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1. Introduction

Lattice calculations of the charmoniugwave hyperfine splitting tend to underestimate the
experimental value of 117 MeV [1-6]. However, in none of thetudies all systematics have
been addressed as yet. One such source of error is the ddéed the running of the QCD
coupling between low momenta mV? that determine the spin averaged splittings and the high
momenta> mv responsible for the fine structure. Too few or too heavy seakgflavours will
result in a comparably smaller coupling at high momentajltiag) in such an underestimation [7].
Furthermore, the finestructure is particularly sensitivestiort distance physics, necessitating a
careful extrapolation to the continuum limit.

Here we will investigate the effect of quark-antiquark dnilation diagrams, the neglection of
which might be an additional source of the discrepancy. &lgh heavy, compared to the chiral
symmetry breaking scale, thg state might still sense some remnant akldl) effect that could
result in an upward mass shift, perhaps of a few MeV. Anotlspeet is the mixing with other
flavour singlet states, e.g. the pseudoscalar glueballeag’tmeson and its radial excitations.

We study both effects: quark annihilation diagrams [1 — 8] anixing with then’, hence called
n since we haveNs = 2. To investigate this mixing we construct a correlation niratontaining
both light and charm quark operators, the calculation oftiwinequires all-to-all-propagators. The
eigenvalues and appropriately normalized eigenvectotBi®imatrix are indicative of the magni-
tude of mixing between the two sectors.

2. Simulation details

Our runs are performed di; = 2 16° x 32 configurations generated by the QCDSF collab-
oration [8], with a lattice spacing ~ 0.1145fm, obtained from the chirally extrapolated nucleon
mass. For valence and sea quarks we use the clover actitrggyidetermined non-perturbatively.
The charm quark mass was set by tuning the spin-averagechcham mas%(mnc +3myy) to
its experimental value. The pion on these lattices is ratieary: m; = 10072) MeV. However,
this reduces the mass gap betweennhaend then. which might enhance mixing effects. Com-
putations took place on the local QCDOC using the Chromavsoé library [9]. We utilized 100
effectively de-correlated configurations, where on eachi@@ependent stochastic estimates were
created.

3. All-to-all propagator techniques

In order to calculate the quark-antiquark annihilationgdéans, we require propagators from
any start to any end point. An exact inversion of the Dirac i@ M is not feasible in terms of
the memory requirements and computation time. Hence walatdcunbiased stochastic estimates
of these all-to-all propagators. We define random noiseovefy'), i = 1,...,N with components,

i 1 .
Noax = \—@(V+ w),  vwe {+1}. (3.1)

We solve the linear problem for thebksources:
[$)=M"n'), (3.2)
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where,
1 i - 1
The propagatoM—1 can now be estimated as follows:
o7l o L dy i 1 1) i/ pi 1
90 = I 0 = IIMNNN| = MTi+o(YvN)|. (34
| |

We obtain the full propagator plus off-diagonal noise tewhijch vanish Iike\/—1N. We apply
several improvement schemes to reduce this stochastie.nois

3.1 Staggered spin dilution (SSD)

Usually a propagator receives its dominant noise contdhatfrom the stochastic sources
that are closest to the sink, in terms of Euclidean distamde spinor space. Such contributions
can be reduced in a straight forward way fmrtitioning (or “diluting”) spacetime, colour and/or
spin intony disjoint subspaces [10, 11]. The subsequent reconstruofian all-to-all propagator
from partition-to-all propagators comes at a significanhpatational overhead (proportional to
np). Sometimes the resulting statistical error however isiced by more than a factat ngl/ 2,
justifying this method.

Spin partitioning is usually achieved by employing foursset noise vectors, each with only
one spin component different from zero. Obviously, thisasthe only possible pattern. We find
that especially for heavy quarks other distributions ofgpi® components are superior to this stan-
dard scheme. We attempt to exploit the fact that for largelgoeasses the Wilson-Dirac operator
only weakly couples the upper and the lower spinor companamd we devise a partitioning pat-
tern where at different spacetime positions different gpimponents are stochastically seeded: an
upper component site should only neighbour lower composites and vice-versa. We found a
scheme to be particularly effective, which we c@taggered spin dilution (SSDJhis is defined
and compared to the standard dilution scheme in the leftmolof Fig. 1. The numbers indicate the
spinor component which is different from zero. The righturoh of Fig. 1 shows the corresponding
nearest neighbour coupling strength, where red meansi¢stiand green means "weak”.

3.2 Hopping parameter acceleration (HPA)

This technique [12—14] is based on tHepping Parameter Expansion (HPBj a Wilson-
type Dirac operatoM = 1 — kD, whereD only couples nearest neighbours:

M= (1-kD)1=14+kD+...+(kD)" 1+ (KD)”Z)(KD)i (3.5)

= (kDM t=M"1—(14kD+...+kD" ) : (3.6)

the multipication of the propagator kD)" subtracts all the terms up to— 1 hops, cancelling
the corresponding fluctuations from noisy source positioeesr the sink. While this reduces the
variance, the signals of Green functions for distancesetatigann — 1 hops remain unaffected.
Applications are the calculation of correlation functiomish time separations > na or of discon-
nected loops where the firat— 1 terms are either calculated exactly or vanish identicalljze
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Scheme Nearest neighbor coupling

1|1{1|1|1|1(1]1

1(1{1|1|1|1(1]1 Q 20
1(1{1|1|212|1(1]1

1(1{1|21|212|1(1]1 63 4\)
113(2|4|1(3|2|4

312(4(1(3|2|4]|1 1 2
21411132413

411(3(2(4]1|3]|2 3 4

Figure 1: The left column shows the dilution schemes in two dimensidrge corresponding coupling is
sketched in the right column (green is weak, red is strongliog).

effect of HPA on the pseudoscalar loop calculated using tiledw action at the charm mass is
plotted on the left hand side of Fig. 2. (The first multiplicat has no effect since & is zero
anyway.) This technique is particularly suitable for hegwarks where the rate of convergence of
HPE improves but significant gains have also been reportdayfd quarks [15].

3.3 Recursive noise subtraction (RNS)

In addition we use an algebraic improvement scheme (RNSyemie off-diagonal terms
appearing in Eq. (3.4) are calculated and subtracted by. Hdralidea can be illustrated as follows:

M~ = I(n] + M~ (1 —In)(n]) = [s(n[ + 19(nlL—[n){nl). (3.7)

The outer productn)(n| should be truncated to diagonal blocks of a dimension thamall
compared to/N. We use the 12-dimensional cologr spin subspace and display a scatter plot
between estimates on the right hand side of Fig. 2. The etivalangle is close to/4: adding the
two terms as suggested will result in a reduced stochastic. én principle one can make a more
general ansatz likes)(n|[1 +a(1 —[s)(n|) +B(1 —|s)(n|)?+---] and optimize the parameters
a,f3,... accompanying the different estimateszefroto minimize the noise in a given channel.
Here we use&xr = 1,3 =0.

3.4 Truncated solver method (TSM)

For the computation of the light quark loops appearing imtlireng matrix we apply the TSM
using the BiCGStab solver. For details see [15].
3.5 Reduction of thetotal computational effort

We summarize the effect of the tested improvement schem#éseotisconnected part of the
zero-momentum projectegk two-point function{ Tr(M~1ys) Tr(M~1y) ) att = 0 in Table 1. The
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Figure 2: The effect of the HPA on the error of the pseudoscalar cdoefar the Wilson action at the
charm mass is shown on the left. On the right the RNS scatt¢igtlisplayed.

gain is in terms of real computer tima.is the power ok D applied to the sink vector. Our use of
the clover action to calculate (M ~ys) restricts us tm < 3, since TfD?ys) O FF 0. In principle
one could calculate these terms by hand and add them backaiim. agith colour and staggered
spin dilution and two applications &fD we obtain a net gain factor of almost 12. Note that these
numbers do not include the effect of the TSM that we only usdlie light quark propagators.
Also we have not yet combined RNS with the partitioning md#ho

n || no | spin | color | color +spin| SSD| SSD + color| RNS

1 |143)| 1.80 2.52 1.97 3.63 1.87
2| 289|6.32| 5.06 10.24 7.16 11.80 5.44

Table 1: Effective gain of the different improvement schemess the power ok D used in HPA.

4. The mixing
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Figure 3: The mixing matrix. The blue lines indicate charm quark, i ones light quark propagators.

Now that we are equipped with techniques to address qudrsank-annihilation diagrams
reliably, we calculate the elements of the mixing matrix.tiBBoharmonium and light meson in-
terpolators are included, three in each sectat)o, (cC)10, (CC)go, (UU)o, (UU)s, (UU)40, Where the
subscript indicates the number of Wuppertal smearing stihsd = 0.3, employing spatial APE
smearedr{ape = 15, a = 0.3) parallel transporters. These smearing parameters ve¢eentined
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by optimizing the effective masses within the two sect@spring disconnected contributions, see
[5]. In Fig. 3 we sketch the two by two mixing matrix, where thlae lines represent charm and the
red lines light quark propagation. The prefactors are dukddwo mass degenerate light flavours.

The variational method is applied to the mixing matrix byveay a generalized eigenvalue
problem C(to) ~Y/2C(t)C(to) Y2 ¢ = A(t,t0) Y?, see [5] for details. For sufficiently large times
the eigenvalues and -vectors will approach their asynptatlues. The components of a given
eigenvector can be interpreted as the coupling strengttieeaforresponding operators to the state
under consideration. Their magnitude will provide us witformation about the magnitude of
mixing in the system. We proceed as follows: we first deteentime eigenvalues of the 3 by 3
submatrices separately within each of the flavour sectdngrevfor the moment being we ignore
the disconnected contribution in the charmonium secta {{se left hand side of Fig. 4). The light
n and its first radial excitationr’) are the lowest two eigenvalues of the submatrix containing
only light interpolators andj. andn/ within the charmonium sector. We find a diagonalisation of
the full 6 by 6 matrix to be numerically unstable and hencérictsourselves to the basis of the
states(cc)1o, (cC)so, (UU)s and (uu)4o for the full-fledged mixing analysis. In the right hand side
of Fig. 4 the effective masses of the lowest three eigensahitained from this basis are shown
together with the eigenvalues obtained above, ignoringrtixing effects: within statistical errors
no effect is seen. The eigenvectors contain more detaifedhiation about the mixing. We display
the components of the ground statesigenvector on the left hand side of Fig. 5 and those of the
nc eigenvector on the right hand side. Indeed, shdoes not contain any statistically significicant
admixture from the). sector and vice versa.

We conclude that there is no significapin.-mixing and neither are there any other significant
flavour singlet effects on thg, mass. However, the unrealistically heavy pion mass migi ha
affected our conclusion. Runs on®24 48 lattices withm,; ~ 400 MeV will clarify this issue.
Furthermore, mixing with other states like glueballs desgffuture attention.

Figure 4. The left plot shows the effective masses of the eigenvalisaireed from diagonalizing the
corresponding submatrices. To the right these eigenvdlodslack) are plotted together with the ones
obtained from the basi®c)10, (cC)so, (UU)s, (UU)40.
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Figure5: The eigenvector components of theare displayed on the left, the ones of theon the right.

Acknowledgments

This work was supported by the BMBF (contract 06RY 257, GBédry). We thank the DFG
Sonderforschungsbereich/Transregio 55 for their support

References
[1] C. McNeile and C. Michael [UKQCD Collaboratiorhys. Rev. Y0 (2004) 034506
[ar Xi v: hep-1at/0402012].

[2] P. de Forcranet al.[QCD-TARO Collaboration]JHEP 0408 (2004) 004
[ar Xi v: hep-1 at/0404016].

[3] L. Levkova and C. DeTamr Xi v: 0809. 5086 (2008).
[4] S. Gottliebet al., POSLAT2005, 203 (2006) r Xi v: hep- 1 at/ 0510072].
[5] C. Ehmannand G. S. BalRoSL AT2007 (2007) 094 ar Xi v: 0710. 0256].

[6] Y. Namekaweet al.[PACS-CS CollaborationPoSLATTICE2008 (2008) 121
[ar Xi v: 0810. 2364].

[7] G. S. Bali and P. BoyleRPhys. Rev. 39 (1999) 1145044r Xi v: hep-1 at / 9809180].

[8] A. Ali Khan et al.[QCDSF Collaboration]Nucl. Phys. B589 (2004) 175
[ar Xi v: hep-1at/0312030]].

[9] R. G. Edwards and B. Joo [SciDAC Collaboration and LHPQl&mration and UKQCD
Collaboration]Nucl. Phys. Proc. Suppl40 (2005) 832 &r Xi v: hep- | at / 0409003].

[10] S. Bernardson, P. McCarty and C. Thr@ugmput. Phys. Commum8 (1993) 256.

[11] J. Foleyet al,, Comput. Phys. Commuih72 (2005) 145 &r Xi v: hep- | at / 0505023].

[12] C. Thron, S. J. Dong, K. F. Liu and H. P. YinBhys. Rev. [57 (1998) 1642 fiep- | at / 9707001].
[13] W. Wilcox, Nucl. Phys. Proc. Supp3, 834 (2000) &r Xi v: hep- 1 at / 9908001].

[14] G. S. Bali, H. Neff, T. Dussel, T. Lippert and K. SchilgiSESAM Collaboration]Phys. Rev. O’'1
(2005) 1145134r Xi v: hep-1 at / 0505012].

[15] S. Collins, G. S. Bali and A. Schafeé?pSLAT2007 (2007) 141 &r Xi v: 0709. 3217].



