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QCD equation of state at non-zero chemical potential Steven Gottlieb

1. Introduction

Experiments at RHIC start with a baryon rich environment; hence they naturally have a non-
zero chemical potential. The finite temperature field theory formalism easily admitsa chemical
potential; however, it leaves us with a complex action, and we can no longer use importance sam-
pling. This results in the well known sign problem. If the chemical potential is small, we can
employ the Taylor expansion method [1]. This method requires simulations only at zero chemical
potential. Here we employ this method to study QCD with three dynamical quarks using the asqtad
action [2] that we have already extensively studied at non-zero temperature, but without a chemical
potential. Previously, we have performed a study with nonzero chemical potential only forNt = 4
[3].

2. Methodology

We briefly review the formalism and methods that are detailed in Refs. [1] and[3]. Physical
quantities of interest are Taylor expanded in the chemical potentials (in physical units) µ̄l and µ̄h

for light and strange quarks, respectively. We drop the bar when referring to the chemical potential
in lattice units. For example:

p
T4 =

lnZ
VT3 =

∞

∑
n,m=0

cnm(T)

(

µ̄l

T

)n(

µ̄h

T

)m

. (2.1)

Only terms withn+meven appear due toCP symmetry.
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For the interaction measure,

I
T4 = −

N3
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s

d lnZ
d lna

=
∞
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(
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T

)n(
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T

)m

. (2.3)

Temperature dependendent coefficientscnm(T) andbnm(T) are combinations of observables that
can be calculated on non-zeroT ensembles, but with zero chemical potential. We Taylor expand up
to sixth order. To compute all the required terms, 40 fermionic observables have to be determined
using stochastic estimators, as well as several gluonic observables [3].Ensembles are generated on
a line of constant physics withml = 0.1ms andms approximately the physical strange quark mass.
Our previous work used lattices withNt = 4. We now useNt = 6 and compare with the coarser
lattices. Before we present our results, it is interesting to compare the freetheory for differentNt

to see how the continuum limit is approached. (See Fig. 1 [3].)
Turning to the interacting theory we show the unmixed coefficients for the pressure in Fig. 2.

There is considerable structure at lowT and then an approach to the Stefan-Boltzmann (SB) limit
above the cross-over temperature. Also, the higher order coefficientsare small, but their errors
grow rapidly. Note that the errors are better controlled forNt = 6 (red) than they were forNt = 4
(black).

In Fig. 3, we show the mixed coefficients for the pressure. Similar figures are available for the
coefficients that are relevant for the interaction measure. Due to lack of space, we will not show
them here.
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Figure 1: Several expansion coefficients as a function ofNt for the free theory [3]. On the left, for non-
vanishing coefficients, we show the the ratio to the Stefan-Boltzmann limit. On the right, forc60, we show
the value itself.

Figure 2: Unmixed Taylor coefficientscn0 andc0n as a function of temperture. New results forNt = 6 are
shown in red; black is used forNt = 4.
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Figure 3: Mixed Taylor coefficientscmn as a function of temperture. New results forNt = 6 are shown in
red, black is used forNt = 4.

3. Results

With the coefficients in hand, we can calculate interesting quantities, such as pressure, inter-
action measure, energy density, quark number density, and quark number susceptibility. Due to
non-zerocn1(T) terms a non-zero strange quark density is induced even withµh = 0. To study the
ns = 0 plasma, we must, therefore, tuneµh as a function ofµl andT.

In Figs. 4 and 5, we show how the pressure and interaction measure change as a function ofT
for selected values ofµ/T. In each figure, we display the zero chemical potential case on the left.
We compare results forNt = 6 with our prior results forNt = 4. We find that the change in pressure
is somewhat smaller compared with our previous results. For the interaction measure, the errors
are fairly large, but there also seems to be a reduction there. Figure 6 shows the energy density and
change in energy density due to chemical potential. In this case, the differences betweenNt = 4 and
6 are small. In Fig. 7, we show the light quark number density and the quark number susceptibility.
We note that both the number density and susceptibility are somewhat smaller withNt = 6 than
they were forNt = 4.

One particularly interesting quantity is the isentropic equation of state (EOS). In a heavy-ion
collision, after thermalization, the system expands and cools with constant entropy. Thus, we would
like to find the EOS with fixed ratio of entropy to baryon number. The appropriate ratio ofs/nB

for AGS, SPS and RHIC are 30, 45 and 300, respectively. To carry out this calculation we must
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Figure 4: The pressure with zero chemical potential (left) and the change in pressure due to chemical
potential (right).

Figure 5: The interaction measure with zero chemical potential (left) and the change in interaction measure
due to chemical potential (right).

Figure 6: The energy density with zero chemical potential (left) and the change in energy density due to
chemical potential (right).
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Figure 7: Light quark number density (left) and quark number susceptibility (right).

Figure 8: Isentropic pressure (left) and interaction measure (right) for selected values ofS/nB appropriate
to AGS, SPS and RHIC.

find trajectories in the (µl ,µh,T) space withns = 0 ands/nB as stated above. In Fig. 8, we show the
isentropic pressure and interaction measure. We also show the isentropic energy density, and quark
number density in Fig. 9, and the isentropic light and strange quark susceptibilities in Fig. 10.

4. Conclusions

We have extended our sixth order Taylor expansion study of thermodynamics with chemical
potential toward the continuum limit by going fromNt = 4 to 6. After computing the expansion
coefficients relevant for both pressurep and interaction measureI we can compute a number of
interesting quantities. We observe modest lattice spacing effects, with the quark densities and
susceptibilities, and the effect of chemical potential, smaller at the smaller lattice spacing. In
addition, we have calculated the isentropic equation of state, which is particularly relevant for the
phenomenology of relativistic heavy-ion colliders. For both values ofNt we find rather smooth
behavior for the isentropic variables indicating that experiments are far from any critical point in
theµ–T plane.

It would be interesting to extend this work to yet smaller lattice spacing and to go tolighter
quark mass.
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Figure 9: Isentropic energy density (left) and light quark number density (right) for selected values ofS/nB

appropriate to AGS, SPS and RHIC.

Figure 10: Isentropic light quark number susceptibility (left) and strange quark number susceptibility (right)
for selected values ofS/nB appropriate to AGS, SPS and RHIC.
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