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1. Introduction

The precise calculation of the charm and bottom spectra is an importanvfgastice QCD
for several reasons:

e There are many ‘gold-plated’ states: narrow, stable, and experimentaligsible.

e The splittings in heavionium have particularly good properties for determithiadattice
scale.

e It is an important test of the actions used fbandc, which can then be used to calculate
decay constants which in turn are crucial for determining CKM matrix elements.

e Control of systematic errors are well developed in calculations oBthadD spectrum on
the lattice due to relative insensitivity to heavy-quark polarisation effectd@hght quark
masses.

The Highly Improved Staggered Quark (HISQ) actifin[]J1, 2] allows ucgdented control of
discretization errors in numerical lattice calculations. We use H8&@Qdc valence quarks with
NRQCD b quarks on MILC lattices witiNs = 2+ 1 flavors of ASQTAD sea quarks to calculate
the masses of thBs andB. mesons.

2. Heavy-light 2-point functions

For increased statistics, we use random soung¢ggy), defined as a three-component random
complex unit-vector defined on each point in the source time gjic&hese are the sources for
the inversion of the HISQ strange and charmed valence quark propagte HISQ propagators,
being staggered, are spinless and we need to convert them to 4-corthpmpagators to combine
with NRQCD propagators in lalight correlator. This is readily done at the sink by multiplying by
the standard staggered-to-naive transforma@¢xr) = []; /. Since the propagator source disap-
pears once the propagator is made @factors needed at the source (when a random wall is used)
must be transferred to the source of the heavy quark propagatoroantbido this is described
below.

NRQCD propagators are then made from a source which includes the aaduar wall with
which the HISQ propagators are made, plus@factors and in addition different Gaussian smear-
ing factors of varying radir; chosen to allow improved overlap with the ground sBjeand B
mesons so that their energies can be extracted accurately at earhatoortienes. We therefore
initialise NsmearNRQCD b propagators by setting

Gi(xt=0) = 3 S(lx—x|;r)n(X)Q(x) 2.1)

and evolve with

Gi(x,t+1) = (1—52H> (1—;':]’)nuJ(x) <1—;';’>n (1—52H> Gi(x,t). (2.2)
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We use an improved lattice NRQCD Hamiltonigh [3]:

A2
Ho= o (2.3)
(@2 g g = ¢
H=— _ A-E—E.-A) — AxE—-ExA
) C18(M0)3+028(M0)3( ) S35 m0)3° (A x x D)
g <~ _an¥ a(6?)2
C42M00 B+cs YV C616n(M0)2' (2.4)

Finally, at each time-slice, we combine tNgnearNRQCD propagators and the valerser
¢ quark propagator with the same smearing functions at the sink end, gi¥iNgndar< NsmearBs
andB; meson correlators.

3. 2-Point function effective masses and noise
The expression for the variance of tBgcorrelator
[(Ga (i, j;t —to)Gay (i, ;t —to)) — (Gai (i, j;t —t0))?] (3.1)

contains in it propagators fdsbsfour-quark states. The lightest combination on the lattice is
Ny + Ns. Therefore the error on the propagator falls likez Mo M)t while the signal falls like

e Mes! as can be seen in Figufk 1. So the signal-to-noise ratio degradeseasiptin by the
mass difference seen in the figure. This degradation is worse thdd fetiates and necessitates
smeared sources to be able to fit propagators to smallies. Figuré]1 also illustrates that effective
masses of propagato3g,(i,i;t —tp) with Gaussian smearing with radius 2 and@2G2 and
G4G4) approach thdg, plateau rapidly compared to the local source-sink combinatioh().

4. Extracting Mg, and Mg,

We fit the measureBs andB; correlators to the form

Nexp Nexpfl ,
Gmesori, J;t—to) = 3 B e Bt ¢ > by e} o (— 1) 0 Eelt=t0) (4.1)
=1 =1

wherei and j respectively index the source and sink smearing functions. The séeonds an
oscillating parity partner state. We perform simultaneous Bayesian fits @dtae{i, j;t —to),
looking for stability with respect to fit range amyp.

Since the NRQCD Hamiltonian does not include a mass term, there is a shift indigy exf
the p = O states relative to the continuum mass. To correct for the energy sMi iandMg_ we
use the relationship:

MBs/C = <EBS/C - ;Ebb> + %MbE (I)
latt

whereEg; or Eg, is the ground-stat&;. M,; on the right-hand side is the spin-averaged experi-
mental masses dib states:M; = (3My + Mp, ) /4, where we use the recent BaBar measurement
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Figure 1: Plot of effective masses of (local-locd) correlator andBs correlator error. While the effective
mass of the correlator matches the experimeMtgl (corrected for the energy shift), the effective mass of
the correlator error give$(M,, +Mp,). Several source-sink smearing combinations are shown.

of the Y(1S)-np(1S) hyperfine splitting[[4].E,j is the corresponding spin-averaged lattice energy,
calculated with NRQCDb quark propagators on the same configuratidhs [5]. Mgr we also
explore two other methods for cancelling the energy shift:

1 1
Mg, = (EBCZ(EbbJrECC)) +é (Mgp+Mcc) , (D)

whereMg: = (3My + My, ) /4, andEc is the corresponding spin-averaged lattice energy. The final
method to extradilg, is

latt

MBC = (EBC - (EBS + EDs - Ens))latt+ (MBS + MDS - M’]s) ’ (”I)

whereM, (Ej,) is the mass (lattice energy) of a fictiorsglpseudoscalaM,, = 4/ 2MZ — M2

We show results for several ensembles at three lattice spacings andrdifight sea quark
masses foMg, in Figure[R andvig, in Figure[B. The statistical error (shown in figures) is dominated
by the uncertainty im1. We use MILCr;/a values [J[B] to set the scale ensemble-by-ensemble.
We then convert to physical units with = 0.321fm [3]. An additional systematic error due to
the 15% uncertainty iy must be added in at the end with other systematics. Expressipns (I1)
and (M) reduce the uncertainty from errors(in /a) by using(Eg, — 5 (Eys + Ecc))iar and (Eg, —
(Eg, + Ep, — Ep,))iawt, Which are small relative to thg,,; quantity in ).

5. Conclusions

While preliminary, these results show the potential for precise calculatioMgobnd Mg,
using HISQ valence quarks and NRQ@Dquarks on a 2- 1 flavor ASQTAD sea. The lattice
results show little sensitivity to sea quark mass. MetHpd (1) and to a lesset €fjefor Mg,
show a small dependence on the discretization scale. A slightly mis-tanedhe coarse and fine
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Figure 2: Lattice calculations foMg, on very coarse 6% 48,a 1 ~ 1.3 GeV, coarse Z0x 64 and 28 x 64,
a1~ 1.6 GeV and fine 28x 96,a ! ~ 2.3 GeV configurations.
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Figure 3: Lattice calculations and experiment folz, on very coarse, coarse and fine configurations. For
clarity we do not show the calculations from method (1), withsignificantly larger error bars.

ensembles[]8] may contribute some systematic errddgnvalues derived from{ (i), and will be
corrected for in future work. Relativistic corrections and electromagedficts are two possible
sources of systematic error. Future efforts will improve statistics and indiluelelattices.
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