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We investigate the quark mass dependence of pion sectors in the twisted mass lattice QCD, us-

ing the Wilson Chiral Perturbation Theory (WChPT). In order to consider the small quark mass

regime such thatmq ∼ a2Λ3, we includeO(a2,am) terms at the leading order (LO), which induce

a non-trivial phase structure at the tree level. At the next leading order (NLO), due to the pres-

ence of the twisted mass, not only pion masses but also a vacuum expectation of the neutral pion

have divergences, which must be removed by local counter terms at the NLO. We demonstrate

that cancellations of these divergences can be consistently performed within a framework of the

WChPT. As an interesting application of the NLO calculation, we derive the twisted quark mass

dependence of the pion mass at the maximal twist where the PCAC quark mass vanishes.
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Wilson Chiral Perturbation Theory for twisted mass QCD at NLO Satoru Ueda

1. Introduction

The twisted mass lattice QCD (tmLQCD) [1, 2] has several advantages for numerical simula-
tions lattice QCD (LQCD) with other fermion formulations. One of its advantages is an automatic
O(a) improvement at the maximal twist: Physical observables of the tmLQCD are free fromO(a)
lattice artifact if the twist angle becomes maximal by tuning untwisted quark mass parameter[5, 6].
Utilizing this and other advantages of the tmLQCD for reductions of computational costs, the Eu-
ropean twisted mass (ETM) collaboration was able to carry out full QCD simulations at the lattice
spacinga . 0.1fm and the charged pion massmπ ∼ 300MeV [3, 4].

The Wilson chiral perturbation theory (WChPT) is an important tool of LQCD with Wilson-
type quark actions, whereO(a) lattice artifacts potentially exist. In the (untwisted) Wilson fermion
case, the WChPT can predict an existence of the parity-flavor symmetry breaking phase transition[7],
which is caused by theO(a2) chiral breaking term[8]. Furthermore the quark mass dependence of
pion mass and decay constant have been calculated at the next to leading order (NLO) of the
WChPT in the small quark mass region[9].

In the case of the tmLQCD, several investigations have been performed by the WChPT[10,
11, 12]. However there are no NLO calculations in the small quark mass region whereO(a2) terms
becomes important so that they must be treated as LO terms. In this study we therefore perform
NLO calculation of the WChPT in the small quark mass region and investigate the quark mass
dependence of pion masses at the NLO.

As an interesting application of the NLO calculation, we derive the twisted quark mass depen-
dence of the pion mass at the maximal twist which is defined through the PCAC quark mass and
has been employed by the ETM collaboration for numerical simulations[3, 4].

2. Power counting and Lagrangian

If a size of the quark massm is comparable to the lattice spacinga, i.e. m∼ aΛ2 whereΛ is a
typical scale of QCD such asΛMS. In this case, the power counting of the WChPT is given by

LO ∼ O(p2,m,a), NLO ∼ LO2 ∼ O(p4,m2,a2,ap2,am), (2.1)

andO(a) contributions at the LO can be absorbed toO(m) terms, so that the WChPT is almost
identical to the ChPT at this order with ˜m= m+O(a).

As the quark mass decreases further so thatm∼ a2Λ3, O(a2) terms become important and
responsible for the parity-flavor breaking phase transition. Since we are interested in such a small
quark mass region, we employ the following power counting[9], where theO(a2,am) terms are
included at the LO, and are denoted by sub leading order (SLO) terms to be distinguished from LO
terms.

LO ∼ O(p2,m̃) ∼ O(M), SLO∼ O(a2,aM), (2.2)

NLO ∼ LO2,LO×SLO∼ O(M2,a2M,aM2), (2.3)

whereM = p2 or m̃. Here we neglect the SLO2 terms. Therefore the above power counting is valid
for LO > SLO but not for LO≃ SLO.
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We consider the WChPT forNf = 2 tmLQCD. In our power counting, the LO and SLO chiral
Lagrangian becomes

LLO =
f 2

4
⟨∂µΣ∂µΣ†⟩− f 2

4
⟨ΣM† +MΣ†⟩− f 2

4
⟨Σâ† + âΣ†⟩

+ W45⟨∂µΣ∂µΣ†⟩⟨(Σ−Σ0)â† + â(Σ−Σ0)†⟩
− W68⟨ΣM† +MΣ†⟩⟨Σâ† + âΣ†⟩−W′

68⟨Σâ† + âΣ†⟩2, (2.4)

where⟨. . .⟩ means the trace over the flavor indices, the quark mass matrix becomesM = 2B0(m+
iτ3µ) with τa being an SU(2) Pauli matrix for flavor space, and the lattice spacing matrix is denoted
asâ = 2W0a. Parametersf ,B0,W0,W45,68,W′

68 are the low energy constants, and their dimensions
are [ f ] = [B0] = 1, [W0] = 3, and[W45,68] = [W′

68] = 0. Because of the twisted mass term and the
lattice spacing,Σ has non-zero vacuum expectation valueΣ0, and is expanded in terms of pion
fields as

Σ = Σ1/2
0 exp[iπaτa/ f ]Σ1/2

0 , Σ0 = exp[iφτ3]. (2.5)

Replacing the untwisted massmby the shifted mass 2B0m̃= 2B0m+2W0a and the mass matrix
M by M̃ = 2B0(m̃+ iµτ3), we rewrite the Lagrangian as

LLO =
f 2

4

[
1+

c0a
4

⟨Σ+Σ†− (Σ0 +Σ†
0)⟩

]
⟨∂µΣ∂µΣ†⟩

− f 2
[

2B0m̃
4

⟨Σ+Σ†⟩− 2B0µ
4

⟨i(Σ−Σ†)τ3⟩− c2a2

16
⟨Σ+Σ†⟩2

+ c̃2a

(
2B0m̃

16
⟨Σ+Σ†⟩2− 2B0µ

16
⟨Σ+Σ†⟩⟨i(Σ−Σ†)τ3⟩

)]
, (2.6)

where

c0 = 32W45
W0

f 2 , c2 = −64(W′
68−W68)

W2
0

f 2 , c̃2 = 32W68
W0

f 2 , (2.7)

with [c0] = 1, [c2] = 4, [c̃2] = 1 as mass dimensions of parameters.

3. Leading order analysis

3.1 Gap equation at the LO

In order to determine the phase structure from the vacuum expectation valueΣ0, we derive the
gap equation forΣ0 as

2B0m̃sinφ − (c2a2− c̃2a2B0m̃)sin2φ = 2B0µ cosφ +(c̃2a2B0µ)cos2φ . (3.1)

The same gap equation with ˜c2 = 0 was analyzed in Ref.[11]. In Fig.1(a) we plot the phase structure
in a (m̃,µ) plane (multiplied byB0/|c2a2| for c2 < 0) and c̃2 = 0. There is a first order phase
transition line between(0,−1) and(0,1): If m̃ goes from positive region to negative regions at
−1 < B0µ/|c2a2| < 1, cosφ also changes its sign. In Fig.1(b) cosφ is plotted as a function of
B0m̃/|c2a2| at the positive end point of the first order phase transition line for ˜c2 = 0 case ( the blue
line between(−3,1) and(3,1) in Fig.1(a) ). In the case of ˜c2 = 0, cosφ continuously but rapidly
changes aroundB0m̃/|c2a2| = 0 and becomes exactly zero atB0m̃/|c2a2| = 0 ( black solid line ).
As c̃2 increases from zero, cosφ becomes zero at more negative value ofB0m̃/|c2a2|, as shown by
red dotted and green dashed lines in Fig.1(b).
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(a) m̃vs µ0 atc2 < 0, c̃2 = 0 [11].
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Figure 1: (a) The phase structure atc2 < 0 andc̃2 = 0. There is a first order phase transition (violet line),
across which cosφ jumps. (b) cosφ at the end point of first order phase transition, the blue line of (a).
A black solid line is the result at ˜c2 = 0[11], while red dotted and green dashed lines represent results at
c̃2a = 0.2 and 0.4, respectively.

3.2 Pion masses at the LO

The pion mass at the LO is given by

(m1,2
π )2 = 2B0m′−2c2a2cos2 φ +2c̃2a(2B0m′)cosφ , (3.2)

(m3
π)2 = (m1,2

π )2 +(∆m3
π)2, (∆m3

π)2 = 2c2a2sin2 φ −2c̃2a(2B0µ ′)sinφ , (3.3)

where mass termsm′ andµ ′ are rotated masses, given by(
m′

µ ′

)
=

(
cosφ sinφ
−sinφ cosφ

)(
m̃
µ

)
. (3.4)

4. Next leading order analysis

4.1 One-loop calculations

In our power counting scheme, SLO terms generate three-point vertices. One-loop diagrams
are plotted for the vacuum expectation value in Fig.2(a) and for pion propagators in Fig.2(b,c),
where the solid (double) line represents the charged (neutral) pion.

At one-loop the vacuum expectation value has divergences, which must be removed by NLO
local counter terms. Our counting scheme in the WChPT tell us that one-loop diagrams in Fig.2(a)
generates LO× SLO contributions as

= (SLO)
∫

dp4 1
p2−m2

π

= LO×SLO, (4.1)

where the three-point vertex is the SLO andp2 andm2
π are the LO.

In the case of pion propagators here exist two types of 1-loop diagrams as shown in Fig.2(b,c).
The first type diagrams are made from a four-point vertex, while the second ones are made from
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(a) One-loop diagrams for the
vacuum expectation value.

(b) A first type diagram for
pion propagators at one-loop

(c) Second type diagram for
pion propagators at one-loop

Figure 2: One-loop diagrams for vacuum expectation values (a) and pion propagators (b,c). Diagrams for
pion propagators are classified into two types. The first type (b) leads to LO2 effects while the second type
(c) leads to SLO2.

two three-point vertices. Since the four-points vertex contains LO terms, the first type diagrams
generate LO2 contributions as

= (LO)
∫

dp4 1
p2−m2

π

= LO2, (4.2)

while the second type diagrams give SLO2 effects as

= (SLO)2
∫

dp4 1
p2−m2

π

1
p2−m2

π

= SLO2. (4.3)

Therefore the second type diagrams are higher order than NLO and we do not consider them in the
following analysis.

4.2 NLO local counter terms

The NLO Lagrangian is given by,

LNLO = Lp4 +Lap4 +La2p2, (4.4)

Lp4 = L45⟨ΣM̃† + M̃Σ†⟩⟨Lµµ⟩+L68⟨ΣM̃† + M̃Σ†⟩2, (4.5)

Lap4 = ⟨Lµµ⟩
(
V1⟨Σâ† + âΣ†⟩⟨ΣM̃† + M̃Σ†⟩+V2⟨âM̃† + M̃â†⟩

)
+ V3⟨∂µΣâ† + â∂µΣ†⟩⟨∂µΣâ† + â∂µΣ†⟩
+ V4⟨Σâ† + âΣ†⟩⟨ΣM̃† + M̃Σ†⟩2 +V5⟨M̃M̃†⟩⟨Σâ† + âΣ†⟩
+ V6⟨âM̃† + M̃â†⟩⟨ΣM̃† + M̃Σ†⟩, (4.6)

La2p2 = ⟨Lµµ⟩
(
X1⟨Σâ† + âΣ†⟩2 +X2⟨ââ†⟩

)
+X3⟨∂µΣâ† + â∂µΣ†⟩2

+ X4⟨Σâ† + âΣ†⟩2⟨ΣM̃† + M̃Σ†⟩+X5⟨ââ†⟩⟨ΣM̃† + M̃Σ†⟩
+ X6⟨âM̃† + M̃â†⟩⟨Σâ† + âΣ†⟩, (4.7)

where fourteen coefficientsLi ,Vi ,Xi are new low energy constants.

4.3 Renormalization

Calculating one-loop diagram in Fig.2(a,b), it seems that number of divergent terms is more
than the number of local terms, fourteen. Using the gap equation (3.1) rewritten in terms of (3.4)
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as
2B0µ ′ = −c2a2sin2φ + c̃2a(2B0m′ sinφ −2B0µ ′ cosφ), (4.8)

we can reduce the number of independently divergent terms as follows.
We first list the coefficients of NLO local terms as

Lp4 : m′2,m′µ ′,µ ′2, Lap4 : am′2,am′µ ′,aµ ′2, La2p2 : a2m′,a2µ ′. (4.9)

Using relations among these coefficients derived from equation (4.8), it can be shown that indepen-
dent coefficients are given bym′2,am′2,a2m′, Similarly we can reduce the number of divergence
terms of one-loop diagrams, so that the number of independently divergent terms is smaller than
that of local counter terms. Therefore we can renormalize all divergences generated from one-loop
diagrams by NLO local counter terms in WChPT for tmLQCD.

5. Maximal twist and pion mass at the NLO

Physical observables are automaticallyO(a) improved at the maximal twist, which is realized
by tuning the (untwisted) quark mass ˜m. Among several definitions proposed so far, we consider
the maximal twist defined through the PCAC quark mass[5, 12] in the framework of the WChPT.

5.1 Maximal twist condition from the PCAC quark mass

A definition of the maximal twist is given by a condition that the PCAC quark mass vanishes,
which is explicitly written as

mPCAC =
∑x⃗⟨∂0Aa

0(⃗x, t)P
a(0)⟩

2∑x⃗⟨Pa(⃗x, t)Pa(0)⟩
= 0, a = 1,2 (5.1)

Using the LO Lagrangian, the PCAC quark mass is calculated as

mPCAC =
(ma

π)2
LO cosφ

2B0(1+ c̃2acosφ)
, (5.2)

which correctly leads to the the maximal twist condition, cosφ = 0 . This condition simplify the
gap equation (3.1),

2B0m̃= −2B0µ c̃2a. (5.3)

Eq.(5.3) shows that the critical quark mass ˜m depends linearly on the twisted quark massµ. This
linear dependence has been actually observed in numerical simulations[3]. Note however that our
analysis here does not contain NLO contributions, which likely give higher order contributions
such as ˜m2, µ2 andm̃µ.

5.2 Pion mass at maximal twist

Using eq.(5.3), the charged pion mass at the NLO is given by

(m1,2
π )2

NLO = (m1,2
π )2

LO

{
1− 16

f 2 (m1,2
π )2

LO(2L68+L45)+
1
f 2a2X +

3
4

(m3
π)2

16π2 f 2 ln

(
m3

π
µChPT

)2
}

,

(5.4)
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whereX represent a combination of several low energy constants, and LO pion masses(ma
π)2

LO

are simplified as(m1,2
π )2

LO = 2B0µ and(m3
π)2

LO = 2B0µ +2c2a2−2(c̃2a)22B0µ .
Eq.(5.4) shows that the charged pion mass isO(a) improved as lattice spacing corrections

starts atO(a2), It is interesting to see that the charged pion mass at the NLO contains the chiral log
only from neutral pion loops but not from charged pion loops at the maximal twist.

6. Summary

We construct the WChPT for the twisted mass lattice QCD at the small quark mass regime
such thatmq ∼ a2Λ3. Although the non-trivial phase structure and the pion mass splitting at the LO
appear to be similar to previous studies, the vacuum expectation value at the NLO has divergences,
which can be renormalized by NLO local counter terms with the help of the gap equation (3.1).

As an interesting application of NLO calculations, we consider theO(a) improvement at the
maximal twist defined through the PCAC quark mass at the LO. We have found that the critical
untwisted quark mass linearly depend on the twisted quark mass and the charged pion mass isO(a)
improved at the NLO.

This work was supported in part by the Grant-in-Aid of the Japanese Ministry of Education,
Science, Sports and Culture (No. 20340047).
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