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We study the vacuum polarization functions on the lattice with exact chiral symmetry of over-

lap fermion by matching the lattice data at large momentum scales with the Operator Product

Expansion (OPE). We extract the strong coupling constantαs(µ) in two-flavor QCD asΛ(2)

MS
=

0.234(9)(+16
− 0 ) GeV. From the analysis of the difference between the vector and axial-vector chan-

nels, we extract some of the four-quark (dimension-six) condensates.
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Strong coupling constant and four-quark condensates from vacuum polarization functions ... Eigo Shintani

1. Introduction

In Quantum Chromodynamics (QCD) the vacuum polarization, defined through the (axial-
)vector current correlator, contains rich information of its perturbative and non-perturbative dy-
namics. In the long distance regime it is sensitive to the low-lying particle spectrum. The short
distance regime, on the other hand, can be analyzed using perturbation theory supplemented by
the Operator Product Expansion(OPE). The current correlator can be expressed as an expansion in
terms of the strong coupling constantαs together with power corrections of the form〈O(n)〉/Qn.
Here, the local operatorO(n) has a mass dimensionn andQ is the momentum scale flowing into
the correlator. If one cancalculate the correlators non-perturbatively, theoretical determination of
those fundamental parameters is made possible.

Lattice QCD calculation offers such a non-perturbative technique. Two-point correlators can
be calculated for space-like separations. In this work we investigate the use of the perturbative
formulae of the correlators for the lattice data obtained inthe highQ2 regime. By inspecting the
numerical data, we find that this is indeed possible at a lattice spacinga≃ 0.12 fm if we subtract the
bulk of the discretization effects non-perturbatively. The remaining effect can be estimated using
the perturbation theory. To our knowledge quantitative analysis including the determination ofαs

and〈O(n)〉 has been missing until recently.

2. Vacuum polarization function and OPE

While the vacuum polarizationsΠJ(Q2) (J denotes vector or axial-vector channel) are ultra-
violet divergent and their precise value depends on the renormalization scheme, their derivative
DJ(Q2) = −Q2dΠJ(Q2)/dQ2, called the Adler function [1], is finite and renormalization scheme
independent. Therefore, the continuum perturbative expansion ofDJ(Q2) to orderα3

s [2], can be
directly applied to the lattice data. They include the parameters describing the gluon condensate
〈αsG2〉/Q4, the quark condensate〈mq̄q〉/Q4, and four-quark condensates〈O8〉/Q6 and〈O1〉/Q6.
(The explicit forms ofO8 andO1 are given in [3].)

In the continuum theory, the vacuum polarization functionsΠ(ℓ)
J (Q2) are defined through

〈JµJν〉(Q) ≡
∫

d4xeiQ·x〈T{Ji j
µ (x)J ji

ν (0)}〉

= (δµνQ2−QµQν)Π(1)
J (Q2)−QµQνΠ(0)

J (Q2), (2.1)

where the currentJi j
µ may either be a vector currentV i j

µ = q̄iγµq j or an axial-vector currentAi j
µ =

q̄iγµγ5q j with flavor indicesi 6= j. Π(1)
J (Q2) andΠ(0)

J (Q2) denote the transverse and longitudinal

parts of the vacuum polarization, respectively. For the vector channel (J = V ), Π(0)
V (Q2) = 0 is sat-

isfied due to current conservation. For the axial-vector channel (J = A), the longitudinal component
may appear when the quark mass is finite.

With the overlap fermion, we use the currentsV i j
µ = ZV q̄iγµ(1−D/2m0)q j andAi j

µ = ZAq̄iγµγ5(1−
D/2m0)q j, which are not conserving but form a multiplet of the axial transformation as they do in
the continuum theory.D denotes the massless overlap-Dirac operator, and the parameter m0 is
fixed at 1.6. The renormalization factorZ ≡ ZV = ZA has been calculated non-perturbatively,Z =
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1.3842(3) [4]. Taking account of remaining symmetries on the lattice (parity and cubic symme-
tries), the correlators of these lattice currents can be expressed as

〈JµJν〉
lat(Q) = Π(1)

J (Q)Q2δµν −Π(0+1)
J (Q)QµQν

−
∞

∑
n=0

BJ
n(Q)Q2n

µ δµν −
∞

∑
m,n=1

CJ
mn(Q)

{

Q2m+1
µ Q2n−1

ν + Q2m+1
ν Q2n−1

µ
}

, (2.2)

whereΠ(0+1)
J (Q)≡Π(0)

J (Q)+Π(1)
J (Q). The lattice momentumQµ is defined asQµ = (2/a)sin(πnµ/Lµ)

with an integer four-vectornµ whose components take values in[0,Lµ/2] on a lattice of sizeLµ in

the µ-th direction (Li=1,2,3 = 16 andLt = 32). On the lattice,Π(ℓ)
J (Q) is not just a function ofQ2

but ofQµ in general due to the violation of the Lorentz symmetry. In Ref.[5] we describe the detail
of derivation of these contribution to vacuum polarization, ΠV+A(Q2) andΠV−A(Q2).

We now discuss the fit of the lattice data to the OPE expressionof the form [6]

Π(0+1)
J |OPE(Q

2) = c+C0(Q
2,µ2)+

CJ
m(Q2)

Q2 +CJ
q̄q(Q

2)
〈mq̄q〉

Q4

+ CGG(Q2)
〈(αs/π)GG〉

Q4 . (2.3)

Instead of directly treating the Adler function, we analyzeits indefinite integralΠ(0+1)
J |OPE(Q2).

A constantc is scheme-dependent, while other terms are finite and well defined. The leading
term,C0(Q2,µ2), is known toO(α2

s ) in the massless limit [2]. For a finite quark mass there is a
contribution ofO(m2/Q2), which is represented by the termCJ

m(Q2) with running massm = m(µ)

at scaleµ , known toO(α2
s ). We ignore terms ofO(m4) and higher. The OPE corrections of

the form 〈O(n)〉/Qn start from the dimension-four operatorsmq̄q and (αs/π)GG. Their Wilson
coefficientsCJ

q̄q(Q
2) andCGG(Q2) are known toO(α2

s ) [7]. The terms of order 1/Q6 and higher
are not included. The perturbative expansions are consistently given in terms of the strong coupling
constantαs(µ) defined in theMS scheme.

Here we note that the “gluon condensate”〈(αs/π)GG〉 is defined only through the perturbative
expression like (2.3). Due to an operator mixing with the identity operator, the operator(αs/π)GG
contains a quartic power divergence that cannot be unambiguously subtracted within perturbation
theory, which is known as the renormalon ambiguity [8]. Therefore, the term〈(αs/π)GG〉 in
(2.3) only has a meaning of a parameter in OPE, that may dependon the order of the perturbative
expansion, for instance. The quark condensate〈q̄q〉 is well-defined in the massless limit, since
it does not mix with lower dimensional operators, provided that the chiral symmetry is preserved
on the lattice. Power divergence may appear at finite quark mass asma−2. In the OPE formula
(2.3), it thus leads to a functional dependencem2a−2/Q4. In our numerical analysis we neglect this
quadratic term inm, as it should be smaller than the already small leadingm dependence from the
quark condensate.

In addition to the individual vector and axial-vector correlators, we consider theV −A vacuum
polarization function. For the differenceΠ(0+1)

V−A (Q) ≡ Π(0+1)
V (Q)−Π(0+1)

A (Q), the lattice data are

more precise than the individualΠ(0+1)
J (Q), so that the 1/Q6 and 1/Q8 terms are also necessary:

Π(0+1)
V−A |OPE(Q

2) = (CV
m −CA

m)(Q2)
1

Q2 +
(

CV
q̄q −CA

q̄q

)

(Q2)
〈mq̄q〉

Q4

3
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+

(

a6(µ)+ b6(µ) ln
Q2

µ2 + c6mq

)

1
Q6 +

a8

Q8 . (2.4)

In theV −A combinations the coefficientsCV
m−CA

m andCV
q̄q−CA

q̄q start atO(αs). The dimension-six
operatorsa6(µ) andb6(µ) contain the expectation values of dimension-six operatorsO8 andO1

[3]. The scaleµ is set to 2 GeV. Unlike the dimension-four quark condensate〈mq̄q〉, 〈O8〉 and
〈O1〉 remain finite in the massless limit, hence gives leading contribution. The termc6, which has
a mass-dimension five, describes their dependence on the quark mass. The terma8/Q8 represents
the contributions from dimension eight operators.

3. Numerical results

We use the lattice data from two-flavor QCD simulation with dynamical overlap fermions [9].
The simulations are performed at lattice spacinga = 0.118(2) fm on a 163×32 lattice, correspond-
ing to the physical volume (1.9 fm)3. The quark massesmq in this analysis are 0.015, 0.025, 0.035
and 0.050 in the lattice unit, that cover the range[ms/6,ms/2] with ms the physical strange quark
mass. The main advantage of this data set is that both the sea and valence quarks preserve exact
chiral and flavor symmetries by the use of the overlap fermionformulation [10]. The perturbative
formulae for the vacuum polarizations can therefore be applied without any modification due to
explicit violation of the chiral symmetry.

In the fitting of the lattice data with the functions (2.3) and(2.4), we use the value of the quark
condensate obtained from a simulation in theε-regime using the same lattice formulation at slightly
smaller lattice spacing,〈q̄q〉(2 GeV) = −[0.251(7)(11) GeV]3 [11]. The renormalization scaleµ
is set to 2 GeV. The quark mass is renormalized in theMS scheme using the non-perturbative
matching factorZm(2 GeV) = 0.838(17) [4] asm(µ) = Zm(µ)mq. The coupling constantαs(µ) is

transformed to the scale of two-flavor QCD,Λ(2)

MS
, using the four-loop formula [12]. Then, the free

parameters are the scheme-dependent constantc, 〈(αs/π)GG〉, andΛ(2)

MS
for the fit of an average

Π(0+1)
V+A (Q)≡ Π(0+1)

V (Q)+Π(0+1)
A (Q). For the differenceΠ(0+1)

V−A (Q), Λ(2)

MS
obtained above is used as

an input and the dimension-six condensatesa6, b6 andc6 are free parameters.

The OPE analysis requires a window inQ2 where the systematic errors are under control. The
upper limit (aQ)2

max ≃ 1.324 is set by taking the points where different definitions ofthe lattice
momentum,i.e. Qµ = (2/a)sin(πnµ/Lµ) andQµ = (2/a)πnµ /Lµ , give consistent results within
one standard deviation. In the physical unit, this corresponds to 1.92 GeV. To determine(aQ)2

min,
we investigate the dependence of the fit parameters on(aQ)2

min in Figure 1. From the left three

panels, we observe that the results forΛ(2)

MS
, 〈(αs/π)GG〉, andc are stable between(aQ)2

min ≃ 0.48
and 0.65, which correspond to the momentum scale 1.16–1.35 GeV. Above(aQ)2

min ≃ 0.65 the fit
becomes unstable; the results are still consistent within one standard deviation.

Similar plots (right panel) are shown fora6, b6 and a8 obtained from the fit ofΠ(0+1)
V−A (Q).

We attempt to fit with (filled symbols) and without (open symbols) the a8/Q8 term in order to
investigate how stable the results are against the change ofthe order of the 1/Q2 expansion. We
find that the fit witha8/Q8 is stable down to(aQ)2

min ≃ 0.46, while the other could not be extended
below(aQ)2

min ≃ 0.58. The difference between filled and open symbols is marginal for a6 (circles),

4
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Figure 1: Fit range dependence ofΛ(2)

MS
, 〈(αs/π)GG〉 and the constant termc (left). Similar plots fora6(µ),

b6(µ) anda8 (right). The horizontal axis denotes the minimum momentum squared(aQ)2
min.
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Figure 2: Π(0+1)
V+A (Q) (left panel) andQ6Π(0+1)

V−A (Q) (right panel) as a function of(aQ)2. The lattice data at
different quark masses are shown by open symbols. Fit curvesfor each quark mass and in the chiral limit
are drawn. ForΠ(0+1)

V+A (Q) the full result in the chiral limit (dashed-dots curves are at the finite masses, and
solid curve is in the chiral limit), as well as that without〈αsG2〉/Q4 term (dashed curve), are shown.

but too large to make a reliable prediction forb6 (squares). To quote the results we set(aQ)2
min =

0.586 for bothΠ(0+1)
V+A (Q) andΠ(0+1)

V−A (Q).

Figure 2 shows the lattice data forΠ(0+1)
V+A (Q) (left) andΠ(0+1)

V−A (Q) (right panel) at each quark

mass and corresponding fit curves. InQ6Π(0+1)
V−A (Q), the quark mass dependence is clearly observed.

The main contribution comes from a dimension-six termc6mq/Q6, while the dimension-four term
〈mq̄q〉/Q4 is sub-dominant (∼ 20%), as its coefficient starts atO(αs). In the chiral limit, there is a
small but non-zero value remaining inQ6Π(0+1)

V−A |OPE(Q2) as shown by a dashed curve in the plot.
This is due to the four-quark condensatesa6 andb6.

The quark mass dependence ofΠ(0+1)
V+A (Q) is, on the other hand, not substantial as expected

from the fit function (2.3). Our fit with the known value of〈q̄q〉 reproduces the data well. In the chi-
ral limit, (2.3) is controlled by two parameters:Λ(2)

MS
and〈(αs/π)GG〉 (apart from the constant term

5
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c). The fit result in the chiral limit is drawn by a solid curve. The dashed curve, on the other hand,
shows the result when the contribution from the〈(αs/π)GG〉 term is subtracted. It indicates that
the Q2 dependence is mainly controlled by the perturbative piece while the dimension-four term
gives a sub-dominant contribution. Numerically, we obtainΛ(2)

MS
= 0.234(9) GeV and〈(αs/π)GG〉

= −0.058(7) GeV4. In order to estimate the systematic error due to the discretization effect, we
calculate the vacuum polarization function at the one-looplevel of lattice perturbation theory and
extract the term ofO((aQ)2) out of the physical ln(Q2/µ2) dependence ofC0(Q2,µ2). We then add
this term to the fit function (2.3) and repeat the whole analysis, which yieldsΛ(2)

MS
= 0.249(37) GeV

and〈(αs/π)GG〉 = +0.11(15) GeV4. We find thatΛ(2)

MS
is not largely affected, while〈(αs/π)GG〉

is very sensitive to the lattice artifact and in fact changesits sign. Other (Lorentz-violating) dis-
cretization effects due toBJ

n andCJ
mn are subtracted non-perturbatively so that the associated error

should be negligible. (see ref.[5])

The truncation of the perturbative and operator product expansions is a possible source of the
systematic error. In order to estimate the size of the former, we repeat the analysis using the fit
formulae truncated at a lower order (two-loop level), and find that the change ofΛ(2)

MS
is much less

than one standard deviation. It indicates that the higher order effects are negligible. The error from
the truncation of OPE is estimated by dropping the terms ofO(1/Q4) from (2.3). From fits with
higher (aQ)2

min (between 0.79 and 0.89) to avoid contaminations of the 1/Q4 effects, we obtain

Λ(2)

MS
= 0.247(3) GeV. The deviation ofΛ(2)

MS
is about the same size as that due to the discretization

effect. The errors due to finite physical volume and the fixed topological charge in our simulation
[13] are unimportant for the short-distance quantities considered in this work.

Our final result is

Λ(2)

MS
= 0.234(9)(+16

− 0 ) GeV, (3.1)

where the first error is statistical and the second is systematic due to the discretization and trun-
cation errors. The result is compatible with previous calculations ofαs in two-flavor QCD:Λ(2)

MS
= 0.250(16)(16) GeV [14] and 0.249(16)(25) GeV [15]. (The physical scale is normalized with
an inputr0 = 0.49 fm.) The four-quark condensatea6 is obtained fromΠ(0+1)

V−A (Q) asa6(2 GeV)

= −0.0038(3)(+16
− 0 ) GeV6, where the first error is statistical. The second error represents an un-

certainty due to the truncation of the 1/Q2 expansion. The central value is taken from the fit with
a8/Q8 in (2.4) and the error reflects the shift when this term is discarded. The result agrees with
the previous phenomenological estimates−(0.003∼ 0.009) GeV6 [16]. The other condensate is
less stable; we obtainb6(2 GeV ) = +0.0017(7) GeV6 or −0.0008(2) GeV6 with or without the
O(1/Q8) term, respectively.

4. Summary

With the exact chiral symmetry realized by the overlap fermion formulation, the analysis of the
lattice data can be greatly simplified. For the case of the vacuum polarizations, the continuum form
of OPE may be applied without suffering from additional operator mixings, such as the additive
renormalization of the operator ¯qq. With an input for the chiral condensate from other sources,
we can fit the lattice data at short distances and extract the strong coupling constant. The analysis
does not require lattice perturbation theory, which is too complicated to carry out to the loop orders

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
1
3
4

Strong coupling constant and four-quark condensates from vacuum polarization functions ... Eigo Shintani

available in the continuum theory. Moreover we obtain the four-quark condensatesa6 andb6, which
are relevant to the analysis of kaon decays. An obvious extension of this work is the calculation in
2+1-flavor QCD, which is underway [17].
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