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1. Introduction

Recent calculations in both the meson [1, 2] and baryon [3] sectors within the twisted mass
formulation of lattice QCD [4] have yielded accurate results on a wide range of observables of
immediate relevance to experiment and phenomenology [5]. This is a consequence of the fact
that the simulations of the European Twisted Mass Collaboration (ETMC) cover a well chosen
range of parameters, allowing controlled continuum and chiral extrapolations and thus making a
reliable connection to the physical regime possible. In the present work weapply the twisted mass
framework to the calculation of nucleon form factors.

Electromagnetic and axial form factors of the proton and the neutron are fundamental quan-
tities that yield information on their internal structure such as their size, magnetization and axial
charge. They have been studied experimentally for a long time with steadily increasing precision,
the latest generation of experiments reaching relative precisions of downto about 1% [6]. The
first lattice calculations using dynamical fermions appeared only recently [7, 8, 9] and the available
pion masses were rather large, often above 400 MeV.

Our goal is to calculate matrix elements of the form〈N(pf ,sf )|Oµ |N(pi ,si)〉, where|N(p,s)〉
is the nucleon ground state, with the nucleon having momentump and spins. Oµ is either the
electromagnetic or the axial current. Using, in addition, the pseudoscalar current will enable us to
check phenomenological consequences of chiral symmetry such as the Goldberger-Treiman rela-
tion [10]. The electromagnetic matrix element can be expressed in terms of two Lorentz invariant
form factors that depend on the momentum transfer squared only. In Euclidean space-time the
decomposition is

〈N(pf ,sf )|Vµ(0)|N(pi ,si)〉 = ū(pf ,sf )

[

γµF1(Q
2)+

σµνQν

2m
F2(Q

2)

]

u(pi ,si) , (1.1)

whereQ= pf − pi , σµν = i[γµ ,γν ]/2,m is the proton mass andu(p,s) is a solution to the free Dirac
equation with massm. Instead of the Dirac and Pauli form factorsF1 andF2 the matrix element
can be expressed in terms of the electric and magnetic Sachs form factors

GE = F1(Q
2)− Q2

4m2F2(Q
2) , GM = F1(Q

2)+F2(Q
2) . (1.2)

Similarly the axial current matrix element can be written in terms of the form factorsGA andGp,

〈N(pf ,sf )|Aµ(0)|N(pi ,si)〉 = ū(pf ,sf )

[

γ5γµGA(Q2)+
iQµγ5

2m
Gp(Q

2)

]

u(pi ,si) . (1.3)

2. Calculation details

2.1 Wilson twisted mass QCD

For our calculation we use a Wilson twisted mass fermion action (tmQCD) at maximal twist
angle together with a tree-level Symanzik improved gauge action. More precisely, the fermion
action is given by

Sf = a4∑
x

χ̄
[

1
2

(

γµ(∇µ +∇∗
µ)−a∇µ∇∗

µ
)

+mcrit + iγ5τ3µ
]

χ , (2.1)
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with lattice spacinga, the covariant forward and backward lattice derivatives∇ and∇∗ and mass
parametersmcrit and µ. The Pauli matrixτ3 acts on a doubletχ⊤ = (u,d) of two light quarks.
AutomaticO(a) improvement occurs at maximal twist [11], which here is realized by tuning the
value ofmcrit so that the PCAC mass vanishes. The gauge action is

Sg =
β
3 ∑

x

(

5
3 ∑

µ,ν>µ

(

1−ReTr[U1×1
x,µ,ν ]

)

− 1
12 ∑

µ,ν 6=µ

(

1−ReTr[U1×2
x,µ,ν ]

)

)

, (2.2)

whereU1×1
x,µ,ν denotes the plaquette term,U1×2

x,µ,ν the rectangular 1× 2 Wilson loops andβ is the
inverse bare coupling. Further details concerning the simulation and in particular the tuning to
maximal twist can be found in Ref. [12].

2.2 Correlation functions

On the lattice the form factors are extracted from dimensionless ratios of correlation functions.
We measure the two- and three- point functions

G(~q, t) = ∑
~xf

e−i~xf ·~q Γ0
βα 〈Jα(t f ,~xf )Jβ (0)〉 , (2.3)

Gµ(Γν ,~q, t) = ∑
~x,~xf

ei~x·~q Γν
βα 〈Jα(t f ,~xf )Oµ(t,~x)Jβ (0)〉 , (2.4)

whereΓν = 1/4[1+ γ0] if ν = 0 andΓν = 1/4[1+ γ0]γ5γν if ν = 1,2 or 3. andJ is the proton
interpolating field. In tmQCD at maximal twist the standard interpolating field reads

J(x) =
1√
2
[1+ iγ5]εabc

[

ũa⊤(x)C γ5d̃b(x)
]

ũc(x) , (2.5)

with C denoting the charge conjugation matrix. To enhance the overlap ofJ with the proton ground
state, the quark fields entering Eq. (2.5) are smeared,

ũa(t,~x) = ∑
~y

Fab(~x,~y;U(t)) ub(t,~y) ,

F = (1+αH)N , H(~x,~y;U(t)) =
3

∑
i=1

(

Ui(x)δx,y−ı̂ +U†
i (x− ı̂)δx,y+ı̂

)

.

In addition, the spatial gauge links entering the hopping matrixH are APE-smeared. Good choices
for the parametersα andN were determined in Ref. [3].

In this work, we restrict ourselves to the axial-vector and vector currents for the operatorsOµ

inserted into the three point functions. We use the local currents

Aµ(x) = ūγµγ5u− d̄γµγ5d (2.6)

Vµ(x) = ūγµu− d̄γµγ5d , (2.7)

as well as the symmetrized, conserved vector current

VN
µ (x) =

1
2

[

juµ(x)+ juµ(x− µ̂)
]

− 1
2

[

jdµ(x)+ jdµ(x− µ̂)
]

where (2.8)

jqµ(x) = q̄(x+ µ̂)
1
2
[γµ +1]U−1

µ (x)q(x) + q̄(x)
1
2
[γµ −1]Uµ(x)q(x+ µ̂) . (2.9)
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While the two-point functions can be calculated using a forward propagator from a fixed
source, the evaluation of three-point functions is more involved. In correlators containing the
isovector operators, disconnected diagrams are zero up to lattice artifacts, and can be safely ne-
glected as we approach the continuum limit. The connected diagrams are calculated using sequen-
tial inversions through the sink [13]. This means that at a fixed source-sink separation we are able
to obtain results for all possible momentum transfers and insertion times as well as for any operator
Oµ , with a two sequential inversions per choice of the sink. In this work we usetwo different sinks,
one optimized for the electric and one for the magnetic form factor [7]. The latter is also suitable
for the axial form factors.

2.3 Ratios

In ratios of three- and two- point functions normalization factors and the leading exponential
dependencies on the insertion time cancel. From fits to the resulting plateaus, the form factors can
be extracted. Different ratios can be considered and we here give twoexamples:

Rµ(Γ,~q, t) =
Gµ(Γ,~q, t)

√

G(~0,2(t f − t))G(~q,2(t − ti))
(2.10)

or

Rµ(Γ,~q, t) =
Gµ(Γ,~q, t)

G(~0, t f )

√

G(~q, t f − t)G(~0, t)G(~0, t f )

G(~0, t f − t)G(~q, t)G(~q, t f )
. (2.11)

As shown in Fig. 1, both lead to compatible plateaus but to different statistical errors. We use
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Figure 1: Left panel: Comparison of the ratios given in Eqs. (2.10) (filled symbols) and (2.11) (open
symbols) for source type given in Eq. (2.13) and a few representative momentum combinations. Right
panel: Electric Sachs form factor extracted with a sink source separation of 12a and 14a.

the ratio of Eq. (2.11) for the final analysis, which turns out to be superior because it does not
contain potentially noisy two point functions at large separations and because correlations between
its different factors reduce the statistical noise. This being most evident at zero momentum with
the conserved current, where noise cancels completely.

Once the plateau values

Π(Γ,~q) = lim
t f−t→∞

lim
t−ti→∞

R(Γ,~q, t) (2.12)
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are estimated, the form factors are obtained from the following combinations

Πµ(Γ0,~q) =
c

2m
[(m+E)δ0,µ +∑

k

iqkδk,µ ] GE(Q2) (2.13)

Πi(Γ1,~q)+Πi(Γ2,~q)+Πi(Γ3,~q) =
c

2m∑
jkl

ε jkl q jδl ,i GM(Q2) (2.14)

Π5i(Γ1,~q)+Π5i(Γ2,~q)+Π5i(Γ3,~q) =
ic
4m

[(q1 +q2 +q3)
qi

2m
Gp(Q

2)− (E +m) GA(Q2)] .(2.15)

E is the energy of a proton with momentum~pi , m its mass and the constantc =
√

2m2

E(E+m) arises
from the normalization of lattice hadron states that we use. Note that the sequential source needed
in the calculations of the magnetic Sachs form factor is the same as the one forGA andGp.

3. Results

We perform the calculation at three pion masses with a fixed lattice spacing. The source and
sink time slices are taken atti = 0 andt f = 12 and a check witht f − ti = 14 on 96 configurations
at the highest mass gave compatible results, as shown in the right panel of Fig. 1. The remaining
parameters of the calculation together with the most important results are summarized in Table. 1.

mπ [GeV] number of confs mN [GeV]
√

〈r2
1〉 [ f m]

√

〈r2
2〉 [ f m] µIV [µN] gA

0.4470(12) 346 1.287(13) 0.489(25) 0.558(61) 2.83(21) 1.171(41)
0.3903(9) 184 1.245(9) 0.527(34) 0.607(79) 2.90(36) 1.096(47)
0.3131(16) 419 1.143(11) 0.649(38) 0.63(11) 2.85(46) 1.23(10)

Table 1: The form factors are extracted using a lattice of size 243×48 atβ = 3.9 with a lattice spacing of
a = 0.0889(12). This table summarizes the main results at the three different pion masses.

3.1 Electric and magnetic Sachs form factors

The dependence ofGE and GM on the euclidean momentum transfer squared is shown in
Fig. 2. A dipole form

GE(Q2) =
1

(

1+ Q2

m2
E

)2 , GM(Q2) =
GM(0)

(

1+ Q2

m2
M

)2 (3.1)

describes our data very well and the solid lines in Fig. 2 are the corresponding least squares fits.
From the slope at zero momentum transfer, an electric and magnetic radius can be defined

〈r2
E,M〉 = − 6

GE,M(Q2)

d GE,M(Q2)

dQ2

∣

∣

∣

∣

Q2=0
=

12

m2
E,M

. (3.2)

These can easily be translated into the more common Dirac and Pauli radii

〈r2
1〉 =

12

m2
E

− 3GM(0)−3
2m2 , 〈r2

2〉 =
6

GM(0)−1

(

2GM(0)

m2
M

− 2

m2
E

)

+
3

2m2 . (3.3)
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Figure 2: Q2-dependence ofGE (left) andGM (right). The dashed curve is a dipole fit to experimental data.
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Figure 3: Comparison of results on〈r2
1〉, 〈r2

2〉 andµIV betweenNF = 2 twisted mass and Wilson fermions.

Using the value of the lattice spacing determined from an analysis of the nucleon mass within
the twisted mass QCD framework we convert our lattice quantities to physical units and give the
results in Table 1. The magnetic form factor at zero momentum transfer is directly related to the
magnetic moment,GM(0) eh̄

2mN
= µIV . In Table 1 we give the isovector magnetic moment converted

to nuclear magnetons using the physical nucleon mass. We show the dependence of〈r2
1〉, 〈r2

2〉 and
µIV on the pion mass in Fig. 3. For comparison we include the corresponding results of Ref. [7],
which were obtained with two degenerate dynamical Wilson fermions in a similar setup. As can
be seen, the results in the two formulations are in good agreement. With the isovector current,
the corresponding physical observable is the magnetic moment of the protonminus the one of the
neutron. This is the experimental point shown in the right panel of Fig. 3. As can be seen, the
experimental values in all cases are higher than lattice results. A chiral extrapolation of our data
to the physical point will be carried out once we obtain results at an additional lighter pion mass.
This additional input is needed in order to obtain reliable results at the physical point.

3.2 Axial form factors

The axial form factors are shown in Fig. 4 withGp showing the larger statistical errors. We get
a good signal for the axial chargegA = ZAGA(0), with the renormalization constantZA = 0.76(1)

that has been computed in [14]. We give our values in Table. 1.
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Figure 4: Q2-dependence ofGA (left) and Gp (right). The dashed green curve (left) is a dipole fit to
experimental data onGA yielding mA = 1.1 GeV. In the right figure it derives from the fit to experimental
results onGA together with the assumption of pion pole dominance.

4. Conclusions

The isovector electromagnetic and axial nucleon form factors are evaluated using two dynam-
ical degenerate twisted mass fermions for pion masses down to about 300 MeV. The results are in
agreement with previous lattice studies [7]. Like in Ref. [7], we find better agreement with experi-
ment in the case of the electric form factor than for the magnetic one. Although our results on the
axial charge are in good agreement with experiment, we find a weaker momentum dependence for
GA. At low Q2, Gp shows a steep increase as expected from pion pole dominance and approaches
the theoretical prediction as the pion mass decreases. In the future we planto analyze configura-
tions at a lighter pion mass and larger volume. This will enable us to reliably carry out a chiral
extrapolation of the magnetic moment, radii and axial charge to the physical point.
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