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tributions, electromagnetic form factors, and generalized form factors of the nucleon to a new

level of precision, this work investigates several key aspects of precision lattice calculations. We

calculate the number of configurations required for constant statistical errors as a function of pion

mass, describe the coherent sink method to help achieve these statistics, examine the statistical

correlations between separate measurements, study correlations in the behavior of form factors

at different momentum transfer, examine volume dependence, and compare mixed action results

with those using comparable dynamical domain wall configurations. We also show selected form

factor results and comment on the QCD evolution of our calculations of the flavor non-singlet

nucleon angular momentum.
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1. Introduction

Understanding the quark and gluon structure of the nucleon is a vital component of our en-
deavor to understand how QCD gives rise to the properties of the observed universe and is the focus
of frontier experiments in nuclear and particle physics. Lattice QCD provides a unique tool to study
nucleon structure from first principles, and as summarized in the plenary talk at this conference by
J. Zanotti [1] many successful techniques have been developed to calculate form factors and gen-
eralized form factors of the nucleon. With the development and availability ofPetascale computer
resources, we are now entering an era in which high precision calculations of nucleon structure are
becoming feasible, which necessitates a fresh examination of statistical and systematic uncertain-
ties. Here we describe the results of several developments in our collaboration’s efforts to enter a
new regime of precision in calculating hadron structure. The results in this talkwill focus on calcu-
lations with a hybrid action combining domain wall valence fermions with improved staggered sea
quarks, as described in Ref. [2], and that utilize the extensive set of configurations with dynamical
improved staggered quarks generated by the MILC collaboration [3]. Wewill also refer to recent
calculations using dynamical domain wall configurations [4, 5] described inthe talk by S. Syritsyn
[6].

We emphasize some technical aspects of the nucleon form factor calculationwhich are neces-
sary for good controls of both statistical errors and lattice artifacts. A morethorough description
of the calculation details and simulation parameters of our mixed action project can be found in
Refs. [2] and [7]. This proceedings is organized as follows: In Section 2 we present an analysis
which estimates the increase of the numerical cost as we go to the physical pion mass. In Section 3
we discuss an improved technique in the calculation of the backward propagators for the nucleon
three-point correlation functions. Studies of correlations in the lattice data are given in Section 4.
We discuss possible finite volume effects and discretization errors of our calculations in Section 5.
We show selected form factor results and comment on the QCD evolution of our calculations of the
flavor non-singlet nucleon angular momentum in Section 6, followed by conclusions in Section 7.

2. Numerical Cost of Precision Calculations

As we progress to ever lighter pion masses, it is important to quantitatively estimate the statis-
tics required to achieve a specified level of precision as a function of pionmass. From the per-
spective of fluctuations produced by a set of gauge configurations, the three-point function and
corresponding two-point function with the same source sink separation behave similarly, so the
two-point correlation functionsC2(t) = 〈J(t)J(0)〉, whereJ denotes the nucleon source, are a use-
ful measure of the statistical fluctuations. Since the variance inC2(t) is generated by a source
containing three quarks and three antiquarks, it receives contributionsfrom both three-pion and
two-nucleon states, and the corresponding signal to noise ratio is therefore given by

Signal
Noise

=
〈J(t)J(0)〉

1√
N

√

〈|J(t)J(0)|2〉− (〈J(t)J(0)〉)2
∼ Ae−MNt

1√
N

√
Be−3mπ t −Ce−2MNt

∼
√

NDe−(MN− 3
2mπ )t ,
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(a) (b)

Figure 1: The left panel shows the signal-to-noise ratio of the nucleon two-point correlation function on
Asqtad lattices atmπ ∼350 MeV, where beyondt = 12, the exponential decay is given by(MN − 3

2mπ). The
right panel shows the corresponding “effective mass” of thesignal-to-noise ratio in (a), where the horizontal
line is the measuredMN − 3

2mπ of the ensemble.

(a) (b)

Figure 2: The left panel shows the extrapolation of the signal-to-noise ratio to the physical pion mass. The
right panel shows the exponential increase of the number of configurations needed to maintain 3% accuracy
at separationt= 10 as one approaches the chiral limit.

which decreases exponentially with(MN− 3
2mπ)t. Figure 1(a) shows a typical result for the signal

to noise ratio as a function of the time separation, which displays the expected exponential decay
in MN − 3

2mπ at larget. This is clear from Figure 1(b), where we show the “effective mass” of
the signal to noise, compared with the measuredMN − 3

2mπ of the ensemble, which is denoted
by the horizontal line. Using comparable calculations for the three lowest pion masses,∼ 300,
350 and 500 MeV, we can extrapolate the signal-to-noise ratio to the physical point, as shown
in Figure 2(a). Correspondingly, the number of configurations required to attain 3% accuracy is
shown in Figure 2(b).

3. Coherent Sink Techniques to Increase Statistics

Given the need for 5,000 to 10,000 independent measurements to overcomethe exponentially

3
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L3×T (aml )/(ams)
asqtad mDWF

π [MeV] # confs # meas

203×64 0.007/0.05 293 464 3712
203×64 0.01/0.05 356 628 5024
283×64 0.01/0.05 353 274 2192

Table 1: Numbers of measurements for the three lowest pion masses.

increasing noise produced by three-pion states as the pion mass is decreased, we generate 8 inde-
pendent measurements on a lattice of time extentT = 64 as follows. On the first configuration,
we place sources at space-time positions(~0,0), (~L/2,16), (~0,32), and(~L/2,48), and calculate 12
sets of propagators which we will refer to as forward propagators in theusual way. Using the for-
ward propagators from theith source(~xi ,Ti), we create a momentum projected nucleon sink at time
T0 away at(~xi ,Ti +T0). A conventional calculation would combine forward propagators from the
source at(~xi ,Ti) and backward propagators from sink at(~xi ,Ti +T0) to obtain the relevant two-point
function, requiring 4 sets of inversions to treat all 4 sources. In contrast, we calculate a single set
of coherent backward propagators in the simultaneous presence of all4 sources. Combining these
coherent backward propagators with the forward propagators fromtheith source yields the physical
result for theith source with theith sink plus terms that vanish by gauge invariance when averaged
over an ensemble of configurations. In addition, on the same lattice, using theforward propagators
from theith source(~xi ,Ti), we also create a momentum projected antinucleon sink a timeT0 away
at (~xi ,Ti −T0), and perform an analogous calculation for coherent antinucleon propagators. It is
straightforward to relate the matrix elements of our twist-two quark operators inan antinucleon to
the desired results in a nucleon. The net result is that, given a set of forward propagators, we obtain
eight measurements at the cost of two rather than eight sets of inversions.

To minimize correlations, the sources on the next configuration in the ensembleto be analyzed
are located at space-time positions(~L/2,0), (~0,16), (~L/2,32), and(~0,48), and subsequent config-
urations are each shifted by a displacementL/2. The independence of these lattice measurements
is addressed in the next section. We used these coherent sink techniques on the three lowest pion
masses, the parameters of which are given in Table 3.

4. Statistical Analysis

4.1 Binning and Autocorrelations

A crucial question concerning our calculations with 8 measurements per latticeis the statis-
tical independence of measurements within a single lattice and between subsequent lattices. One
standard test of correlations is binning potentially correlated measurements and observing the de-
pendence of the jackknife errors on the bin size. Figure 3 shows the results of measurements with
five different binnings for the two point functionC2 measured midway between source and sink
(t = 5) and at the source-sink separation (t = 9), and three current operators,Jx, Jy, andJt , mea-
sured midway between the source and sink (t = 5) measuring the electric form factor,GE, the
magnetic form factor,GM, andGE, respectively. Bin size 1 treats each measurement separately,
size 2 combines nucleon and antinucleon from the same source, size 4 combines two nucleon and
two antinucleons, size 8 include all 8 nucleons and antinucleons on a single lattice, and size 16

4
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Figure 3: Jackknife errors with bin sizes ranging from 1 to 16 measurements as described in the text.
Independence of the error with bin size indicates negligible correlations between measurements.
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(b) τint for three-point functions.

Figure 4: Representative integrated autocorrelation time for two-point and three-point correlation functions.
For completely decorrelated measurements, the integratedautocorrelation time is normalized to 1/2.

combines two sequential lattices. As is clear from Figure 3 the negligible change in the errors with
bin size indicates negligible correlations.

One can also check the correlations between the measurements by calculatingthe integrated
autocorrelation time [8], defined as

τint = 1/2+
Ncut

∑
n=1

ρ(n)/ρ(0), (4.1)

whereρ(n) is the autocorrelation function betweennth and 0th measurements. The separation
between two independent measurements would be 2τint.

We calculatedτint in our measurements by treating each source as an individual measurement.
Figure 4(a) shows the result for a zero-momentum projected two-point correlation function at a time
separationt = 5. The horizontal axis is the cut in the summation for the integrated autocorrelation
time in terms of the number of measurements, which is 8 per lattice. One can see thatτint reaches a
plateau at around 0.7, meaning the measurements are already de-correlated for every other sources.

5
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Figure 5: Example of overdetermined analysis for theF2 form factor as a function ofQ2 including large
boosts of source and sink. The left panel includes the sourcemomentum components (-2,0,0) or larger, and
sink momentum (-1,0,0). The right panel has had these data points removed.

A similar result for the three-point correlation function is shown in Figure 4(b), in which τint is
very close to 1/2, indicating that the measurements from adjacent sources are independent. These
results are consistent with the binning study as discussed previously.

4.2 Correlations Among Different Momentum Transfer

To maximize the hadron structure information determined from a given set of lattice config-
urations, we use the overdetermined analysis introduced in Ref. [9] to simultaneously extract a
specified set of generalized form factors from as many different combinations of twist-two opera-
tors and source-sink momenta as possible. One potential liability of this approach is the admixture
of noisy measurements arising from source and sink momenta that are sufficiently high that the
data are subject to large statistical errors. If such data are obviously consistent with the accurate
data, they do not affect chi-squared fits, and there is no significant bias in removing them from the
analysis after the fact. However, frequently the offending data gives the superficial appearance of
being statistically inconsistent with the accurate data, if one ignores correlations. A typical exam-
ple is the measurement ofFu

2 on a 283 × 64 lattice atmπ ∼ 350 MeV, as shown in Figure 5(a),
where it appears that 6 out of 21 data points lie significantly above the reference curve.

The question is whether 6 independent measurements lie severalσ off the fit to the accurate
data, which would be a highly statistically significant discrepancy, or if the data are highly corre-
lated so that only one or two degrees of freedom have fluctuated randomly. Hence, we calculated
the correlation matrix

r i j = Ci j /
√

CiiCj j , (4.2)

where the covariance matrix is defined as

Ci j = (N−1)
N−1

∑
n=0

(F(n)
i −Fi)(F

(n)
j −Fj). (4.3)

F(n)
i is thenth jackknife sample of theith momentum (hence the factorN−1), andFi is the ensemble

6
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average of theith momentum transfer. The resulting correlation matrix for the six outliers is

r =



















1 0.822855 0.654945 0.639426 0.552542 0.520037
0.822855 1 0.874902 0.649138 0.712735 0.742609
0.654945 0.874902 1 0.562507 0.697565 0.701146
0.639426 0.649138 0.562507 1 0.818721 0.408017
0.552542 0.712735 0.697565 0.818721 1 0.584403
0.520037 0.742609 0.701146 0.408017 0.584403 1



















, (4.4)

which shows very strong correlations between the data.
To quantify the correlation, we calculated theχ2 of the outliers relative to a reference curve,

which involves two steps. First, we defined the reference curve by performing a correlatedχ2

dipole fit to all the data points (except forQ2 = 0), including the six “outliers”. Second, theχ2 of
offending data points was calculated by

χ2 = N
N−1

∑
n=0

(F(n)
i − F̂i)C

−1
i j (F(n)

j − F̂j), (4.5)

whereF̂i is the expected form factor result atith momentum from the fit, andN is the number of
outliers. Ifχ2 is close to 1, then the data points are consistent with the fit curve, and hence, the rest
of the data points. In this example, theχ2/N is found to be 1.9±1.1, indicating that the deviation
is not statistically significant. In contrast, a naive visual analysis of the curve ignoring correlations
would lead to the erroneous conclusion that uncorrelated points are awayfrom the curve by twoσ ,
in which case theχ2/N would be 4. This justifies the systematic exclusion of large source and sink
momenta that give rise to noisy outliers, the result of which is shown in Figure 5(b).

5. Control of Lattice Artifacts

5.1 Finite Volume Effects

As we go to lighter pion masses while holding the lattice volume fixed, the effects offinite
volume become more and more important. While it is widely accepted thatmπL ≥ 4 is necessary
to avoid sizable finite volume effects, there are still controversies on how bigthe volume should be
to have a good control over finite volume effects for nucleon physics. Here we do not attempt to
address this question from a theoretic point of view. Rather, we presentnumerical evidence from
our mixed-action calculations with two different volumes at a pion mass of roughly 350 MeV, to
estimate how large the finite volume effects might be with this particular action and chosen lattice
parameters.

In Figure 6(a), we compare the results for the isovector Dirac form factor from the 203×64
and 283 × 64 ensembles, corresponding to physical volumes of roughly(2.5fm)3 and (3.5fm)3,
respectively. The solid curves are dipole fits to the lattice data withQ2 ≤ 0.4 GeV2. The fit pa-
rameters agree within errors, showing that there are no statistically significant differences between
these two volumes. Since the slope of the form factor atQ2 = 0 gives the Dirac radius of the nu-
cleon, one can infer that the results for the Dirac radius obtained from these two volumes do not
show significant finite volume effects. We present the comparison of the Dirac radii in Figure 6(b),

7
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Figure 6: (a) Isovector Dirac form factor from two different volumes.(b) Isovector Dirac radius.

203×64 (L ≈ 2.5 fm) 283×64 (L ≈ 3.5 fm) ∆V

〈rv
1

2〉 [fm2] 0.274(10) 0.290(10) -0.016(14)

gA 1.161(14) 1.153(14) 0.008(20)

Table 2: Comparison of results for〈rv
1

2〉 andgA from two different lattice volumes.∆V is the difference
between theL = 2.5 fm result and theL = 3.5 fm result. The error on∆V is calculated by adding errors from
the two volumes in quadrature.

where we also include the result at the pion mass of 293 MeV. And the star is the phenomenological
value as obtained in [10].

To estimate the finite volume effects quantitatively, we calculate the differences, ∆V , from the
small-volume (2.5 fm) and large-volume (3.5 fm) calculations for the isovector Dirac radius,〈rv

1
2〉,

and nucleon axial charge,gA. Since these two ensembles are statistically independent, we simply
calculate the errors on∆V by adding errors in quadrature. The results are given in Table 2. We
can see that the differences are statistically consistent with zero, suggesting that the finite volume
effects are negligible compared to statistical errors.

5.2 Comparison of Domain-Wall and Mixed Actions

Since domain wall fermion formulation is automaticallyO(a) improved, we expect the dis-
cretization error in the full domain wall calculation to be small. In our full domain wall calculations
of the nucleon form factors, this is found to be the case, as described in Ref. [6]. To assess the dis-
cretization error of our mixed-action calculations, here we compare some ofthe nucleon structure
results from both actions as available at the time of the lattice conference. Forlatest domain wall
results with improved statistics, see Ref. [6].

In Figure 7(a) we show the isovector Dirac form factor from the fine (a−1 ≈ 2.346 GeV)
domain wall and the coarse (a−1 ≈ 1.588 GeV) mixed-action calculations, both with a pion mass
of roughly 350 MeV. Over the whole range ofQ2 available to us, both actions give statistically
consistent results. We note that the lattice scale of the fine domain wall ensembles used here is
a crude estimate obtained in Ref. [6]. Using the Sommer parameter, the lattice scale for the fine
domain wall enembles was found to bea−1 = 2.42(4) GeV [11]. If the latter were used, theQ2

8
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(c) Nucleon axial charge.

Figure 7: Comparison of some physical results from the mixed-action and domain-wall calculations. In (b)
and (c), thea−1 = 2.346 GeV domain wall results are slightly shifted to the rightfor clarity.

values would shift to the right, and the pion mass would become larger. The combined effect would
shift the domain wall results upward to be even more consistent with the mixed-action data, which
is an indication that the discretization error for the mixed-action calculation is small.

Figure 7(b) shows the isovector Dirac radius from the coarse mixed-action calculation and
domain wall calculations at two different lattice spacings. The curve is a oneparameter (Br

10) fit
to the three mixed action data points using theO(ε3) small-scale-expansion (SSE) chiral formula
as given in [12], with the low energy constants fixed to phenomenological values. One can see
that all the data points fall on the same curve, showing that the mixed action results qualitatively
agree with the domain wall data. The same holds true for the nucleon axial charge, as shown in
Figure 7(c), where all the data show little pion mass dependence, and all lie on one horizontal line
which is a few percent below the experimental result.

Since in both the mixed-action and the fine domain wall calculations, the lightest twopion
masses are comparable (∼ 300 and 350 MeV), we are able to do a more quantatitive comparison.
Table 3 gives the differences between the mixed-action (MA) and domain-wall (DW) results,∆a,
for 〈rv

1
2〉 andgA, at these two pion masses. Once again, the differences are found to be consistent

with zero within errors.

9



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
1
4
1

Nucleon Generalized Form Factors M.F. Lin and J.W. Negele

〈rv
1

2〉 [fm2] gA

mπ ≈ 300 MeV mπ ≈ 350 MeV mπ ≈ 300 MeV mπ ≈ 350 MeV

MA 0.311(22) 0.274(10) 1.176(32) 1.161(14)

DW 0.321(14) 0.270(17) 1.150(30) 1.162(30)

∆a - 0.010(26) 0.004(20) 0.026(44) -0.001(33)

Table 3: Estimates of differences between mixed-action and domain wall calculations for〈rv
1

2〉 andgA. ∆a

is the difference between the mixed-action and domain-wallaction results. The error on∆a is calculated by
adding the errors from the two actions in quadrature.
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Figure 8: Isovector electric form factor from the mixed-action lattice calculations along with the Kelly
parametrization [14] of the experimental data.

6. Select Physical Results

6.1 Electromagnetic Form Factors

Complementary to the results for the nucleon electromagnectic form factors mentioned in
previous discussions, in Figure 8 we show the isovector electric form factors from several masses,
including results from previous calculations [13] at pion masses of 495 MeV, 597 MeV and 688
MeV. To avoid duplication, we do not show results with the pion mass of about350 MeV, which
was already discussed in Section 5.1. The curves through the lattice data are one-parameter dipole
fits. The bottom solid curve is Kelly’s parametrization of the experimental results [14]. While
in previous sections, we have seen that the chirally extrapolated lattice result for the Dirac radius
is compatible with the experiment, here we see that over the range of momentum transfer up to
Q2 ≤ 1.2 GeV2, the lattice results show a monotonic decrease towards the experimental curve as
the pion mass gets smaller. To have a direct comparison with the experiment forthe dependence
on the momentum transfer, we need to perform a chiral extrapolation withmπ andQ2 dependences
taken into account simultaneously [12], which is still a work in progress.

10
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Figure 9: The left panel shows the quark spin and orbital angular momentum contributions to the nucleon
spin from ref.[2]. The right panel show evolution of the quark angular momentum with respect to the scale
Q2.

6.2 Quark Angular Momentum Contribution to the Nucleon Spin

The origin of the nucleon spin is a forefront question in contemporary experiment and theory.
Figure 9 shows our recent lattice calculation [2] of the quark spin and orbital contributions to the
nucleon spin, which makes a strong case that the sign of the spin contribution of a given flavor,∆Σ
and the sign of the orbital contributionL for the same flavor are opposite at the scale 4 GeV2 at
which the lattice calculation was renormalized.

Since this behavior is strikingly different from simple familiar models, it is interesting to
consider its origin and significance. In a mean field model, in which a quark satisfies the Dirac
equation in a central potential, for a nucleon with spin projection in the positivez direction, the
upper component is anS-state with spin up and the lower component is aP-state with orbital
angular momentum projection +1 and spin down. Thus, generically, the spin and orbital angular
momentum are aligned in mean field theory. Clearly, the reason we solve QCD from first principles
is to go beyond models, and there is no reason that the nucleon should necessarily be consistent
with mean field theory. However, stimulated by a recent paper by Thomas [15], it is interesting to
note that the sign ofLu−d is strongly scale dependent.

We restrict our attention to the flavor non-singlet sector, for which there are no disconnected
quark diagrams, and no mixing with gluons, and consider the evolution of orbital and spin contri-
butions shown in the right panel of Figure 9. The spin contribution∆Σu−d is large and is conserved
under QCD evolution as shown by the dashed line. However, at one-looplevel the total angular
momentum has the simple evolution given by its anomalous dimension

Lu−d(t)+
∆Σu−d

2
=

(

t
t0

) 32
81

(

Lu−d(t0)+
∆Σu−d

2

)

,

wheret = ln( Q2

Λ2
QCD

). Because the largest contribution to the total angular momentum is the spin,

which cannot evolve, the full change under evolution must arise from theorbital contributionLu−d,
which must therefore vary significantly with the scale. As shown by the solid line in the right
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panel, the change required inLu−d is so substantial that it changes sign when the scale becomes
low enough. Although surely one loop evolution is not quantitatively reliable and evolution below
1 GeV is suspect, it is clear that even the relative sign between spin and orbital contributions is
scale dependent, so there is no reason our lattice calculation at 4 GeV2 need to be consistent with
simple quark models or mean field arguments.

7. Conclusions

We have investigated several aspects of the nucleon form factor calculations in an attempt
to address some issues which are essential for achieving high precision calculation in the chiral
regime. In particular, as the numerical cost increases substantially as ourcalculations move to
lighter pion masses, we employed the coherent sink technique in the calculationof the backward
quark propagator to reduce the computational cost. To obtain reliable statistical errors, we also
studied the autocorrelations in the measurements and found no strong correlations between mea-
surements from adjacent sources. Our results at a pion mass of 350 MeVfrom two lattice volumes,
(2.5fm)3 and (3.5fm)3, show no significant differences, suggesting negligible finite volume effects.
We also compared the mixed-action results with the full domain wall calculations ata finer lattice
spacing, and found that the discretization errors from using the mixed action is quite small.
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