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We study theΛ-nucleon (ΛN) force by using lattice QCD. The Bethe-Salpeter amplitude is cal-

culated for the lowest scattering state of theΛN so as to obtain theΛN potential. The numerical

calculation is twofold: (i) Full lattice QCD by using2+1 flavor PACS-CS gauge configurations

with, β = 1.9, corresponding to the lattice spacing ofa = 0.0907(13) fm, on a323×64 lattice.

A set of parameter(κud,κs) = (0.13770,0.13640) is used, which corresponds tomπ ≈ 300MeV

andmK ≈ 594MeV. The spatial lattice volume corresponds to (2.86 fm)3. (ii) Quenched lattice

QCD with β = 5.7, the lattice spacing ofa = 0.1416(9) fm, on the323× 48 lattice. Two sets

of hopping parameters(κud,κs) = (0.1665,0.1643),(0.1670,0.1643) are used. The spatial lattice

volume is (4.5 fm)3. For the full QCD, we find that theΛp has a relatively strong (weak) repulsive

core in the1S0 (3S1) channel at short distance, while the potential has slight attractive region at

medium distance. The lowest scattering energy in the finite lattice volume is calculated; Slightly

negative values obtained in both spin channels. For the quenched QCD, we find that the results

are qualitatively in agreement with those in the full QCD calculation.
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1. Introduction

Study of the hyperon-nucleon (YN) and hyperon-hyperon (YY) interactions is one of the im-
portant tasks in the contemporary nuclear physics. These interactions are the bases to explore the
strange nuclear systems, in which hyperons (or strange quarks) are embedded in normal nuclear
systems as “impurities” [1]. Various issues, such as spin- and flavor-dependence, effect of the fla-
vor SU(3) breaking, effect of hyperonic mixing (e.g.,ΛN−ΣN andΛΛ−ΞN), are the topics to
be solved experimentally and/or theoretically. For example, recent systematic study (e.g., Ref. [2])
for light (s-shell) Λ hypernuclei (3ΛH, 4

ΛH, 4
ΛHe and5

ΛHe) suggests that theΛN interaction in the
1S0 channel is more attractive than that in the3S1 channel. However, the presentYN and theYY
interactions have large uncertainties, because the scattering experiments are either difficult or im-
possible due to the short life-time of hyperons. Theoretically, it should be desirable to understand
theYN andYY interaction (or, in more general, baryon-baryon interaction) based on the dynamics
of quarks and gluons as fundamental degrees of freedom. If one can perform such an appropri-
ate deduction along the theory of quantum chromodynamics (QCD), they should have a reliable
prediction regarding theYN andYY potentials.

Recently, the lattice QCD studies have been performed for not only theNN potential but also
theΞN potential in quenched QCD [3, 4]. See also Refs. [5, 6, 7] for the recent developments. The
lattice QCD calculations focusing on the scattering parameters forΛN system based on Lüscher’s
formula have been reported in Refs. [8, 9]. The purpose of this report is to calculate theΛN
potentials by using the full and quenched QCD gauge configurations. The main results of this work
are obtained by using the2+1 flavor PACS-CS gauge configurations with the spatial lattice volume
(2.86fm)3 [10]. We also report the results calculated by using quenched lattice QCD with larger
spatial lattice volume(4.5fm)3.

2. Formulation

The basic formulation is already given in Refs. [3, 4, 5]. (See also Refs. [11, 12].) In this
report, we briefly explain the procedure to obtain the potential from lattice QCD together with
some technical point newly introduced in the present work. We start from an effective Schrödinger
equation for the equal-time Bethe-Salpeter (BS) wave function:

− 1
2µ

∇2φ(~r)+
∫

U(~r,~r ′)φ(~r ′)d3r ′ = Eφ(~r). (2.1)

Here µ = mΛmN/(mΛ + mN) andE ≡ k2/(2µ) are the reduced mass of theΛN system and the
non-relativistic energy in the center-of-mass frame, respectively. We consider the low-energy scat-
tering state so that the nonlocal potential can be rewritten by derivative expansion [13], U(~r,~r ′) =
VΛN(~r,~∇)δ (~r−~r ′). The general expression of the potentialVΛN is known to be [14]

VΛN = V0(r)+Vσ (r)(~σΛ ·~σN)+VT(r)S12+VLS(r)(~L ·~S+)+VALS(r)(~L ·~S−)+O(∇2). (2.2)

HereS12 = 3(~σΛ ·~n)(~σN ·~n)−~σΛ ·~σN is the tensor operator with~n =~r/|~r|, ~S± = (~σN±~σΛ)/2 are
symmetric (+) and antisymmetric (−) spin operators,~L =−i~r×~∇ is the orbital angular momentum
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operator. We note that the antisymmetric spin-orbit forces (VALS andVALSτ ) do not arise in theNN
case because of the identical nature of the nucleon within the isospin symmetry.

First we calculate the four-point correlator by using the lattice QCD

Gαβ ;α ′β ′(~r, t− t0) = ∑
~X

〈
0
∣∣∣pα(~X +~r, t)Λβ (~X, t)Λ′β ′(t0)p′α ′(t0)

∣∣∣0
〉

, (2.3)

where the summation over~X is to select the state with zero total momentum. Thepα(x) andΛβ (y)
denote the interpolating fields for proton andΛ

pα(x) = εabc

(
ua(x)Cγ5db(x)

)
ucα(x), (2.4)

Λβ (y) = εabc

{
(da(y)Cγ5sb(y))ucβ (y)+(sa(y)Cγ5ub(y))dcβ (y)−2(ua(y)Cγ5db(y))scβ (y)

}
,(2.5)

andΛ′β ′(t0) andp′α ′(t0) denote the wall source

p′α ′(t) = ∑
~x1,~x2,~x3

εabc

(
ua(~x1, t)Cγ5db(~x2, t)

)
ucα ′(~x3, t), (2.6)

Λ′β ′(t) = ∑
~y1,~y2,~y3

εabc

{
(da(~y1, t)Cγ5sb(~y2, t))ucβ ′(~y3, t)+(sa(~y1, t)Cγ5ub(~y2, t))dcβ ′(~y3, t)

−2(ua(~y1, t)Cγ5db(~y2, t))scβ ′(~y3, t)
}

. (2.7)

The Fast Fourier Transformation (FFT) algorithm is imposed into the actualC++ code to reduce
the computational time, which makes the calculation at all of the spatial points (323) possible. (In
the previous work for theΞ0p system, we calculate only on thex-, y- andz-axes and the nearest
neighbors in the long distance region. [4])

In the Monte Carlo calculations, noise reductions are made for the four-point correlator (2.3)
obtained from lattice QCD in order to restore (i) the rotational (cubic group) symmetry, (ii) the
spatial reflection symmetry, (iii) the charge conjugation and time-reversal symmetry. Then, we
perform the spin projection for the source to obtain the wave function with particular spin compo-
nent (J = 0,1).

Fpα Λβ
(~r, t− t0;J,M) = ∑

α ′β ′
P(JM)

α ′β ′ Gαβ ;α ′β ′(~r, t− t0), (2.8)

See Ref. [7] for detail. Finally, the desirable wave functionφαβ is obtained from the projected
four-point correlator at larget− t0:

Fpα Λβ
(~r, t− t0;J,M) = ∑

n
An∑

~X

〈
0
∣∣∣pα(~X +~r, t)Λβ (~X, t)

∣∣∣En

〉
e−En(t−t0) (2.9)

≈ A0φαβ (~r;J,M)e−E0(t−t0) (t− t0 → large). (2.10)

HereEn (|En〉) is the eigen-energy (eigen-state) of the six-quark system with the particular quantum
number(Jπ ,M), andAn = ∑α ′β ′ P

(JM)
α ′β ′

〈En|Λ′β ′p′α ′ |0〉. For simplicity, we consider the effective

central potential,VC(r;J = 0) = V0(r)− 3Vσ (r), for 1S0 and,VC(r;J = 1) = V0(r) +Vσ (r) + · · ·,
for 3S1, where· · · is the higher order contribution from noncentral force such asVT(r), which is
expected to be small in the present calculation. The effective central potentialVC(r;J) is obtained
by focusing only on theS-wave component of the wave function in each spin channelJ:

VC(r;J) = EJ +
1

2µ
~∇2φ(r;J)

φ(r;J)
. (2.11)
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3. Numerical calculation

3.1 Nf = 2+1 QCD

Main results in this report are obtained by using the gauge configuration generated by PACS-
CS collaboration with2+1 flavor full QCD [10]; The Iwasaki gauge action and the nonperturba-
tively O(a)-improved Wilson quark action are employed. Calculations are carried out atβ = 1.9
on a323×64lattice, corresponding toa= 0.0907(13) fm wherea is the lattice spacing at the phys-
ical point [10]. A set of hopping parameters(κud,κs) = (0.13770,0.13640) is used in this work.
Several light hadron masses obtained by PACS-CS are shown in Table1. The BS wave function
is obtained by employing the wall source at the time-slicet0 = 0, and the Dirichlet boundary con-
dition is imposed along the temporal direction on the time-slicet = 32 with the Coulomb gauge
fixing. The present result of the BS wave function is calculated withNconf = 422, whereNconf is
the number of gauge configurations.

3.2 Quenched QCD with larger spatial volume

In this case, we use the plaquette gauge action and the Wilson fermion action with the gauge
couplingβ = 5.7 on the323×48 lattice. The periodic boundary condition is imposed for quarks
in the spatial direction. The wall source is placed att0 = 0 with the Coulomb gauge fixing and the
Dirichlet boundary condition is imposed att = 24 in the temporal direction. These setup are es-
sentially the same as our previous calculations for theNN and ΞN potentials [3, 4] except for
the treatment of the temporal part. The lattice spacing at the physical point is determined as
a = 0.1416(9) fm (1/a = 1.393(9) GeV) from mρ = 770 MeV. The hopping parameter for the
strange quark mass is given byκs = 0.16432(6) from mK = 494MeV. The spatial lattice volume
is (4.5fm)3, which is enough to accommodate two baryons. The present result of the BS wave
function in quenched QCD is obtained withNconf = 550.

4. Results and Discussion

4.1 Nf = 2+1 QCD

The left panel of Figure1 shows the wave function obtained at the time slicet− t0 = 7. The
red circle (blue triangle) corresponds to the1S0 (3S1) channel. In order to find the ground state

mπ mρ mK mK∗ mN mΛ mΣ mΞ
2+1 flavor QCD by PACS-CS with(κud,κs) = (0.13770,0.13640)

Ref.[10] 296(3) 848(20) 594(2) 985(8) 1093(19) 1254(14) 1315(15) 1448(10)

quenched QCD withβ = 5.7,κs = 0.1643,
κud = 0.1665 514(1) 859(3) 607(1) 904(3) 1287(8) 1345(6) 1368(6) 1412(5)
κud = 0.1670 465(1) 840(6) 588(1) 894(3) 1234(11) 1308(7) 1341(8) 1396(5)

Exp. 135 770 494 892 940 1116 1190 1320

Table 1: Hadron masses in the unit of MeV. The results for2+ 1 flavor QCD by PACS-CS is taken from
Ref. [10]. Nconf = 560in quenched QCD.
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Figure 1: Left: The radial wave function ofΛp, in 1S0 (red circle) and3S1 (blue triangle) channels, obtained
by using the PACSCS gauge configurations att− t0 = 7. Nconf = 422gauge configurations are used. Right:
The effective central potential forΛp, in the1S0 (red circle) and3S1 (blue triangle), obtained from the wave
function at time slicet− t0 = 7. The left (right) inset shows its enlargement in the1S0 (3S1) channel.

saturation of theΛp system, we define the “effective mass” of the wave function:

meff(t− t0,~r)≡ log

(
FpΛ(~r, t− t0)

FpΛ(~r,(t +1)− t0)

)
. (4.1)

Figure2 shows the effective mass at several spatial points. The plateaux starting appears at the time
slice t− t0 = 6 in the 3S1 channel (in the right panel in Fig.2) while the plateaux starting seems
to appear at the time slice aroundt− t0 = 7 in the 1S0 channel (in the left panel). We need more
statistics. In this report, we show the results obtained at the time slicet− t0 = 7.

As is shown in Ref. [12], the non-relativistic energyE = k2/(2µ) is determined by fitting the
wave function in the asymptotic region in terms of the Green’s function

G(~r,k2) =
1
L3 ∑

~p∈Γ

1
p2−k2ei~p·~r , Γ =

{
~p; ~p =~n

2π
L

,~n∈ Z3
}

, (4.2)

which is the solution of(4+ k2)G(~r,k2) = −δL(~r) with δL(~r) being the periodic delta function
[11, 12]. We attempted to make a fit in the asymptotic region (15≤ |~r| ≤ 16) at the time slice
t− t0 = 7. The fitting region is chosen so that the potential becomes zero within the errorbars. The
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Figure 2: The effective mass of the wave function forΛp at several spatial points (x,y,z), in the1S0 (left)
and the3S1 (right) channels, obtained by using the PACS-CS gauge configurations.Nconf = 422is used.
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energy obtained in the1S0 (3S1) channel isE =−1.9(1.3) MeV (E =−1.3(1.2) MeV). The present
results for the energies suggest that the spin dependence of the interaction in the low-energy region
seems to be weak, although we need more statistics (and perhaps larger spatial volume) to make
definite conclusion. The right panel of Figure1 shows the effective central potential ofΛp system
obtained at the time slicet− t0 = 7. The strong repulsive core is obtained in the1S0 channel, while
the repulsive core in the3S1 channel is relatively weak. The left (right) inset shows the enlargement
in the1S0 (3S1) channel; A slight attractive well can be seen in the both spin channels.

4.2 Quenched QCD

We calculate the wave functions for two sets of the hopping parameters(κud,κs)= (0.1665,0.1643)
and(0.1670,0.1643). Table1 also lists the hadron masses obtained from these quenched QCD cal-
culations. The Figure3 shows the wave function obtained with(κud,κs) = (0.1670,0.1643) at
the time slicet − t0 = 7, by usingNconf = 550 gauge configurations. For both cases of calcula-
tions with(κud,κs) = (0.1670,0.1643) and(0.1665,0.1643) in the1S0 and in the3S1 channels, the
ground state saturations are achieved at the time slicet− t0 = 7. The energies obtained by fitting
the wave function in the asymptotic region (10≤ |~r| ≤ 16) to the Green’s function (4.2) in the1S0

(3S1) channel areE = −0.37(12)MeV (E = −0.47(11)MeV) for (κud,κs)=(0.1670,0.1643), and
E = −0.31(9)MeV (E = −0.38(7)MeV) for (κud,κs)=(0.1665,0.1643), respectively. The lowest
scattering energies in both1S0 and3S1 channels become lower as theu,d quark mass decreases.
We hardly find the clear conclusion whether the interaction in the1S0 channel is more attractive
than that in the3S1 channel. Figure4 shows the effective central potentials forΛp in the1S0 (3S1)
channel in the left (right) panel, obtained from the wave function. For both (1S0 and 3S1) spin
channels, the height of the repulsive core increases as theu,d quark mass decreases.

In summary, we calculate theΛN potential from lattice QCD. The full lattice QCD calculation
for theΛN system with larger volume and smaller lattice spacing at physical quark mass is highly
desirable to clarify the spin dependence of the interaction.
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