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are presented. The Symanzik tree-level-improved Wilson action is adopted in the gauge sector and

the (unimproved) Wilson action for the fermion. Results from new simulations with one step of

Stout-smearing (ρ = 0.15) in the fermion action are discussed. The one-flavor theory is simulated
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lightest simulated quark mass the (partially quenched) pion mass is∼ 300 MeV. The masses
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spectrum, expected from a largeNc orientifold equivalence with theN =1 supersymmetric Yang-
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Hadron spectrum of QCD with one quark flavor

1. Introduction and motivation

The low-energy dynamics of QCD with a single quark flavor (Nf = 1 QCD) strongly differs
from the one of the multi-flavor theory since chiral symmetry, and its spontaneous breaking, is
absent. Nevertheless, several open questions of the physical theorymay be better understood in the
theory with minimal number of fermionic degrees of freedom [1, 2, 3]. For example [2], whether
setting to zero just one quark mass produces physical effects; in the one-flavor model, due to the
lack of a chiral symmetry, even the definition of the quark mass is non-trivial[1]. Another question
[3] is whether spontaneous breaking of CP is possible for special combinations of the light quark
masses (negative quark mass for one flavor).

Another intriguing aspect of one-flavor QCD, emerging from string theory, is the connec-
tion with theN =1 supersymmetric Yang-Mills theory (SYM), also investigated by our collabora-
tion [4]. The equivalence of the two theories in the bosonic sector can be proved at the planar level
of an “orientifold” largeNc limit [5]. Relics of SUSY are therefore expected inNf = 1 QCD (with
Nc = 3) where approximately degenerate scalars with opposite parity should be observed. These
two particles can be identified in the single-flavor theory with the singlet scalarand pseudoscalar
mesons which we denote withσs andηs.

As we have argued in [6], some chiral symmetry can be recovered inNf = 1 QCD by embed-
ding the theory in a larger partially quenched (PQ) theory with additional valence quark flavors.
This allows to build pions and obtain a possible definition of the quark mass by thePCAC relation.

We present here the latest results of an ongoing computation of the low-lyinghadron spectrum
of Nf = 1 QCD in the Wilson formulation [6], obtained from 163 ·32 and 243 ·48 lattices at lattice
spacinga≃ 0.13fm (L = 2.1 and 3.1fm). The lightest simulated pion mass isMπ ≃ 300MeV.

2. Partial quenching

The definition of a quark mass is not immediate in one-flavor QCD due to the lack of chiral
symmetry (even in the continuum). For example a PCAC quark mass cannot be defined. More
generally, the bilinear quark operator ¯qq is not protected against scheme-dependent additive renor-
malizations and the concept of vanishing quark mass could be devoid of physical meaning [1].
In our approach we takeNV = 2 valence quarks degenerate with the (single) sea quark. With the
NV ≥ 2 valence quarks plus the sea quark, all mesons and baryons of QCD can be build, appearing
in degenerate multiplets due to the exact SU(NV +1) flavor symmetry. A PCAC quark mass can be
defined in the PQ theory by the non-singlet axial-vector chiral currentAa

xµ

mPCAC ≡
〈∂ ∗

µA+
xµ P−

y 〉

2〈P+
x P−

y 〉
. (2.1)

Relation (2.1) should be considered here just as a possible definition of thequark mass inNf = 1
QCD (a possible physical meaning of this definition is not claimed at this stage).

In [6], validity of the GMOR relation for the pions in the PQ extension of the one-flavor theory
was confirmed: the masses of the pions can be made to vanish by suitably tuningthe bare quark
mass on the lattice; in this situation the quark mass (2.1) vanishes, too. This scenario is confirmed
by a study of the chiral Ward identities [7].
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Hadron spectrum of QCD with one quark flavor

Table 1: Summary of the runs: the bar indicates runs with Stout-link in the fermion action (see text).

L β κ Nconf plaquette τplaq r0/a

a 12 3.80 0.1700 5424 0.546041(66) 12.5 2.66(4)

b 12 3.80 0.1705 3403 0.546881(46) 4.6 2.67(5)

c 12 3.80 0.1710 2884 0.547840(67) 7.6 2.69(5)

A 16 4.00 0.1600 1201 0.581427(36) 4.3 3.56(5)

B 16 4.00 0.1610 1035 0.582273(36) 4.1 3.61(5)

C 16 4.00 0.1615 1005 0.582781(32) 3.3 3.73(5)

Ā 16 4.00 0.1440 5600 0.577978(23) 9.7 3.74(3)

B̄ 16 4.00 0.1443 5700 0.578167(28) 11.3 3.83(5)

B̄24 24 4.00 0.1443 3900 0.578182(10) 5.8 3.83(4)

Although pions do not belong to the unitary sector of the theory, their properties and the PCAC
quark mass can be used for a characterization of the one-flavor theory. In particular the low-energy
coefficients of the chiral Lagrangian can be extracted by an analysis in PQ chiral perturbation
theory [6].

3. Simulation

The gauge action is discretized by the tree-level improved Symanzik (tlSym) lattice action [8]
including planar rectangular(1×2) Wilson loops. We apply the (unimproved) Wilson formulation
in the fermionic sector. Previous results [6] were presented for simulationswith the original Wilson
formulation; with the goal of improving stability of the Monte Carlo evolution at smallquark
masses, we now apply Stout-smeared links [9] in the hopping matrix (one step of isotropic smearing
with coefficientρµν = ρ = 0.15).

The update algorithm is a Polynomial Hybrid Monte Carlo algorithm with a two-steppolyno-
mial approximation (TS-PHMC) [10]. A correction factorC[U ] in the measurement is associated to
configurations for which the eigenvalues of the (squared Hermitian) fermion matrix lie outside the
validity range of the polynomial approximation. See [6] for more details on the algorithmic setup.
The sign of the determinant associated to one (light) Wilson quark can becomenegative on some
configurations, even for positive quark masses. Since the sign cannotbe taken into account at the
update level, it must be computed “off-line” and included in the correction factor; the expectation
value of a generic quantityA is therefore given by

〈A〉 =

∫
[dU]σ [U ]C[U ]A[U ]
∫
[dU]σ [U ]C[U ]

, (3.1)

whereσ [U ] is the sign of the one-flavor determinant. For the computation of the sign we study the
(complex) spectrum of the non-Hermitian matrix concentrating on the lowest real eigenvalues: sign
changes are signaled by negative real eigenvalues. We applied the ARPACK Arnoldi routines on a
transformed Dirac operator. The (polynomial) transformation was tuned such that the real eigen-
values are projected outside the ellipsoidal bulk containing the whole eigenvalue spectrum [11].
This allows an efficient computation of the real eigenvalues [12].
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Table 2: Results for hadron observables inNf = 1 QCD (lattice units).

aMηs aMσs aM∆s amPCAC aMπ a fπ aMN

a 0.462(13) 0.660(39) 1.215(20) 0.0277(5) 0.3908(24) 0.1838(11) 1.044(5)

b 0.403(11) 0.629(29) 1.116(38) 0.0195(4) 0.3292(25) 0.1730(15) 0.956(3)

c 0.398(28) 0.584(55) 1.204(57) 0.0108(12) 0.253(10) 0.156(10) 1.01(5)

A 0.455(17) 0.607(57) 1.006(15) 0.04290(36) 0.4132(21) 0.1449(9) 0.902(4)

B 0.380(18) 0.554(52) 0.960(15) 0.02561(31) 0.3199(22) 0.1289(10) 0.798(5)

C 0.344(21) 0.576(53) 0.971(30) 0.01681(33) 0.2622(19) 0.1190(17) 0.762(9)

Ā 0.347(16) 0.538(41) 0.855(50) 0.01651(27) 0.2471(19) 0.0983(20) 0.733(13)

B̄ 0.286(18) 0.485(46) 0.848(70) 0.01094(23) 0.2028(35) 0.0913(24) 0.670(20)

B̄24 0.261(11) 0.496(22) 0.900(24) 0.01047(17) 0.1958(15) 0.0920(11) 0.672(10)

The updating has been performed by applying determinant break-up by afactor of two (that
is, two half-flavors were considered instead of one). The update sequence consisted of two PHMC
trajectories followed by an accept-reject step by the second (precise) polynomial approximation.
The precision of the first polynomial approximation was tuned such that an acceptance of about
90% was obtained. The same acceptance was required for the Metropolis test at the end of every
individual PHMC trajectory by tuning the trajectory length (0.4-0.5). This resulted in a high total
acceptance rate of about 80%. The gauge configurations were storedafter every accept-reject step
by the precise polynomial. Relatively short trajectories were chosen in order to have many con-
figurations for the glueball mass determination. Optimization of the parameters ofPHMC turned
out to have a substantial impact on the integrated autocorrelation times of the average plaquette.
Information about the sets of configurations generated up to now can be found in Table 1. New
results presented in this Contribution concern runsC, Ā, B̄, B̄24.

We fix the lattice scale by the Sommer scale parameterr0 [13]. For the conversion into physical
units we assume the conventional valuer0 = 0.5 fm. As in ordinary QCD,r0/a grows with the
hopping parameterκ; consistently with a massless scheme the value ofr0/a should be extrapolated
to the critical valueκ = κc where the PCAC quark mass (2.1) vanishes. The number of quark
masses at our disposal are however not sufficient for an extrapolation and we rely on the value at
the highestκ for given β . We obtain in this waya(3.8) ≃ 0.19fm anda(4.0) ≃ 0.13 fm. This
corresponds to a roughly constant volumeL = 2.1fm. In order to check finite volume effects, a run
on a larger 243 ·48 lattice has been started, see Table 1, corresponding toL = 3.1fm.

We observe that, for a fixed quark mass (in lattice units), the Stout-smearing leavesr0/a es-
sentially unchanged (as can be seen by comparing runsC andĀ). On the basis of this observation,
we will assume approximate equality of the lattice spacing for theβ = 4.0 runs with and without
smearing; therefore data from both sets will be included in analyzes at fixed lattice spacing.

4. Hadron spectrum

The disconnected diagrams of theηs andσs correlators (with usual interpolating fields) were
computed by applying for each configuration 20 stochastic sources with complexZ2 noise and spin
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Figure 1: The mass of the lightest physical particles in one-flavor QCDas a function of the squared pion
mass in units of the Sommer scale. The hadron masses are multiplied by the value ofr0/a at the givenκ.

dilution. In consideration of autocorrelations, we analyzed every 10th, 16th or 32th configuration
according toκ. The resulting statistics vary between 400 and 600.

In the case of the baryon, we take the interpolating field∆i(x) = εabc[ψa(x)TCγiψb(x)]ψc(x) .

The low-lying projected state is expected to be a spin 3/2 parity-positive particle which we denote
with ∆s (the desired spin 3/2 component is extracted by spin-projection). It corresponds to the
∆++(1232) baryon of QCD if the single quark is identified with theu-quark.

In the PQ sector we measure the pion observables,Mπ , fπ ,mPCAC, in which case correlators
trivially coincide with the connected parts of the correspondingηs correlators; the nucleon mass is
determined by applying the standard projecting operator [6].

No smearing was applied for the extraction of the masses. It turns out however that this
is necessary in the baryon sector where the approach to the asymptotic behavior is slow. The
optimization of the overlap with the ground state by Jacobi smearing is in plan.

Results. The results for the hadron observables in lattice units including new runs withStout-
smearing are reported in Table 2. The lightest pion mass corresponds to∼ 300MeV. From the
comparison between runs̄B andB̄24 (L = 2.1fm andL = 3.1fm, respectively) finite volume effects
can be estimated. These are below the statistical accuracy (∼ 10%) for the particles in the unitary
sector. In the pion sector, they exceed statistical accuracy in the case ofthe pion mass and of the
PCAC quark mass, however they are relatively small (∼ 4% in both cases). Observe that the sign
of the finite size scaling agrees with what is observed in standard QCD.

In Fig. 1 the hadron masses in the unitary sector are reported in physical units as a function of
the squared pion mass. Theσs and the∆s masses are (surprisingly) near to the values observed in
nature for the corresponding particles or resonances. In contrast, theηs meson is much lighter than
the QCD flavor-singletη ′; this can be understood [6] in terms of the Witten-Veneziano formula.
The ηs mass, which shows a clear quark mass dependence, can be extrapolatedto zero quark
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Figure 2: The PQ sector of one-flavor QCD: the nucleon mass as a functionof the square pion mass in units
of the Sommer scale. The pion mass is also reported for comparison.

mass by applying the LO chiral perturbation theory formula [14, 6]M2
ηs

= (M2
φ + M2

π)/(1+ α) ,

with Mφ andα constants. The result is:r0Mηs(mq = 0) = 0.84(5) [330(20)MeV]; the error also
includes a rough estimate of the extrapolation uncertainty, obtained by comparing results including
or excluding the heaviest quark mass. It is interesting to compare this resultfor theηs mass with
the one obtained by our collaboration for the corresponding particle in SU(2) SYM, theadjoint η ′

(a-η ′): r0Ma-η ′ = 1.25(5) [499(20)MeV] [4]. Since the quark mass dependence of theσs mass
cannot be seen with our statistical accuracy, we simply apply a fit to a constant; the result is:
r0Mσs = 2.05(9) [810(35)MeV].

We can now check our results against the prediction from the orientifold planar equivalence
[15]: Mηs/Mσs = (Nc−2)/Nc× (1+ δ ), where the correctionδ = O(1/Nc,1/N2

c ) is expected to
be suppressed. We obtain:

Mηs

Mσs

= 0.410(32)(25) , δ = 0.23(10)(7) . (4.1)

(the second error comes from the extrapolation, only data from theL = 2.1fm volume are included).
The relatively small value ofδ seems to confirm suppressedO(1/Nc) corrections, as expected on
theoretical grounds [15]. Small deviations from the leading orientifold prediction were also ob-
served for the fermion condensate, in numerical simulations [16], and in ananalytical computation
for free staggered fermions [17]. The inclusion in the analysis of smaller quark masses and larger
volumes could further lower the ratio (4.1) and therefore the deviationδ .

Purely gluonic operators, the glueballs, project onto Spin 0 states, too. Weinvestigate here
the 0++ state, which is expected to mix with theσs. We neglect for the moment possible mixings
with the mesonic state and consider diagonal correlators only. Since the computational load is low,
we analyze in this case each configuration; this allows to obtain a decent signal for the case of the
Stout-runs, where fluctuations are reduced. We obtainr0M0++ =1.94(25) for run Ā and 2.43(35)
for run B̄; these results are in the ballpark of theσs mass in accordance with strong mixing.
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Hadron spectrum of QCD with one quark flavor

The behavior of the nucleon mass as a function of the pion mass squared is reported in Fig. 2;
for comparison, we also report the pion mass. Also in the case of the nucleon we observe a surpris-
ing agreement with the expectations from the physical world.

5. Conclusions and perspectives

New data from simulations of lighter quark masses in sufficiently large volumes allowed first
quantitative estimates for the hadron spectrum ofNf = 1 QCD. Results for theσs andηs masses
could be compared with the predictions from the orientifold equivalence; thedeviation from the
leading formula for the ratio of the masses turns out to be relatively small, in accordance with
observations for the fermion condensate [16, 17]. With the exception of alighterηs, no other strik-
ing deviation from the physical (multi-flavor) picture is observed for the measured quantities. The
simulation of additional lighter quark masses in view of an analysis in chiral perturbation theory is
planned for the future. The search for the expected CP-violating phasetransition is ongoing.

The computations were carried out on Blue Gene L/P and JuMP systems at JSC Jülich (Ger-
many).
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