.

3. Numerical results

Details on the algorithm used to generate the gauge ensaablee found in ref. [1]. In this
proceeding we extend the results obtained in [1] to a secattidd spacing with a NLO analysis.
The inversions for the quark propagator have been perfonwitda stochasticZ, x Z, source
located randomly along euclidean time. Table 3 summarhkzesimulation setup. In the left plot
of fig. 2 we show in the first strip the plaquette MC history atsddistribution. In the second strip
we show the MC history and distribution of the lowest eigéumsacompared with the value of
the infrared cutoff (horizontal red line) provided by theisted mass. In the third strip we show
the MC history of the reweighting factor and its distributioOne crucial parameter for stability
issues and for controlling discretization errors is the BGAass. In the right plot of fig. 2 we show
the MC history and the distribution of the PCAC masx@t T /4, together with the euclidean
time dependence of the PCAC mass. It is remarkable the akbssince of boundary @)(cutoff
effects. The analysis gives with the corresponding Z factbd]

ampcac=0.0004512) =  aM¥S(2GeV) =0.00122), (3.1)

where

WIS 1
MQAS(ZGEV) = Z_pM M= \/(ZAmpCAc)z—l—[Jg. (32)

We are clearly not at full twist. It is important to remark thhis is not so relevant in the regime
where chiral symmetry is restored. AutomaticaPimprovement [11] actually holds in a finite
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Figure 2: Left plot MC histories and distributions of the plaquette (firstmtrsmallest eigenvalue (second
strip) and reweighting factor (third strip). The smallegemvalue is compared with the infrared cutoff
provided by the twisted mass (horizontal linRight plot MC history and distributioxg = T /4 (first strip)
together with the euclidean time dependence of the PCAC (sassend strip).

volume and with suitable boundary conditions also for nesssWilson fermions [12]. This is
somehow related to the fact that in the region where chinadrsgtry is restored only @recac)
cutoff effects are expected, i.e. very small. On the othae Bithe mass is of of orde? in general
the the O&?) cutoff effects could become the dominant ones.

3.1 Low energy constants

The values of the low energy constants (LECs) can be exttdmtecomparing the results of
the numerical simulations for the euclidean time depenel@hbasic two-point functions, with the
prediction ofxPT [13, 14]. In this proceeding we consider the correlatiomction

3
Colxo) = 75 3 Cp(xX0)  6%Ch(x,%0) = (P*(x,%0)P*(0,0)) (3.3)

between charged pseudoscalar currents

a

. T
PA0) =X (X)ivs 7 X (¥)- (34)
The euclidean time dependence of the correlation functigrPT is given by

T [y 1

_ _X%_1
Cr(Xo) = ap+ Lgbp{2 24] te. y=ET-3 (3.5)
where we have defined the following variables
2-4 A2
_ B°F8 P Giu),  bp—F282 [1— %Gl(u)] . (3.6)

Details on the definitions gb, u andg; can be found in [13, 14]. We can thus fit the results from
the numerical simulations with the following fit formulee
Ay 23

Coo) =Aot+hoy* =  ap=Aots =P 3.7)
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Figure 3: Left plot Euclidean time dependence®#(xg) together with the result of the fit. The solid line
indicates the fit range, while the dashed line indicates #imeescurve outside the fit rangRight plot fit
results for chiral condensate (first strip) and decay cangtecond strip) as a function of the number of
points included in the fit around the middle point2. The circles indicate the actual values quoted in the
text and the dashed lines indicate the range of values usisteéomine the systematic error.

In the left plot of fig. 3 we show the euclidean time dependesfd@-(Xp) together with the result
of the fit (red curve). The line is solid along the fit range angdeicomes dashed where the points
are not included in the fit. The results of the analysis are

a®L%Ag = (5.94(36))-10°,  a®L3A, = (4.81(30)) 102 (3-8)

where the errors have been computed with a nested Jaclaotstrap procedure. Ititis important
to check the stability of the fit results against the numbedlaiNg4, included in the fit. This is
especially important if we want to make sure that the paralivhe dependence is a real feature
coming from simulating in the regime and not just accidental, i.e. coming from the stathdash
dependence which can reproduce a fake parabolic dependemagsdT /2.

In the right plot of fig. 3 we show the stability of the effeati¢hiral condensate and decay
constant as a function of the number of data points (i.e tinesy around the middle point included
in the fits. While the chiral condensate shows a remarkablglestesult including more point in
the fit, the decays constant shows a somehow not completelgieffeendence on the number of
data points included in the fit. While this is not worrisontenight be an indication of a physical
volume not sufficiently large to suppress higher order abimas. A perfectly well defined way
to proceed would is to include in the systematic errorFothe spread of its value in the region
between the 2 dashed lines. The preliminary result of thedyars is

ro='/®=0.6208),  roF =0.220(8)(10) (3.9)

which compares rather well with results obtained inglmegime using improved Wilson fermions [15].

4. Conclusions and outlooks

We are establishing the basic knowledge to simulate witls@¥ilike fermions in the regime.
To do this we have introduced a power counting to study epansion with Wilson-like fermions.
The LO computation for the chiral condensate confirms therates of any phase transitions, and
NLO extension to the condensate and other observablesrentiyrongoing.



Wilson twisted mass fermions in the epsilon regime A. Shindler

Numerical simulations in the regime with Wtm are feasible using a PHMC with exact
reweighting. This particular choice allows to lower sigeaiintly the quark mass. The extraction of
LECs likeZ andF then becomes feasible. Moreover the NE@xpansion is not contaminated by
chiral logs, which could be a benefit to reduce the systereatars.

Computations in this extreme region with Wilson-like feom$ require a detail understanding
of the usual systematics: discretization errors, quarksraad volume dependence.

We remark that it might be advantageous to comigim@de regime simulations both as a tool
to attack 2+ 1(+1) simulations, and to further constrain the values of the LECs
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