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I calculate the quark-gluon vertex of the tensor type Γ(p,q) = g3(p,q)p4 /q, vector type g2(p,q)q
and scalar type g1(p,q), for a small spacial momentum transfer q = q using the gauge configura-
tion of the Domain Wall Fermion (DWF) provided by the RBC-UKQCD collaboration.
The quark propagator of Coulomb gauge in the cylinder cut, i.e. the four momentum p is directed
along the diagonal of the hyper-cubic space has small fluctuation and I use this propagator in the
evaluation of the operators by applying the non-perturbative renormalization method.

The q dependence of the running coupling αs,g1(q) is compared with αI(q) measured by the

ghost-gluon vertex in Coulomb gauge and αs(q) measured in Landau gauge.
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1. Introduction

In the Lattice2007 symposium we showed [1] that the infrared QCD running coupling of
ghost-gluon vertices of lattice Coulomb gauge fits better than those of lattice Landau gauge with
the experimental running coupling data extracted from the quark-gluon vertices [2]. The gauge con-
figurations of Kogut-Susskind (KS) fermions of the MILC collaboration [4] and those of Domain
Wall Fermion (DWF) of RBC/UKQCD collaboration [5] were used in these simulations.

Recently I found that the quark propagator of DWF can be calculated by an extension of the
conjugate gradient method that we adopted in the calculation of the quark propagator of KS fermion
or Wilson fermion [6]. I calculate the Coulomb gauge quark propagator near the cylinder cut and
small momentum transfer using the DWF gauge configurations and extract the quark-gluon vertex,
which is written as

Γµ(p,q) = S−1(p)GO(p,q)S−1(p,q)

= δ ab[g1(p,q)γµ + ig2(p,q)qµ +g3(p,q)pµ /q (1.1)

as scalar, vector and tensor form factor, respectively. A general method for non-perturbative renor-
malization of lattice operators was presented by Martinelli et al.[7] and I adopt their method to
extract the Coulomb gauge form factors. The lattice simulation of DWF is given in [8]. In the
mass-less limit, the wave function possesses exact chiral symmetry and its non-perturbative renor-
malization is investigated [9, 10].

2. The lattice Coulomb gauge

The minimizing function of the Coulomb gauge(∂iAi = 0) in the Log-U version [13] is FU [g] =
||Ag||2 = ∑x,i tr

(
Ag

x,i
†Ag

x,i

)
. Remnant gauge fixing is not done although the gauge field A0(x) can

be further fixed by the following minimizing function via the gauge transformation g(x0).
The gauge configurations that I adopted are summarized in Table 1. In the process of conjugate

β N f m 1/a(GeV) Ls Lt aLs(fm)

DWF01 2.13(βI) 2+1 0.01/0.04 1.743(20) 16 32 1.81
DWF02 2.13(βI) 2+1 0.02/0.04 1.703(16) 16 32 1.85
DWF03 2.13(βI) 2+1 0.03/0.04 1.662(20) 16 32 1.90

Table 1: The parameters of the lattice configurations.

gradient iteration, I search the shift parameter αL
k for φL and αR

k for φR as follows. In the first 50
steps I choose αk = Min(αL

k ,αR
k ) and shift φL

k+1 = φL
k −αkφL

k and φR
k+1 = φR

k −αkφR
k and in the last

25 steps I choose αk = Max(αL
k ,αR

k ), so that the stable solution is selected for both φL and φR.
The convergence condition attained in this method is about 0.5×10−4. One can improve the

condition by increasing the number of iteration, but the overlap of the solution and the plane wave
do not change significantly.

In our Lagrangian there is a freedom of choosing global chiral angle in the 5th direction,

ψ → eiηγ5ψ , ψ̄ → ψ̄e−iηγ5ψ . (2.1)
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mud/a ms/a c Λ(GeV) α
DWF01 0.01 0.04 0.49 0.76(2) 1.25
DWF02 0.02 0.04 0.48 0.80(3) 1.25
DWF03 0.03 0.04 0.61 0.66(2) 1.25

MILC f 1 0.006 0.031 0.45 0.82(2) 1.00
MILC f 2 0.012 0.031 0.43 0.89(2) 1.00

Table 2: The fitted parameters of mass function of DWF(RBC/UKQCD) and KS fermion (MILC).

On the lattice, the expectation value of the quark propagator S(p) consists of spin dependent
A p part and spin independent B part. I specify the propagator of the left-handed quark by the
suffix L and the right-handed quark by the suffix R. With use of the renormalization factor Z, they
are defined as

Tr〈χ̄(p,s)PL/RΨ(p,s)〉 = Z(p)(2Nc)BL/R(p,s),

and

Tr〈χ̄(p,s)i /pPL/RΨ(p,s)〉 = Z(p)/(2Nc)ipAL/R(p,s),

where pi =
1
a

sin
2π p̄i

ni
(p̄i = 0,1,2, · · · ,ni/4). The fifth coordinate of the DWF is specified by

s = 0,1, · · · ,15.
We parametrize the mass function M = B/A as

M (p) =
cΛ2α+1

p2α +Λ2α +
mf

a
(2.2)

I tried α = 1,1.25 and 1.5, compared χ2 and found that α = 1.25 gives the best global fit. Since
the pole mass Q(w) is not included in these plots, mf is set to be 0 here.

In the case of KS fermion of mf = 0.0136GeV and 0.027GeV data [12, 13], we fixed α = 2
and obtained Λ = 0.82GeV and 0.89GeV, respectively. In general Λ becomes larger for larger α ,
but Λ of DWF seems larger than that of KS fermion. In the case of KS fermion, Λ becomes smaller
for smaller mass mf , but in the case of DWF, it is opposite.

3. The vector current quark-gluon vertex

Near the cylinder cut and when the momentum transfer q is small, the quark gluon vertex in
momentum space is calculated from

∫
d4x

∫
d4ye−ip(x−y)GO(x,y) =

1
N

N

∑
i=1

〈Si(p|0)(γ1 + γ2 + γ3)p(γ5Si(p|0)†γ5)〉 (3.1)

where Si is a DWF propagator of the i′th sample among altogether N samples.
I specify the spin part of αβ as +− which corresponds to spin up for α and spin down for

β . In the case of Γ = q4γiqi, I choose γ4γ1
+− or γ4γ2

+− as an example and Ai(p|0)−+ as the
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Figure 1: The mass function of the domain wall
fermion as a function of the modulus of Euclidean
four momentum p. DWF01. (149 samples). Blue
disks are mL (left handed quark) and red boxes are
mR (right handed quark).
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Figure 2: The running coupling αs,g1(q) of
MILC f 1 (blue disks) and DWF01 (green points).
The dash-dotted line is the pQCD result and the
dashed line is the pQCD with the 〈A2〉 condensate
contribution. The red points are the experimental
data of the JLab group.

incoming wave Ai(p|0)++† contributes as the outgoing wave. When Ai(p|0)−− is the incoming
wave Ai(p|0)−+† contributes as the outgoing wave.　

The quark propagator is given as

S(p) =
−iA p+B

A (p2 +MM †)
=

−iA p+B

A p2 +MB† (3.2)

I evaluate vector current matrix elements by diagonalizing the matrices in the eq.(3.1) and getting
the 1

12 of the trace.

3.1 The scalar form factor and the running coupling

The vector current Ward identity allows us to extract the running coupling αs,g1(q) from the
difference of S−1(p+ q

2 ) and S−1(p− q
2 ) [7]

−i[S−1((p+
q
2
) j|0)−S−1((p− q

2
) j|0)] = ZV Λ0(p)q j/4π. (3.3)

When a crossing is performed and a quark is transformed to anti-quark, p can be treated as the
momentum transfer q, to be compared with the experiment. The green points above q = 1.4 GeV
in Fig.2 are the result of DWF. The error bars are taken from the Bootstrap method after 5000 re-
samplings [14, 15], which are smaller by about a factor of 10 as compared to the standard deviation
of the bare samples. The data are comparable with the pQCD results with a phenomenological
〈A2〉 condensates effect observed in the ghost-gluon coupling of the MILC f 1 Landau gauge fixed
configuration [13]. Although statistics is not large, I observe that the running coupling αs,g1(q)
of Landau gauge fixed configuration of MILC f 1 is not infrared suppressed in contrast to αs(q)
measured from the ghost-gluon vertex [13].

I compare the lattice results with experimental results extracted by the JLab group [2, 3]. The
JLab group analyzed the difference of the spin-dependent proton structure function and the spin-

dependent neutron structure function as a function of x =
Q2

2Mν
where Q2 is the four-momentum

squared, ν is the energy transfer and M is the nucleon mass. The difference reduces the contri-
bution of ∆(1232) and at infinite momentum transfer squared the Bjorken sum rule [16], and at 0
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Figure 3: The tensor form factor Λ2(p)p4q/p4|q|
at |q| = 2.6GeV. (DWF01, 52 samples)
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Figure 4: The vector form factor Λ1(p)q/|q| at
|q| = 2.6GeV. (DWF01, 52 samples)

momentum transfer the Gerasimov-Drell-Hearn sum rule [17, 18] allows to fix the renormalization
[19]. They extracted the running coupling in the infrared from

Γp
1 −Γn

1 =
gA

6
[1− αs

π
+o(α2

s )]. (3.4)

In a confining theory where gluon have an effective mass, all vacuum polarization corrections to
the gluon self-energy decouple at long wave length and one expects an infrared fixed point. A
closeness of Γp

1 and Γn
1 implies a presence of infrared fixed point αs,g1(0) = π . When the coupling

is constant in the infrared and the quark masses can be ignored, one expects conformal symmetry
or ADS/CFT correspondence to be applied in non-perturbative region [20, 21]. Analytical Dyson-
Schwinger approach also suggests the presence of infrared fixed point[22].

3.2 The tensor form factor

I specify the spin of quarks that sandwich γ4γ1,γ4γ2 and γ4γ3 and pick up the quark propagator
Si(p|0) whose spin of the final state matches with that of γ4γi. I assume propagators are color
diagonal. The vertices γ4γ1 and γ4γ2 are spin off-diagonal and the vertex γ4γ3 is spin diagonal.
There is a relative phase factor i in γ4γ2 as compared to the other γ4γi.

The tensor term is evaluated from the difference of

〈A4(p− q
2
)γ4 ∑

j

γ jA j
†(p+

q
2
)〉p4(p+

q
2
) j −〈A4(p)γ4 ∑

j

γ jA j
†(p)〉p4 p j (3.5)

I sample-wise diagonalize

ΓL/R
A = [〈A L/R

4(p|0)p4(γ5Ai(p|0)αβ †γ5)σ
αβ
1 p1〉σ1

+〈A L/R
4(p|0)p4(γ5A

L/R
i(p|0)αβ †γ5)σ

αβ
2 p2〉σ2

+〈A L/R
4(p|0)(γ5A

L/R
i(p|0)αβ †γ5)σ

αβ
3 p3〉σ3]

(3.6)

for each α ,β that specify the color and the spin, and take the sum of the real part of the positive
eigenvalues. The corresponding momentum shifted matrix elements are

Γ̃L/R
A = [〈A L/R

4 (p− q
2
|0)p4(γ5A

L/R
1 (p+

q
2
|0)αβ †γ5)σ

αβ
1 (p+

q
2
)1〉σ1

+〈A L/R
4 (p− q

2
|0)p4(γ5A

L/R
2 (p+

q
2
|0)αβ †γ5)σ

αβ
2 (p+

q
2
)2〉σ2

+〈A L/R
4 (p− q

2
|0)p4(γ5A

L/R
3 (p+

q
2
|0)αβ †γ5)σ

αβ
3 (p+

q
2
)3〉σ3].
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I approximate the denominator of the propagator for ΓA and Γ̃A by those of the quark propagator in
the cylinder cut and evaluate the tensor term as

1
12

tr
(Γ̃L

A + Γ̃R
A)− (ΓA

L +ΓA
R)

(A p2 +MB)(A † p2 +MB†)
= ZV Λ2(p)p4q j/4π (3.7)

A simulation result of DWF01 is shown in Fig.3.

3.3 The vector form factor

I define the matrix elements between spin ++ as ΓC and between spin −− as ΓD.

ΓC, j = Re[〈BL,++(p− q j

2
|0)γ4(γ5B

R,++(p+
q j

2
|0)†γ5)

−BR,++(p− q j

2
|0)γ4(γ5B

L,++(p+
q j

2
|0)†γ5)〉]

and

ΓD, j = Re[〈BL,−−(p− q j

2
|0)γ4γ5B

R,−−(p+
q j

2
|0)†γ5)

−BR,−−(p− q j

2
|0)γ4(γ5B

L,−−(p+
q j

2
|0)†γ5)〉] (3.8)

1
6 ∑

j

|ΓD, j|+ |ΓC, j|
(A p2 +MB)(A † p2 +MB†)

= ZV Λ1(p)q j/4π

A simulation result of the vector form factor of DWF01 is shown in Fig.4.

4. Discussion

I showed that nonperturbative renormalization of lattice Coulomb gauge quark-gluon vertices
is feasible. In addition to the running coupling, I measured the tensor term g3(p,q)γ4 p4 /q and the
vector term g2(p,q)q of the Coulomb gauge quark-gluon vertex.

The running coupling αI(q) and αs,g1(q) of DWF are consistent with the JLab extraction. The
running coupling of Landau gauge αs,g1(q) is not infrared suppressed in contrast to αs(q) of triple
gluon vertex [23] and ghost-glion vertex [1, 13]. The infrared suppression of αs(q) in Landau gauge
was attributed to an instanton effect [23]. However, as shown by ’t Hooft [24], in the instanton
calculus extended to the infrared region, there is a divergence from zero modes. In supersymmetric
case, however, the divergence from fermionic zero mode and bosonic zero mode cancel [25] and
a finite infrared fixed point appears. It is plausible that the search of a stable solution in Coulomb
gauge with use of the conjugate gradient method leads to a solution in which zero mode divergences
of gluons and those of quarks cancel.

When DWF configurations of larger lattices are available, the αs,g1(q) data can be extended to
lower energies. I expect that αs,g1(q) of DWF in Coulomb gauge show the same behavior as αI(q).
The difference of the infrared features of Landau gauge and Coulomb gauge running coupling casts
questions on the Kugo-Ojima confinement criterion [26, 27] which is derived in Landau gauge but
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effects of instantons are not considered. Simulations with momenta far from the cylinder cut and a
calculation of the form factor of three quark systems are also left in the future.
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