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1. Introduction

In Quantum Chromodynamics (QCD) the vacuum polarizatiefinéd through the (axial-
)vector current correlator, contains rich information @f perturbative and non-perturbative dy-
namics. In the long distance regime it is sensitive to the-ligng particle spectrum. The short
distance regime, on the other hand, can be analyzed usitglpation theory supplemented by
the Operator Product Expansion(OPE). The current cooretan be expressed as an expansion in
terms of the strong coupling constamj together with power corrections of the forf?(™) /Q".
Here, the local operatof" has a mass dimensionandQ is the momentum scale flowing into
the correlator. If one cacalculate the correlators non-perturbatively, theoretical deteation of
those fundamental parameters is made possible.

Lattice QCD calculation offers such a non-perturbativéhtégue. Two-point correlators can
be calculated for space-like separations. In this work wesdtigate the use of the perturbative
formulae of the correlators for the lattice data obtainethzhighQ? regime. By inspecting the
numerical data, we find that this is indeed possible at @&a#pacing~ 0.12 fm if we subtract the
bulk of the discretization effects non-perturbatively. eTiemaining effect can be estimated using
the perturbation theory. To our knowledge quantitativelyais including the determination a@fs
and(¢") has been missing until recently.

2. Vacuum polarization function and OPE

While the vacuum polarizationd;(Q?) (J denotes vector or axial-vector channel) are ultra-
violet divergent and their precise value depends on thernealization scheme, their derivative
D3(Q%) = —Q?dN;(Q?)/dQ?, called the Adler function [1], is finite and renormalizatischeme
independent. Therefore, the continuum perturbative esiparof D;(Q?) to ordera? [2], can be
directly applied to the lattice data. They include the partars describing the gluon condensate
(asG?)/Q*, the quark condensatenqq) /Q*, and four-quark condensaté®g) /Q® and (O1)/QS.
(The explicit forms 0fOg andO; are given in [3].)

In the continuum theory, the vacuum polarization functiﬁtﬁ@(QZ) are defined through

33 (Q = [T o))
= (5qu2—QuQV)ngl>(Q2) —QHQVHSO)(QZ), (2.1)

where the currerﬂli“j may either be a vector curre‘vli,j = iy Q; or an axial-vector currem\H =
GiYu¥50; with flavor indicesi # j. n§1>(Q2) and I'ISO)(QZ) denote the transverse and longitudinal
parts of the vacuum polarization, respectively. For theorechannel J =V), I'I\(,O)(Qz) =0is sat-
isfied due to current conservation. For the axial-vectonnkad = A), the longitudinal component
may appear when the quark mass is finite.

With the overlap fermion, we use the curre\ﬁi,é: 2y Qiyu(1—D/2mg)q; andAH =ZA0iYuYs(1—
D/2mg)q;, which are not conserving but form a multiplet of the axiahsformation as they do in
the continuum theory.D denotes the massless overlap-Dirac operator, and the etmamy, is
fixed at 1.6. The renormalization factdr= 2, = Zx has been calculated non-perturbatively;:
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1.3842(3) [4]. Taking account of remaining symmetries om Itiitice (parity and cubic symme-
tries), the correlators of these lattice currents can beesged as

<Jqu>'a‘<Q>— (Q)Q25uv NP (QQuQ
- ZOBJ ) QS — z Can(Q{QM QS + Q™1 (2.2)

,N=1
wherel‘lgo+1>(Q) = I'ISO) Q)+ I'Igl)(Q). The lattice momentur®,, is defined a®,, = (2/a) sin(rmy /L)
with an integer four-vecton,, whose components take valueg@nL /2] on a lattice of sizé, in
the p-th direction (i_123 = 16 andL; = 32). On the latticel " (Q) is not just a function ofy?
but of Q, in general due to the violation of the Lorentz symmetry. . S¢we describe the detail
of derivation of these contribution to vacuum polarizatibky ; 4(Q?) andMy_a(Q?).
We now discuss the fit of the lattice data to the OPE expressitine form [6]

CJ 2
N5 Vlore(@) = c+Co(@ 1) + mé? L @) T
as/mGG
+ Coo(@ (275 23)
Instead of directly treating the Adler function, we analyteindefinite mtegral‘l |OPE(Q2)

A constantc is scheme-dependent, while other terms are finite and wéhatk The leading
term, Co(Q?, u?), is known toc’(a?) in the massless limit [2]. For a finite quark mass there is a
contribution of&(m?/Q?), which is represented by the te@g,(Q?) with running massn= m(u)

at scalep, known to ¢ (a?). We ignore terms o(n*) and higher. The OPE corrections of
the form (O(™)/Q" start from the dimension-four operatargiq and (as/mGG. Their Wilson
coefficientsCy,(Q?) andCga(Q?) are known tog(aZ) [7]. The terms of order AQ° and higher
are not included. The perturbative expansions are conflistgven in terms of the strong coupling
constantos(p) defined in theMS scheme.

Here we note that the “gluon condensatéls/ m)GG) is defined only through the perturbative
expression like (2.3). Due to an operator mixing with theniitg operator, the operatdos/m) GG
contains a quartic power divergence that cannot be unarobély subtracted within perturbation
theory, which is known as the renormalon ambiguity [8]. Hfere, the term{(as/m)GG) in
(2.3) only has a meaning of a parameter in OPE, that may depetite order of the perturbative
expansion, for instance. The quark condenggtg is well-defined in the massless limit, since
it does not mix with lower dimensional operators, providedttthe chiral symmetry is preserved
on the lattice. Power divergence may appear at finite quagsraamna 2. In the OPE formula
(2.3), it thus leads to a functional dependenga—2/Q*. In our numerical analysis we neglect this
guadratic term irm, as it should be smaller than the already small leadrdgpendence from the
quark condensate.

In addition to the individual vector and axial-vector cdaters, we consider thé — A vacuum
polarization function. For the differend@\" ' (Q) = N{®™(Q) — N'**Y(Q), the lattice data are

more precise than the individul§0+1>(Q), so that the 1Q° and 1/Q® terms are also necessary:

Y opelQ?) = (Ol O o + (Cop ) (@) T
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Q? 1
N <as(l1)+b6(ll)|nﬁ +Cemq> % 2.4)

* o
IntheV — A combinations the coefficien@, — Cf, andCy, — C%, start at?’(as). The dimension-six
operatorsas() andbg(u) contain the expectation values of dimension-six operafrand O,
[3]. The scaleu is set to 2 GeV. Unlike the dimension-four quark condengaigg), (Og) and
(O1) remain finite in the massless limit, hence gives leadingrdmrtion. The terncg, which has
a mass-dimension five, describes their dependence on thie maas. The ternag/Q® represents
the contributions from dimension eight operators.

3. Numerical results

We use the lattice data from two-flavor QCD simulation witmasical overlap fermions [9].
The simulations are performed at lattice spacirg0.118(2) fm on a 18x 32 lattice, correspond-
ing to the physical volume (1.9 fri) The quark masses, in this analysis are 0.015, 0.025, 0.035
and 0.050 in the lattice unit, that cover the ramge/6, ms/2] with ms the physical strange quark
mass. The main advantage of this data set is that both thendeaakence quarks preserve exact
chiral and flavor symmetries by the use of the overlap fernfiomulation [10]. The perturbative
formulae for the vacuum polarizations can therefore beiagplithout any modification due to
explicit violation of the chiral symmetry.

In the fitting of the lattice data with the functions (2.3) g@#4), we use the value of the quark
condensate obtained from a simulation in ¢heegime using the same lattice formulation at slightly
smaller lattice spacing/qq)(2 GeV) = —[0.251(7)(11) GeVj [11]. The renormalization scale
is set to 2 GeV. The quark mass is renormalized in M scheme using the non-perturbative
matching factoZy(2 GeV) = 0.838(17) [4] asn(u) = Zy(u)my. The coupling constards() is
transformed to the scale of two-flavor QCADlﬂ\,Azl, using the four-loop formula [12]. Then, the free

parameters are the scheme-dependent constafdrs/ m)GG), and/\% for the fit of an average

NP2 (Q =N Q) +n¥(Q). For the differencéll Y (Q), /\% obtained above is used as
an input and the dimension-six condensagds andcg are free parameters.

The OPE analysis requires a windowQ@3d where the systematic errors are under control. The
upper limit (aQ)2,., ~ 1.324 is set by taking the points where different definitionghef lattice
momentumj.e. Q, = (2/a)sin(rmy /L) andQy = (2/a)mm, /L, give consistent results within
one standard deviation. In the physical unit, this corregsdo 1.92 GeV. To determin@Q)2,..,
we investigate the dependence of the fit parameter(sa@jurzmn in Figure 1. From the left three
panels, we observe that the resultsﬁéﬁ, ((as/m)GG), andc are stable betwee@Q)?,,, ~ 0.48
and 0.65, which correspond to the momentum scale 1.16-1e35 &bove(aQ)2,, ~ 0.65 the fit
becomes unstable; the results are still consistent withenstandard deviation.

Similar plots (right panel) are shown fag, bs and ag obtained from the fit oﬂ\(,of/P(Q).
We attempt to fit with (filled symbols) and without (open syrshdhe ag/Q® term in order to
investigate how stable the results are against the chantye afrder of the 1Q? expansion. We

find that the fit withag/Q® is stable down t¢aQ)2,.. ~ 0.46, while the other could not be extended

min —

beIow(aQ)rznin ~ 0.58. The difference between filled and open symbols is marfpnag (circles),
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Figure 1: Fit range dependence Afv% {(as/ m)GG) and the constant term(left). Similar plots forag(u),
be (1) andag (right). The horizontal axis denotes the minimum momentgoasedaQ)?2;,.
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Figure 2: M"Y (Q) (left panel 6N Y(Q) (right panel function &Q)2. The lattice data at
igure2: Ty, 2 (Q) (left panel) andQ (Q) (right panel) as a function ggQ)<. The lattice data a
different quark masses are shown by open symbols. Fit cdiovesach quark mass and in the chiral limit

are drawn. Foﬂ\(,oj,i)(Q) the full result in the chiral limit (dashed-dots curves ar¢ha finite masses, and

solid curve is in the chiral limit), as well as that withojetsG?) /Q* term (dashed curve), are shown.

but too large to make a reliable prediction fiyr(squares). To quote the results we (ﬁp)mm =
0.586 for both1\ 2 (Q) andMn{> ' (Q).

Figure 2 shows the lattice data fﬁlr(V Q) (left) andl‘l 0+1 ( ) (right panel) at each quark
mass and corresponding fit curvesQ?ﬂ 0” (Q), the quark mass dependence is clearly observed.
The main contribution comes from a dlmensmn-six t@@nnh/Q6, while the dimension-four term
(maq) /Q* is sub-dominant~{ 20%), as its coefficient starts &t(as). In the chiral limit, there is a
small but non-zero value remaining @fil'l\(,of,i)\opE(Qz) as shown by a dashed curve in the plot.
This is due to the four-quark condensasgsandbs.

The quark mass dependence LP(Q) is, on the other hand, not substantial as expected
from the fit function (2.3). Our fit with the known value @ig) reproduces the data well. In the chi-
ral limit, (2.3) is controlled by two parameter,ﬁ](vzl_)S and((as/m)GG) (apart from the constant term
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¢). The fit result in the chiral limit is drawn by a solid curvehd dashed curve, on the other hand,
shows the result when the contribution from tfies/71)GG) term is subtracted. It indicates that
the Q% dependence is mainly controlled by the perturbative piebiéevine dimension-four term
gives a sub-dominant contribution. Numerically, we obt@@ =0.234(9) GeV and((as/m)GG)

= —0.058(7) GeV*. In order to estimate the systematic error due to the digatan effect, we
calculate the vacuum polarization function at the one-llmpl of lattice perturbation theory and
extract the term of7((aQ)?) out of the physical 1(Q?/u?) dependence @ (Q?, u?). We then add

this term to the fit function (2.3) and repeat the whole ansa)yshich yields/\% =0.24937) GeV
and{(as/mGG) = +0.11(15) GeV*. We find that/\% is not largely affected, whilé(as/m)GG)

is very sensitive to the lattice artifact and in fact changesign. Other (Lorentz-violating) dis-
cretization effects due tB; andC},, are subtracted non-perturbatively so that the associated e
should be negligible. (see ref.[5])

The truncation of the perturbative and operator productaegions is a possible source of the
systematic error. In order to estimate the size of the formverrepeat the analysis using the fit
formulae truncated at a lower order (two-loop level), and fimat the change d‘f\% is much less
than one standard deviation. It indicates that the highgeroeffects are negligible. The error from
the truncation of OPE is estimated by dropping the term&@f/Q*) from (2.3). From fits with
higher (aQ)2,,, (between 0.79 and 0.89) to avoid contaminations of th@*leffects, we obtain
/\I% =0.247(3) GeV. The deviation dfl% is about the same size as that due to the discretization
effect. The errors due to finite physical volume and the fixgoblogical charge in our simulation
[13] are unimportant for the short-distance quantitiessaered in this work.

Ouir final result is

2
NZL=0.2349)(*%0) GeV, (3.1)

where the first error is statistical and the second is sydterdae to the discretization and trun-
cation errors. The result is compatible with previous daltons of as in two-flavor QCD:/\%

= 0.250(16)(16) GeV [14] and 0.249(16)(25) GeV [15]. (The/sbal scale is normalized with
an inputrp = 0.49 fm.) The four-quark condensadg is obtained frorrﬂ\(,of,P(Q) asag(2 GeV)

= —0.00383)("¢) Ge\k, where the first error is statistical. The second error s an un-
certainty due to the truncation of th¢@? expansion. The central value is taken from the fit with
ag/Q® in (2.4) and the error reflects the shift when this term isatided. The result agrees with
the previous phenomenological estimate®.003 ~ 0.009) Ge\® [16]. The other condensate is
less stable; we obtaibg(2 GeV) = +0.0017(7) GeV or —0.0008(2) GeV with or without the

0(1/Q®) term, respectively.

4. Summary

With the exact chiral symmetry realized by the overlap femformulation, the analysis of the
lattice data can be greatly simplified. For the case of thawaicpolarizations, the continuum form
of OPE may be applied without suffering from additional @ter mixings, such as the additive
renormalization of the operat@g. With an input for the chiral condensate from other sources,
we can fit the lattice data at short distances and extractitbegscoupling constant. The analysis
does not require lattice perturbation theory, which is tomplicated to carry out to the loop orders
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available in the continuum theory. Moreover we obtain the-guark condensateg andbg, which
are relevant to the analysis of kaon decays. An obvious siderof this work is the calculation in
2+1-flavor QCD, which is underway [17].
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