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1. Introduction

Quantum Monte Carlo simulations of lattice QCD yield caatign functions (lattice QCD
data)D(71) as a function of imaginary time= it. The real frequency spectral functions (SPFs) are
then extracted from the correlation functions since SPR3®@D contain physical information of
hadrons such as masses, decay rates, etc. In this paperesv®&d/ to extract ground and first
excited states of some hadrons. MEM has been showed to babiact hadronic excited states
with considerable success [1, 2, 3]. Zero temperature dueehtattice QCD data with overlap
fermion are used in this study.

2. MEM

We follow Asakawa, et al. [2] in briefly outlining MEM as theyr@ady discussed it in detail.
This method adopts Bryan’s method [2, 4], which is thoughtdahe state-of-the-art MEM. The
relationship between daf(1) and SPFA(w) at zero momentum is,

D(1) = /Om dwA(w)K(T,w) (2.1)

whereK (1, w) is the kernel of the case in study. This is an inverse problaoesve seeld\(w) for
givenD(T1). The method in extracting(w) is outlined below.

2.1 Method

Basicaly what MEM does is infer the most probable imadeom a given datd. The theo-
retical basis for MEM is Bayes’ theorem in probability

PYX]PX]

PIXIY) = =5

(2.2)
whereP[X|Y] is the conditional probability oX givenY. Let us rewrite the above in terms of our
variables: letD be the lattice QCD data ard be the prior knowledge, e.gA\(w > 0) > 0. The
conditional probability (also called the posterior proitigl) of SPF A(w) given the datedD and
prior knowledgeH is then

P[D|AH]P[A|H
P[AIDH] = % (2.3)
P[D|AH] is called the likelihood function[1]
P[D|AH] = z_lLeL (2.4)

wherelL = %XZ. P[D|H] a normalization constant independentfof To maximize the posterior
probability P[A|DH], two independent parametemsandm are inserted into the prior probability
P[AH]

P[AIH] — P[AHam] = Zie‘”S (2.5)
S
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whereSis the Shannon-Jaynes entropy

/e A(w) SN oa (P
SA] _/0 [A(@) () ~ Aw) Iog(m)]da) -3 [A ~m —Alog (a)} (2.6)
whereN,, ~ 10° is the number of pixels into which the frequency is equallscdétized tad\w. We
look for a solutionA that maximizes the posterior probability

PIADHam O e°®  Q(A)=aS—L. (2.7)

Real and positive functiom(w) called thedefault model is introduced into the prior probabil-
ity. The intermediary parameter controls the relative weight of the entrofy which pullsA to
fit the default modeim), and it will be integrated out in the end. The likelihood étion L on the
other hand pull#\ to fit the lattice datdD. The default model used m = myw" (n=2(5) for meson
(baryon)). The parameteny may be determined either by the perturbative asymptotieviehof
SPF at largew, m(w — large), or by requiring that the resultant imaiyg,t has the least error.

MEM is able to reconstruch(w) and determine its statistical error. The errorAgto) oy IS
averaged over an intervll= [wmin, Wmax|- The average oA for a givena over intervall is defined
as

J1dA] f, dwA(w) P[AIDHa mW (w) _ JidwA ()W (w) J; dwAq (w)
Ji dwW (w) T [doW(w)  fjdw

(Ag) = (2.8)

whereW(w) is a weight function and taken to be unity. It is also assunied the posterior
probability P[A|DHa m] is highly peaked arounf, (w) which is true for good data. This fact is
also used to approximate the variancéAf),, 0A(w) = A(w) — Aq(w), as

J1dA] [, dwdaw SA(w) SA(w') PIAIDHa m|

2\ _
((0Aq)) = Ji 1 deodo 9
52 -1
_flxldwdwl<W§A(w')>A:Aa 2.10
= J ) doodoy @1

Therefore the error fofyy in the regionl is given by

(5Aow)?)1 = /da ((5Aq)?): Pla|DHM 2.11)
which is shown as vertical bars in Fig. 2, 3, 4, and 5.

2.2 Testing MEM

Mock data were used to test how well MEM could produce shagkgand continuum given
different quality of data. Our test results [5] agree vemysely with Asakawa et al. [2]. Due to
the limitation of space, only one test is presented here. MAaxample, we extractetlgi(w) =
w?pout(w) from mock data, which consist of three Gaussian peaks déreifit widths. Figure 1
shows how well MEM works when the data get less noisy. Pamarbeddjusts the noise level of
the mock data andll is the number of time sliceNE30.) It is clear that as noise increases, the
output image quality deteriorates as evidenced by the dsicrg number of peaks reproduced and
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Figure 1: Test of MEM sensitivity to noiseb is the noise levelN is the number of temporal data points,
andr = Zi'i“’l[pom(m) - Pin(oq)]2 is defined as the distance betweggpnand po: to measure how well the
output matches the inpup;, is dashed blue ang,; is solid red. Left: All 3 peaks are reproduced. Middle:
2 out of 3 peaks are reproduced. Right: Only 1 broad peakiisleis

the increasing valur of. Noise turns out to be the most dominant factor influencirggbality
of the output SPF. The more noisy the data get, the less iafitom MEM produces to a point of
unreliability. The next factors are the number of tempoedbgointN and lattice spacing which
are discussed in Ref. [2]. Good quality data with low noise @ucial in getting reliable results
from MEM.

3. Resultsand discussion

The data we analyze are obtained from the lwasaki gaugenati overlap fermion action [6]
in the xQCD collaboration [7]. All data (except for pion) are of s2@ x 32 with lattice spacing
a~ 0.17 fm and large lattice sizea= 3.4 fm (8 = 6.0 andk = 0.1530). The number of gauge
configurations ifNeonf = 110. The data for pion are of size®2 28 with lattice spacing ~ 0.20
fm, lattice sizeLa= 2.4 fm (8 = 6.0 andk = 0.1530), andNyns = 300. The pion masses are
approximately 175, 186, 197, 208, 223, 242, 264, 293, 329, 391, 426, 466, 512, 566, 625,
681, 717, 752, 813, 899, 961, 1006, 1152, 1291, and 1547 MeW f@sults with successful
extraction of first excited states are shown in this paper.

In general meson results contain much more noise than baggoitts for both the ground and
first excited states. Fig. 2 shows the results for pionskandrhe results for the last several lightest
guarks in the pion case are not reliable enough to be inclultethe K* case, we can see clearly
the trend of how the data points approach the physical point.

We obtained better results with baryons than with mesorms. 34,5 show the results féx, ,
=, A, N, N, andN* Again, aside from\’ andN*, all data points approach the physical points very
well. In the case oE in Fig. 4, the MEM data points approach 2.0 GeV value whichpessible
indication of=(1950).

Fig. 5 shows that the massesNf(1535 are slightly higher than those of the Roper reso-
nanceN’(1440 for lighter quark masses @< m; < 0.6 GeV) which is consistent with observed
spectra. However, this order is switched where the massH$(a635 become lower than those
of N’(1440 for heavier quark masses inB0< m; < 1.0 GeV region. This is not only consistent
with a previous study of excited nucleons in Ref. [3] aboutl@rdering of these two states, but it
also clarifies their level ordering.
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Figure 2: Ground and first excited states of pion atdas a function of the square of the pion mass in the
physical unit. The experimental values are marked by emphbsls.
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Figure5: Nucleon.

4. Conclusion

We tested and used MEM for mock data and lattice QCD data. M&Khown to be able
to extract and study the ground and first excited states oedmght hadrons in quenched LQCD
with some success. In this study factors that limit MEM &pilo produce SPF is noise and lattice
spacing. We have not done chiral extrapolation with a cunveofthe physical point since the
results are not refined enough. However, the data point®apipitheir respective physical points
quite well. Greater number of configurations of correlationctions with finer lattices and better
actions that reduce more noise are needed to perform the ekirapolation reliably.
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