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1. The Generalized Eigenvalue Problem

1.1 History

At a conference in 1981, K. Wilson suggested to use a vanatigchnique to compute energy
levels in lattice gauge theory [1]. The idea was picked upapulied to the glueball spectrum [2,3]
and to the static quark potential(s) [4]. With a certain ckaf the variational basigg,i =1...N}
and maximizing(gle- -1 |p) /(|@) with |¢) = T, ai|@), the variational technique yields the
generalized eigenvalue problem (GEVP). It is applicablgobd the computation of the ground-
state energy and has been widely used, but rarely in the fdramanit can be shown that corrections
to the true energy levels decrease exponentially for large [5].

Apart from [5], statements about corrections due to higmergy levels seem to be absent in
the literature. We here add such statements and suggesteavbaindifferent use of the GEVP,
which we will show to be more efficient under certain condiso We also treat the case of an
effective theory and show numerical results for heavy-kdiective theory (HQET).

1.2 Basic idea

We start from a matrix of correlation functions on an infidiime lattice
Ci(t) = (Gi(00j(t) = 5 & = ¢nignj, i,i=1,...,N (1.1)
n=1

Uni = (Un)i = <n’6i’0> En <Eny1.

For simplicity we assume rea,. States|n) with (m|n) = &y, are eigenstates of the transfer
matrix and all energies have the vacuum energy subtraCigd) are any gauge-invariant fields on

a timeslicet that correspond to Hilbert-space operatérjswhose guantum numbers are then also
carried by the statels). Besides the energy levels, one may want to determine a matrix element

Pon = (0|PI) (1.2)
of an operatoP that may or may not be in the set of operat{)é} }. Starting from the GEVP,
C(t)vn(t,to) = An(t,to)Cto) Vn(t,to), n=1,...,N t>to, (2.3)

Lischer and Wolff showed that [5]

, 1 An(t,to)
E, = lim ES™(t,t ESf(t,tg) = = log— 222 1.4
n tmo n(70)7 n(>0) a g)\n(t+a,t0) ( )
For a while we now assume that ofliystates contribute,
(0) A Ent
n=1

We introduce the dual (time-independent) vectaysdefined by(un, Ym) = dmn, MmN < N, with
(Un, Ym) = TN, (Un)i Ymi- Inserting into eq. (1.5) gives

c© (t)un = e 5y, c (Hun = )\rgo) (t>tO)C(O) (to) Un. (1.6)
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So the GEVP is solved by
MO (t,t0) = e Bt vt t) O up (1.7)
and there is an orthogonality for @lbf the form
(U, CO(t) Un) = Bmnpn(t),  pn(t) =& 5t (1.8)

These equations mean that the opera@ys= TN, (un)iO; = (O, u,) create the eigenstatés) =
Qn|0) of the Hamilton operatorti|n) = E, |n) . Consequently we havay, = (0|P|n) = (0|PQ;|0),
which, preparing for a generalization, we may rewrite as

i _ L1 (P(t)O0;(0)) Va(t,to)j An(to+1t/2,to)

Pon = 2, (PO O )i = o) CO(Lto) 72 Anlla L0

; (1.9)

while for all t,to we haveEEf(t,ty) = Ej,.

Let us now come back to the general case eq. (1.1). The ides@ve the GEVP, eq. (1.3),
“at large time” where the contribution of states> N is small and obtain matrix elements and
energy levels from

1 An(t,to)

ESf = Zlog- 2 = En+gn(tt 1.10

no= g Og/\n(t+a,to) n+&n(t,to) (1.10)
N 1 (P(t21)0j(0)) (Vn(t,t0))} An(to+t2/2,t

gl = 2L OV b)) Anllo +12/2%0) by att —t—t. (1.11)

(Vn(t,to), C(t2) Vn(t,t0)) Y% An(to+t1,to)

The restriction td; =ty =t is for simplicity. The corrections,, 1, will disappear at large times.
Note that in the literature the energy levels are often ntiaeked in this way. Rather, the standard
effective masses of correlators made fr@Qm= (O, v,(t,tp)) are used, and the question of the size
of the corrections is left open. However, the form in eq. () Has a theoretical advantage as it was
shown in [5] that (at fixedy)

én(t.to) = O(e*%"), A =min [En—Ey|. (1.12)

This is non-trivial as it allows to obtain the excited levelgh corrections that vanish in the limit
of larget, keepingty fixed. However, it appears from this formula that the coime can be
very large when there is an energy level close to the desined dhis is the case in interesting
phenomena such as string breaking [6, 7], where in numeaalications the corrections appeared
to be very small despite the formula abbvAlso in static-light systems the gaps are typically only
aroundAE, =~ 400MeV, and in full QCD with light quarks a small g&&,, ~ 2m;; appears in some
channels.

Our contribution to the issue is a more complete discussfdheocorrectiong, to E, as well
as a discussion of the correctiong to the matrix elements. It turns out that a very useful case is
to consider the situation

t < 2o, (1.13)

Lin fact a different formula was claimed in [6].
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e.g. witht —tp = const. or 2> t /tp = const., and then takig (in practice moderately) large. Then
it is not difficult to show that

&n(t,to) = O(e™“511) | AEmp = Em—En, (1.14)
Th(t,tg) = O(e 2En+inl0)  at fixedt —to (1.15)
m(t,ty) = O(e*AENﬂ.ltoe*AEz.l(t*to)) + O(e AEN+11t) (1.16)

The large gapAEn.1, can solve the problem of close-by levels for example in thagtreaking
situation, but also speed up the general convergence verk.nfior example in static-light systems
AEg 1 ~ 2GeV means that roughly a factor of 5 in time separation iseghi We now turn to an
outline of the proof of these statements.

2. Perturbation theory

We start from the solutions above 6= C(? and treat the higher states as perturbations. This
perturbative evaluation was already set up by F. Niedermeaye P. Weisz a while ago [8] but never
published. We noted the advantaget of 2ty, the form of the corrections to the effective matrix
elements defined above and could show that these relatidch$chall orders in the expansion.

We want to obtaim\, andvy, in a perturbation theory ig, where

Avh=ABv, A=AO0 1 eA® B=BO ;¢BW, (2.1)
We will set
AQ = cOr),  eA®=cWt), (2.2)
BO = cOty), eBY =cWqty) (2.3)
in the end. The solutions of the lowest-order equatédvi® = A\VBO v satisfy an orthogo-

nality relation (V\¥, BOVIY) = pn & as in eq. (1.8) above. Writing
A= A% eaxPeen®@ o = v el AP (2.4)
we get for the first two orders

AOVY 1 ADO = A9 [B<°>v,21> +B<1>v$1°>} + A BOVD (2.5)
AOY2) L AL — ) (0) [B(O)vgz) + B(l)vgl)} A [B(O)vgl) + B(l)vﬁo)] A2BOVY . (2.6)

With the orthogonality of the lowest-order vectové?), one obtains just like in ordinary QM
perturbation theory the solutions for eigenvalues andreigetors

MY = ot (WadY) B =AY - A7BY 2.7)
(0) (0)
Vi’ , 8nVn
W= ampn v, a >—pr;1/2u (2.8)
(0) 4 (0)
m#n n m
0 A 0)?
Vi’ , AnVn
n; pn‘lpnzl< A() o2 (W) (W7 B ) (2.9)
m

Also a recursion formula can be given for the higher-ordesfficients.
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2.1 Application to the perturbations C(V

Now we insert our specific problem eq. (2.2), eq. (2.3). Withightforward algebra and with
a representation (fan > n)

(AAO)_)\&O))fl _ ()\rgO))fl(l_ef(Emen)(tfto))fl _ (/\rgo))—l z g KEn—En)(t-) (2 10)

one finds the correction terms listed at the end of the firgi@®clnitially this is so for the first two
orders, but the mentioned recursions allow to show thatitteeh orders are even more suppressed.

2.2 Effective theory to first order

In an effective theory, all correlation functions
Cij(t) = CS2(t) + wCi/™(t) + O(w?) (2.11)

are computed in an expansion in a small paramedervhich we consider to first order only. The
notation is taken from HQET whewo 0 1/m.

We start from the GEVP in the full theory, eq. (1.3), and useftrm of the correction terms
of the effective energies € 2t)

)\n(tvtO)

ET(t,ty) = lo = Ep+ O(e ABn+1nt 2.12
n ( Y 0) g)\n(t—i—a,to) n+ ( )7 ( )

see the discussion above. Expanding this equation, ive have
)\stat(t tO)
Eeff,stat ttn) = -1 lo n )
n ( ) 0) g)\r?ta‘(t +a,t0)
1/m 1/m

eff,1/m n(t,to) n o (t+ato) 1/m _AESEt ¢
t,tg) = — = O(te " N+1n). 2.14
" ( ’ 0) )\r?tat(LtO) )\r?tat(t+avt0) no ( ’ ) ( )

Here Qte F!) is a summary for termgbg + bit)e"Ft. As expected for first-order perturbation
theory, only the eigenvectors of the static GEVP

_ Eﬁtat—F O(e*AEﬁtitl,nt), (2.13)

CStat(t) V?ltat(t ) tO) = )\I’?tat(t ) tO) CStat(tO) V?ltat(t ) tO) ) (2 15)
with normalization t,to , to t,to = n, are neeae In the formula
ith lization(va2 ottt vt 5 ded in the formul
Hmit ty) = (v,sfa‘(t,to), cYm(t) —Aﬁta‘(t,to)Cl/m(to)]v,Sfa‘(t,to)) (2.16)

for the first-order corrections iw.
Similarly one may expand

ff stat ff71
pSl = por "™+ wpgy Y™+ O(w?)

stat

por " = oy +Ole ST e SETCW (MBI 1o + AR (- t0)]  (217)

and an explicit expression fcpgflf’l/m is easily given. Again it involves only the solutions of the

lowest-order (inw) GEVP, V82 andA St together with the first-order correlato®/™. The large
energy gafAEn 1 1 controls the corrections.
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3. Application to static-light Bs-mesons

We have carried out a test in quenched HQET, discretizingsthgc quark by the HYP2
action and the strange quark by the non-perturbativelgt) @mproved Wilson action. Space-time
is 2L x L3 with periodic boundary conditiond, ~ 1.5fm and we consider two lattice spacings:
0.1fm and 007fm (B8 = 6.0219 and &885), respectively witlx = 0.133849 0.1349798. The
all-to-all strange-quark propagators [9] are construdteth 50 (approximate) low modes and two
noise fields on each timeslice of 100 configurations.

The gauge links entering in the interpolating fields are sewavith 3 iterations of (spatial)
APE smearing [10,11]. Then 8 different levels of Gaussiaaaming [12] are applied to the strange-
quark field and we use a simpjgys structure in Dirac space for all 8 interpolating fields. Tbedl
field (no smearing) is included to compute the decay constahie resulting 8« 8 correlation
function is first truncated to aN x N one projecting with theN eigenvectors o€(t;) with the
largest eigenvalues. Hetgis taken to be roughly 0.2 fm (i.¢. = 2a at = 6.0219 and 2 at
B = 6.2885). WithN not too large, this avoids numerical instabilities and déestatistical errors in
the GEVP [13]. We present our results for the spectrum anthfodecay constant below.

0.75 T T T

036 T T stat,, | T T
E, " (t,4a), from 2x2 —e—
E,™%(t,5a), from 2x2 (shifted) ~—o—
fit ——
1 0.7 E,*®(t,4a), from 3x3 —=— -|
fit ——
E,*®(t,4a), from 4x4 ——
it ——
E,*'(t,4a), from 5x5 4
plateau at 0.49 ——

T T
Elé‘a‘(t,éla), from 2x2 —e—
E,%%(t,5a), from 2x2 (shifted) ~—o—
fit

0.35 E,*®(t,4a), from 3x3 —=—
fit ——

E,*®(t,4a), from 4x4 ——
034 | fit ——
E,*(t,4a), from 5x5 0.65 |-
plateau at 0.304 ——

a B~ (1tp)
aE,*(ttp)

03 |

Figure 1: The estimat@ES™>®t,t,), n= 1,2, as a function of, for N = 2,3,4,5 from top to bottom a& = 0.07fm.
The curves ar&n + ay e 2Bv+11t (see comment aboEy 1 1 in the text). The coefficientsy are fitted for eac.

Figure 1 shows the effective energies eq. (1.10) for the $buweo levels ab = 0.07fm. Sta-
tistical errors for the ground-state effective energy agtoly a level of about 3MeV for time sep-
arationst < 1fm. Unexpectedly, these errors are roughly independemd ahd of N < 5. The
functional form of the systematic corrections eq. (1.14}ksosery well down to surprisingly small
t and the independence @fis confirmed by the data. Since the corrections are well wstded to
be below the MeV-level for > 0.6fm,N > 4, we may quote for exampE§™® with a total error
of about 1 MeV. We emphasize that what counts is of coursariegeparation in physical units.
The data at the coarser lattice spacing are very similar.

For this analysis, the energy gaps on the coarser latitEy 1, ~ 0.46,0.65,0.83, respec-
tively for N = 2,3,4, have been taken from plateaux @&S®{t,t;) for N = 6. They have
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then been appropriately rescaled with the lattice spackgimilar procedure has been used for
aAEN1,2.
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T T T
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fit 4
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Figure 2: Bare effective static decay constant as a functidg &dr different values of —tg ata= 0.07fm. The curves
areF + ay e 2En+11% (see comment aboldEy 11 1 in the text).

Figure 2 shows the effective decay constant, eq. (1.14heasmaller lattice spacing. The
leading corrections again dominate at small time already.N— 5 there is a rather early plateau
aroundtg = 0.4fm, where both excited-state corrections are well belosv%h level and the sta-
tistical errors are around 0.7 %. The same statements hold $00.10fm. Note that we fit the
corrections separately for eath-tg andN as a function ofy. The decay of the fit parametens
as a function of —tp is of the expected form eq. (1.16).

4. Conclusions

From a detailed analysis of the corrections to the eigemeghbnd vectors of the GEVP, it
becomes clear thag should not be made too small. In particulatgf>t/2, the simple forms
eg. (1.14), eq. (1.15) can be shown. These corrections degqagynentially with the large gaps
En.1 — En. For first-order corrections in an effective theory a simgappression holds, with the
energy differences of the lowest-order theory.

As pointed out to us at the conference, the authors of [14listuthe GEVP for a toy model
with ten states and noted that it is relevant to higvéarge enough”. Fig.17 of [14] indeed illus-
trates that the effective energies become independegtrfen (roughly)o > t/2 is respected.
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