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Charmonia are flavour singlet mesons and thus in principle contributions from disconnected quark

line diagrams might affect their masses, either directly orvia mixing with other flavour singlet

channels. We present a first study that takes both effects into account. We employ improved

stochastic all-to-all propagator techniques (including new methods) to calculate the diagrams that

appear within the mixing matrix between theη ′ and theηc. The runs are initially performed

on Nf = 2 163×32 configurations with the non-perturbatively improved Sheikholeslami-Wilson

action, both for valence and sea quarks.
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1. Introduction

Lattice calculations of the charmoniumS-wave hyperfine splitting tend to underestimate the
experimental value of 117 MeV [1 – 6]. However, in none of these studies all systematics have
been addressed as yet. One such source of error is the difference of the running of the QCD
coupling between low momenta≃ mv2 that determine the spin averaged splittings and the high
momenta> mv responsible for the fine structure. Too few or too heavy sea quark flavours will
result in a comparably smaller coupling at high momenta, resulting in such an underestimation [7].
Furthermore, the finestructure is particularly sensitive to short distance physics, necessitating a
careful extrapolation to the continuum limit.

Here we will investigate the effect of quark-antiquark annihilation diagrams, the neglection of
which might be an additional source of the discrepancy. Although heavy, compared to the chiral
symmetry breaking scale, theηc state might still sense some remnant axialU(1) effect that could
result in an upward mass shift, perhaps of a few MeV. Another aspect is the mixing with other
flavour singlet states, e.g. the pseudoscalar glueball or the η ′ meson and its radial excitations.

We study both effects: quark annihilation diagrams [1 – 3] and mixing with theη ′, hence called
η since we haveNf = 2. To investigate this mixing we construct a correlation matrix containing
both light and charm quark operators, the calculation of which requires all-to-all-propagators. The
eigenvalues and appropriately normalized eigenvectors ofthis matrix are indicative of the magni-
tude of mixing between the two sectors.

2. Simulation details

Our runs are performed onNf = 2 163×32 configurations generated by the QCDSF collab-
oration [8], with a lattice spacinga≈ 0.1145fm, obtained from the chirally extrapolated nucleon
mass. For valence and sea quarks we use the clover action, with csw determined non-perturbatively.
The charm quark mass was set by tuning the spin-averaged charmonium mass14(mηc + 3mJ/Ψ) to
its experimental value. The pion on these lattices is ratherheavy: mπ = 1007(2)MeV. However,
this reduces the mass gap between theη and theηc which might enhance mixing effects. Com-
putations took place on the local QCDOC using the Chroma software library [9]. We utilized 100
effectively de-correlated configurations, where on each 200 independent stochastic estimates were
created.

3. All-to-all propagator techniques

In order to calculate the quark-antiquark annihilation diagrams, we require propagators from
any start to any end point. An exact inversion of the Dirac OperatorM is not feasible in terms of
the memory requirements and computation time. Hence we calculate unbiased stochastic estimates
of these all-to-all propagators. We define random noise vectors|η i〉, i = 1, . . . ,N with components,

η i
α ,a,x =

1√
2
(v+ iw) , v,w∈ {±1} . (3.1)

We solve the linear problem for theseN sources:

|si〉 = M−1|η i〉 , (3.2)
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where,
1
N ∑

i

η i
α ,a,xη i ∗

β ,b,y = δx,yδa,bδα ,β +O

(

1√
N

)

. (3.3)

The propagatorM−1 can now be estimated as follows:

|s〉〈η | :=
1
N ∑

i

|si〉〈η i | =
1
N ∑

i

M−1|η i〉〈η i | = M−1
[

1+O
(

1/
√

N
)]

. (3.4)

We obtain the full propagator plus off-diagonal noise term,which vanish like 1√
N

. We apply
several improvement schemes to reduce this stochastic noise.

3.1 Staggered spin dilution (SSD)

Usually a propagator receives its dominant noise contributions from the stochastic sources
that are closest to the sink, in terms of Euclidean distance or in spinor space. Such contributions
can be reduced in a straight forward way bypartitioning (or “diluting”) spacetime, colour and/or
spin intonp disjoint subspaces [10, 11]. The subsequent reconstruction of an all-to-all propagator
from partition-to-all propagators comes at a significant computational overhead (proportional to
np). Sometimes the resulting statistical error however is reduced by more than a factor∝ n−1/2

p ,
justifying this method.

Spin partitioning is usually achieved by employing four sets of noise vectors, each with only
one spin component different from zero. Obviously, this is not the only possible pattern. We find
that especially for heavy quarks other distributions of thespin components are superior to this stan-
dard scheme. We attempt to exploit the fact that for large quark masses the Wilson-Dirac operator
only weakly couples the upper and the lower spinor components and we devise a partitioning pat-
tern where at different spacetime positions different spincomponents are stochastically seeded: an
upper component site should only neighbour lower componentsites and vice-versa. We found a
scheme to be particularly effective, which we coinStaggered spin dilution (SSD). This is defined
and compared to the standard dilution scheme in the left column of Fig. 1. The numbers indicate the
spinor component which is different from zero. The right column of Fig. 1 shows the corresponding
nearest neighbour coupling strength, where red means ”strong” and green means ”weak”.

3.2 Hopping parameter acceleration (HPA)

This technique [12 – 14] is based on theHopping Parameter Expansion (HPE)of a Wilson-
type Dirac operatorM = 1−κD, whereD only couples nearest neighbours:

M−1 = (1−κD)−1 = 1+ κD+ . . .+(κD)n−1+(κD)n
∞

∑
i=0

(κD)i (3.5)

⇒ (κD)nM−1 = M−1− (1+ κD+ . . .+ κDn−1) : (3.6)

the multipication of the propagator by(κD)n subtracts all the terms up ton− 1 hops, cancelling
the corresponding fluctuations from noisy source positionsnear the sink. While this reduces the
variance, the signals of Green functions for distances larger thann− 1 hops remain unaffected.
Applications are the calculation of correlation functionswith time separationst ≥ na or of discon-
nected loops where the firstn− 1 terms are either calculated exactly or vanish identically. The
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Scheme Nearest neighbor coupling

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

...

1 3 2 4 1 3 2 4

3 2 4 1 3 2 4 1

2 4 1 3 2 4 1 3

4 1 3 2 4 1 3 2

...

Figure 1: The left column shows the dilution schemes in two dimensions. The corresponding coupling is
sketched in the right column (green is weak, red is strong coupling).

effect of HPA on the pseudoscalar loop calculated using the Wilson action at the charm mass is
plotted on the left hand side of Fig. 2. (The first multiplication has no effect since Trγ5 is zero
anyway.) This technique is particularly suitable for heavyquarks where the rate of convergence of
HPE improves but significant gains have also been reported for light quarks [15].

3.3 Recursive noise subtraction (RNS)

In addition we use an algebraic improvement scheme (RNS) where the off-diagonal terms
appearing in Eq. (3.4) are calculated and subtracted by hand. The idea can be illustrated as follows:

M−1 = |s〉〈η | + M−1(1−|η〉〈η |) ≈ |s〉〈η | + |s〉〈η |(1−|η〉〈η |) . (3.7)

The outer product|η〉〈η | should be truncated to diagonal blocks of a dimension that issmall
compared to

√
N. We use the 12-dimensional colour⊗ spin subspace and display a scatter plot

between estimates on the right hand side of Fig. 2. The correlation angle is close toπ/4: adding the
two terms as suggested will result in a reduced stochastic error. In principle one can make a more
general ansatz like|s〉〈η |[1+ α(1− |s〉〈η |)+ β (1− |s〉〈η |)2 + · · ·] and optimize the parameters
α ,β , . . . accompanying the different estimates ofzero to minimize the noise in a given channel.
Here we useα = 1,β = 0.

3.4 Truncated solver method (TSM)

For the computation of the light quark loops appearing in themixing matrix we apply the TSM
using the BiCGStab solver. For details see [15].

3.5 Reduction of the total computational effort

We summarize the effect of the tested improvement schemes onthe disconnected part of the
zero-momentum projectedηc two-point function〈 Tr(M−1γ5) Tr(M−1γ5) 〉 at t = 0 in Table 1. The
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Figure 2: The effect of the HPA on the error of the pseudoscalar correlator for the Wilson action at the
charm mass is shown on the left. On the right the RNS scatter plot is displayed.

gain is in terms of real computer time.n is the power ofκD applied to the sink vector. Our use of
the clover action to calculate Tr(M−1γ5) restricts us ton< 3, since Tr(D2γ5) ∝ FF̃ 6= 0. In principle
one could calculate these terms by hand and add them back in again. With colour and staggered
spin dilution and two applications ofκD we obtain a net gain factor of almost 12. Note that these
numbers do not include the effect of the TSM that we only use for the light quark propagators.
Also we have not yet combined RNS with the partitioning methods.

n no spin color color + spin SSD SSD + color RNS

0 1 1.43 1.80 2.52 1.97 3.63 1.87

2 2.89 6.32 5.06 10.24 7.16 11.80 5.44

Table 1: Effective gain of the different improvement schemes.n is the power ofκD used in HPA.

4. The mixing

t

2 4

2

2

Figure 3: The mixing matrix. The blue lines indicate charm quark, the red ones light quark propagators.

Now that we are equipped with techniques to address quark-antiquark-annihilation diagrams
reliably, we calculate the elements of the mixing matrix. Both charmonium and light meson in-
terpolators are included, three in each sector:(cc̄)0, (cc̄)10, (cc̄)80, (uū)0, (uū)5, (uū)40, where the
subscript indicates the number of Wuppertal smearing stepswith δ = 0.3, employing spatial APE
smeared (nAPE = 15, α = 0.3) parallel transporters. These smearing parameters were determined
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by optimizing the effective masses within the two sectors, ignoring disconnected contributions, see
[5]. In Fig. 3 we sketch the two by two mixing matrix, where theblue lines represent charm and the
red lines light quark propagation. The prefactors are due tothe two mass degenerate light flavours.

The variational method is applied to the mixing matrix by solving a generalized eigenvalue
problem,C(t0)−1/2C(t)C(t0)−1/2 ψα = λ α(t, t0)ψα , see [5] for details. For sufficiently large times
the eigenvalues and -vectors will approach their asymptotic values. The components of a given
eigenvector can be interpreted as the coupling strengths ofthe corresponding operators to the state
under consideration. Their magnitude will provide us with information about the magnitude of
mixing in the system. We proceed as follows: we first determine the eigenvalues of the 3 by 3
submatrices separately within each of the flavour sectors, where for the moment being we ignore
the disconnected contribution in the charmonium sector (see the left hand side of Fig. 4). The light
η and its first radial excitation (η ′) are the lowest two eigenvalues of the submatrix containing
only light interpolators andηc andη ′

c within the charmonium sector. We find a diagonalisation of
the full 6 by 6 matrix to be numerically unstable and hence restrict ourselves to the basis of the
states(cc̄)10, (cc̄)80, (uū)5 and(uū)40 for the full-fledged mixing analysis. In the right hand side
of Fig. 4 the effective masses of the lowest three eigenvalues obtained from this basis are shown
together with the eigenvalues obtained above, ignoring themixing effects: within statistical errors
no effect is seen. The eigenvectors contain more detailed information about the mixing. We display
the components of the ground stateη eigenvector on the left hand side of Fig. 5 and those of the
ηc eigenvector on the right hand side. Indeed, theη does not contain any statistically significicant
admixture from theηc sector and vice versa.

We conclude that there is no significantη-ηc-mixing and neither are there any other significant
flavour singlet effects on theηc mass. However, the unrealistically heavy pion mass might have
affected our conclusion. Runs on 243 × 48 lattices withmπ ≈ 400 MeV will clarify this issue.
Furthermore, mixing with other states like glueballs deserves future attention.
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Figure 4: The left plot shows the effective masses of the eigenvalues obtained from diagonalizing the
corresponding submatrices. To the right these eigenvalues(in black) are plotted together with the ones
obtained from the basis(cc̄)10, (cc̄)80, (uū)5, (uū)40.
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Figure 5: The eigenvector components of theη are displayed on the left, the ones of theηc on the right.
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